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November 1, 2021 

 

City of Chicago, Public Comment  

Attn: Rulemaking – Rock Crushing 

 

Submitted Via email to: EnvComments@cityofchicago.org  

 

Re: Proposed Rules for Reprocessable Construction/Demolition Material Facilities   

 

To Whom It May Concern:  

 

Please be advised that I represent the Chicago Environmental Justice Network (CEJN).  CEJN is a coalition of 

several Chicago-based environmental justice organizations, including the Little Village Environmental Justice 

Organization, Neighbors for Environmental Justice, Blacks in Green, Southeast Environmental Task Force and 

People for Community Recovery.  CEJN advocates to eliminate adverse and disproportionate risks in 

environmental justice communities, to ensure opportunities for these communities to participate at every level of 

decision-making, and to equitably allocate the benefits of public health, economic, environmental and energy 

programs and resources. 

 

For purposes of these comments, two CEJN organizations are particularly important. Because of the aggregation 

of reprocessing facilities on the southwest side, the individual members of Neighbors for Environmental Justice 

(McKinley Park) and the Little Village Environmental Justice Organization are especially affected by this 

category of facilities.  For this reason, individual members of these organizations may be submitting comments 

arising from their own experiences.  Moreover, other CEJN organizations may be submitting comments 

addressing their community-based perspectives on the proposed regulations. Finally, CEJN fully endorses the 

comments submitted by the Natural Resources Defense Council and the Northwestern Law School Environmental 

Law Clinic.  

 

As an initial matter, CEJN is presenting the following data to demonstrate why environmental justice must be 

CDPH’s highest priority in the present rulemaking.  This analysis is derived from U.S. EPA databases applied to 

existing and proposed reprocessing facilities in Chicago. 
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Facility Population 

One Mile 
Households 
One Mile 

Minority 
Percent 

One 

Mile 

Low 
Income 

Percent 

One 

Mile 

Minors 
One 

Mile 

 

PM2.5 
Census 

Block 

Ozone 
Census 

Block 

NATA 
Diesel 

PM 

Census 

Block 

NATA 
Air 

Toxics 

Cancer 

Risk 

Census  

Block 

NATA 
Respiratory 

Hazard 

Index 

Census  

Block 

Traffic 
Proximity 

Census  

Block 

Chicago 
Rail and 

Port 

20,356 5,648 90% 50% 6,421 78.9 80 91.3 78.2 79.1 85.5 

Lindahl 37,148 8,924 91% 57% 8,649 99.9 99.9 100 99.9 99.9 85.3 

Ozinga 41,253 16,578 78% 48% 8,178 77.5 77.9 94.6 79.7 81.1 89.8 

Stock-

Yard 

Material 

23,313 7,868 86% 54% 7,266 76.8 77.2 91.7 77.8 79.6 82.3 

Reliable 
Pulaski 

16,408 5,058 94% 59% 5,492 94.4 94.8 97.6 94.9 95.8 81.9 

Reliable 

Laflin 

39,166 13,867 78% 47% 10,000 77.5 77.9 94.6 79.7 81.1 89.8 

Reliable 
Grand 

56,832 15,525 96% 52% 17,641 81.8 81.8 88.3 83.4 82.5 92.5 

Vulcan 25,877 9,534 74% 46% 7,255 76.8 77.2 91.7 77.8 79.6 82.3 

Total 260,353 82,702   70,902       

Average   86% 52%  83.9 83.3 93.7 83.9 84.8 86.1 

 

According to data derived from U.S. EPA’s ECHO and EJ Screen databases, more than 260,000 Chicagoans live 

within a one-mile radius of eight existing or proposed reprocessing facilities.  There are over 82,700 households 

within a one-mile radius of these facilities, and over 70,000 residents who are minors.  U.S. EPA’s ECHO 

demographic profile of the Chicagoans living within this one-mile radius indicates these residents are 

disproportionately minority, identifying 86% as people of color.  They are also disproportionately low-income 

households, with 52% low-income residents.  For every individual facility analyzed, and in the aggregate for this 

category of facilities in Chicago, the nearby communities are clearly environmental justice communities. 

 

There is also compelling evidence that these environmental justice communities are also subject to significant 

and disproportionate environmental risks.  U.S. EPA’s EJ Screen characterizes eleven screening level indicators, 

six of which are related to air quality: PM2.5, ozone, NATA diesel, NATA air toxics, NATA respiratory hazard 

and traffic proximity.  For these indicators, a score is assigned from 0-100, with a higher score indicating a 

geographic area that warrants further consideration for EJ concerns.  Specifically, EJ Screen highlights census 

blocks with scores above 80 on the 0-100 scale.  In the census blocks that include existing and proposed 

reprocessing facilities, the average scores in the aggregate for the six air quality-related indicators range from 

83.3 to 93.7.  The lowest score for the census blocks for any individual facility for any of the six air quality-

related indicators is 76.8, with most scores well-above 80 and many scores in excess of 90. The environmental 

justice communities in proximity to the facilities that would be subject to CDPH’s proposed regulations are 

unmistakably overburdened. This disproportionate risk is further evidenced by health-based data that CDPH 

incorporated into its own 2019 Air Quality and Health Report, underscoring the disparities for Chicago’s residents 

who live in southwest and southeast side neighborhoods.1 

 

As a federally funded entity, Chicago must not undertake actions that discriminate against classes of people who 

are protected under federal civil rights laws.  Because 86% of residents who live within one-mile of a regulated 

reprocessing facility are people of color, there are unmistakable risks of disproportionate impacts on a protected 

class.  Because of the environmental conditions and health disparities that already exist, there is a compelling 

evidence that this protected class of residents experience significant and adverse risks in the neighborhoods where 

they live and where these facilities operate.  Notably, because CDPH’s proposed regulations make no provision 

for public participation in the permitting of reprocessing facilities, these same residents will not be afforded 

legally-mandated opportunities for expressing their concerns about the operations of individual facilities in the 

 
1 https://www.chicago.gov/city/en/depts/cdph/provdrs/healthy_communities/svcs/air-quality-and-health.html 
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City permitting process.  In critical ways, they are also denied access to the air monitoring data to assess if they 

are at risk. 

 

These environmental justice concerns form the basis for the comments that follow.  The need for protective 

regulations is further evidenced by the potential health consequences of characteristic air pollutants from 

reprocessing facilities, which will be described in the next section.  These comments will then address the need 

for enclosing reprocessing facilities in structures that include modern, effective pollution control equipment.  The 

comments will identify best practices to control air emissions for several operations at this category of facilities.  

The comments include a justification for significantly enhanced public access to air monitoring data.  The 

comments also assert that City permitting of individual facilities must include legally mandated opportunities for 

full and complete public participation. 

 

CEJN Comment One: CEJN requests increased transparency and additional public participation opportunities 

regarding air pollution to be written into the rules. Specifically, CEJN requests the CDPH mandate facilities to 

upload the required air monitoring data on a publicly accessible website as close to real time as possible but at 

least once daily. CEJN also requests CDPH require facilities to post an alert on the same publicly accessible 

website immediately following any time the air monitors indicate pollutants over the reportable action level 

(“RAL”) for fifteen (15) minutes or more.  

 

Rock crushing dust is known to contain and carry numerous hazardous materials including silica, lead, and 

particulate matter (PM). Silica dust (crystalline silica), a known human carcinogen, originates during construction 

on materials such as stone, rock, brick, tile, concrete, and quartz, many of which will be crushed at rock crushing 

facilities.2 Silica dust is 100 times smaller than a grain of sand so it often remains unobserved but can be incredibly 

harmful to human health when inhaled.3 Exposure to silica dust can lead to lung cancer, silicosis (irreversible 

scarring and stiffening of the lungs), kidney disease, heart failure, and chronic obstructive pulmonary disease 

(“COPD”).4 

 

PM exposure has been linked to premature death, heart attack, irregular heartbeat, aggravated asthma, decreased 

lung function, and increased respiratory symptoms like coughing or difficulty breathing. 5 If small enough, 

particles may be embedded in lungs or enter the bloodstream and cause irreversible damage.6 Children, the 

elderly, and persons with preexisting heart or lung disease are most susceptible to PM exposure, but symptoms 

can occur in anyone. PM exposure produces health impacts even at very low concentrations, there is no identified 

threshold of PM below which no damage to health is observed, as such the pollution control methods should be 

aimed at the lowest concentrations of PM possible.7 Beyond health impacts, PM can detrimentally affect the 

environment by causing haze, making water systems acidic, depleting nutrients in soil, damaging forests and 

crops, changing the diversity of ecosystems, and contributing to acid rain.8  

 

 
2 ToxFAQs for Silica, Agency for Toxic Substances and Disease Registry, (Jan. 2020), available at Silica | ToxFAQs™ | ATSDR 

(cdc.gov); see also Silica… It’s Not Just Dust: Silica Dust Causes Silicosis, The National Institute for Occupational Safety and Health, 

(June 2014) available at https://www.cdc.gov/niosh/docs/97-112/ 
3 Silica, Crystalline, United States Department of Labor, Occupational Safety and Health Administration, available at  

https://www.osha.gov/silica-crystalline 
4 Id.  
5 Health and Environmental Effects of Particulate Matter (PM), United States Environmental Protection Agency, (May 2021), 

available at https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm  
6 Id.  
7 Ambient (Outdoor) Air Pollution,  World Health Organization (WHO), (September 2021), available at https://www.who.int/news-

room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health  
8 Health and Environmental Effects of Particulate Matter (PM), United States Environmental Protection Agency, (May 2021), 

available at https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm.  

https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=1492&toxid=290
https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=1492&toxid=290
https://www.cdc.gov/niosh/docs/97-112/
https://www.osha.gov/silica-crystalline
https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm
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Lead is a naturally occurring element found in the earth’s crust that is often released during rock crushing.9 When 

released into the air, lead can travel long distances before settling to the ground.10 Lead exposure may cause 

cardiovascular problems, decreased kidney function, reproductive issues, and developmental and neurological 

problems in children.11 Science has not identified a threshold of lead below which no health impacts occur.12 For 

infants and young children, even a small about of lead can irreversibly impact their ability to learn.13  

 

At the public meeting held on September 28, 2021, CDPH stated that they would most likely require facilities to 

make air monitoring data publicly available monthly. This requirement is not apparent within the rules. Even if 

the monthly reporting requirement is enforced, providing the public with data monthly will not protect them of 

pollution dangers but merely inform them of the harm that has already been done. PM10 can stay in the air for 

minutes or hours and can travel up to 30 miles.14 These pollutants may not remain in the air for extended periods 

of time, but existing research identifies increasing health impacts associated with hourly increases in PM.15 

Moreover, once released and inhaled, they can cause significant irreversible effects.16 As such, it is crucial to get 

air monitoring data to the public as soon as possible.17 CEJN believes the rules as proposed do not provide 

adequate transparency to the public regarding air monitoring data and events of RAL exceedances. 

 

As CDPH mentioned in the September public meeting, all existing rock crushing facilities are located within 

overburdened environmental justice neighborhoods in Chicago’s industrial corridors. The two pending facilities 

are proposed to be built and operated in overburdened communities. Rock crushers are only allowed in certain 

zones18 within the city, all of which are located within environmental justice neighborhoods.19 The air quality 

throughout Chicago does not leave an extensive margin of error for rock crushing companies, especially in the 

industrial corridors.20 Many of the communities within or near the industrial corridors are already at a risk for 

chronic respiratory illnesses like asthma and COPD.21 Cook County has been in nonattainment for Ozone since 

 
9 Learn About Lead, United States Environmental Protection Agency, (July 2021), available at Learn about Lead | US EPA 
10 Id.  
11 Id.  
12 Basic Information about Lead in Drinking Water, United State Environmental Protection Agency, (August 2021), available at Basic 

Information about Lead in Drinking Water | US EPA 
13 “Lead levels of 10 micrograms or more in a deciliter of blood are levels of concern and can damage a child’s ability to learn . (A 

microgram is one millionth of a gram. A deciliter is about half a cup of liquid.)” National Biomonitoring Program: Lead, Centers for 

Disease Control and Prevention (CDC), (July 2013), available at CDC - NBP - Factsheet - Lead 
14 Particulate Matter Information, Pima County Arizona, (2021), available at 

https://webcms.pima.gov/cms/one.aspx?portalId=169&pageId=167257  
15 The Relationships Between Short-Term Exposure to Particulate Matter and Mortality in Korea: Impact of Particulate Matter 

Exposure Metrics for Sub-Daily Exposures, Son, J., Bell, M., Environ Res. Lett (March 2013) available at 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288032/  
16 Particulate Matter Information, Pima County Arizona, (2021), available at 

https://webcms.pima.gov/cms/one.aspx?portalId=169&pageId=167257 
17 Id.  
18 M3, PMD 6, 8a, 9, 11a, 12, 13, and 14.  
19 City of Chicago Zoning and Land Use Map, City of Chicago Department of Planning and Development, last visited 2021 at  

https://gisapps.chicago.gov/ZoningMapWeb/?liab=1&config=zoning  
20 “[T]he areas of greatest concern are primarily located on the South and West Sides of the city. In particular, parts of the city 

bisected by major highways with high concentrations of industry are over-burdened, experiencing high levels of both pollution and 

vulnerability.” Air Quality and Health Report, City of Chicago, (2020) available at 

https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/Air_Quality_Health_doc_FINALv4.pdf  
21 i.e., Chicago has an asthma rate of 9.5% while West Garfield Park has a rate of 20.2% and South Deering has a rate of 15.6%.  

https://www.chicagohealthatlas.org/indicators/asthma. In 2017, the highest rates of childhood asthma were found to be in West and 

East Garfield Park (47.0 per 10,000) and West Englewood (46.4 per 10,000). Further, the highest rates of childhood asthma 

emergency department visits were in Austin (323 per 10,000) and West Englewood (302 per 10,000). All these community areas are 

of high concentrated disadvantaged and overburdened residents. 

https://www.dph.illinois.gov/sites/default/files/publications/publicationsowh2016-il-childhood-asthma-surveillance-report_0.pdf  

https://www.epa.gov/lead/learn-about-lead
https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water
https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water
https://www.cdc.gov/biomonitoring/Lead_factsheet.html
https://webcms.pima.gov/cms/one.aspx?portalId=169&pageId=167257
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288032/
https://webcms.pima.gov/cms/one.aspx?portalId=169&pageId=167257
https://gisapps.chicago.gov/ZoningMapWeb/?liab=1&config=zoning
https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/Air_Quality_Health_doc_FINALv4.pdf
https://www.chicagohealthatlas.org/indicators/asthma
https://www.dph.illinois.gov/sites/default/files/publications/publicationsowh2016-il-childhood-asthma-surveillance-report_0.pdf
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2012, levels of which have consistently increased in recent years.2223 The American Lung Association’s 2019 

report indicated that Chicago’s ozone levels have consistently increased with “up to a yearly average of fifteen 

‘unhealthy ozone days’ from 2016-18, making Chicago the 16th most polluted city in the U.S. for ozone, up from 

18th [in 2019] and 26th in 2017.”24 Historically, Cook County has also been in severe nonattainment for PM.25 

While the area is currently in attainment of federal levels, fine PM pollution remains high.26 At the time of writing, 

USEPA’s Airnow reported Chicago’s Air Quality Index (AQI) as 84 with the primary pollutant listed as PM2.5.27 

An AQI of 84 is considered on the higher end of Airnow’s moderate rating which urges sensitive populations to 

limit their outdoor activity.28 Trends in this area for the last 4 weeks have shown AQI readings of at least moderate 

or worse for 15 days, 2 of which the AQI was considered unhealthy for sensitive groups.29  

 

Requiring the air monitoring data to be posted publicly would not place an undue burden on industry as facilities 

are already required to conduct continuous real-time monitoring under the proposed rules. Air monitors typically 

have a data reporting and logging function that includes ability to upload data to a public website.30 Many of 

which have functions to upload data directly using 2G/3G/LTE real time cellular upload for easy access without 

requiring computer upload.31 Automatic upload is also available in many air monitors; this allows for data to be 

automatically posted online without any additional effort by the owner or operator.32 For such automatic models, 

data can be uploaded to the company’s website with only a one-hour delay to allow for data verification.33 Data 

logging is also often available so that data is saved within an SD card in case of malfunction or technical issues 

with upload.34 The technology to provide daily air monitoring data to the public is readily available at little to no 

additional cost to facilities, as such, requiring as close to real time data upload would not place an undue burden 

on industry.35  

 

 
22 Illinois Nonattainment/ Maintenance Status for Each County by Year for All Criteria Pollutants, United States Environmental 

Protection Agency, (September 2021) available at  https://www3.epa.gov/airquality/greenbook/anayo_il.html  
23 USEPA’s preliminary analysis of ozone in the city, including levels for summer 2021, shows the highest levels at the South Water 

Treatment Plant on the Southeast side of the city. https://www.epa.gov/outdoor-air-quality-data  
24 Air Quality and Health Report, City of Chicago, (2020) available at 

https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/Air_Quality_Health_doc_FINALv4.pdf; State of the Air, 

American Lung Association, (2020), available at http://www.stateoftheair.org/assets/SOTA-2020.pdf.  
25 Illinois Nonattainment/ Maintenance Status for Each County by Year for All Criteria Pollutants, United States Environmental 

Protection Agency, (September 2021) available at  https://www3.epa.gov/airquality/greenbook/anayo_il.html 
26 “PM2.5 pollution and levels have decreased by 40% since 2000, concentrations are still among the highest in the nation.” Air 

Quality and Health Report, City of Chicago, (2020) available at 

https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/Air_Quality_Health_doc_FINALv4.pdf; 
27 https://www.airnow.gov/?city=Chicago&state=IL&country=USA  
28 Id.  
29 Id.  
30 EPA Tools and Resources Webinar FRMs/FEMs and Sensors: Complementary Approaches for Determining Ambient Air Quality, 

United States Environmental Protection Agency, (Dec. 2019), available at https://www.epa.gov/sites/default/files/2019-

12/documents/frm-fem_and_air_sensors_dec_2019_webinar_slides_508_compliant.pdf 
31 AQLite Air Monitoring Packages, 2B Technologies, available at https://twobtech.com/aqlite-air-monitoring-packages.html 
32 Current Air Quality, Spokane Regional Clean Air Agency, (2021), available at https://spokanecleanair.org/air-quality/current-air-

quality/  
33 Id.   
34 AQLite Air Monitoring Packages, 2B Technologies, available at https://twobtech.com/aqlite-air-monitoring-packages.html 
35 CEJN does not support the use of lower-cost air monitors to satisfy the air monitoring requirements under the proposed rules. 

However, if CDPH allows such lower-cost monitors to be used at rock crushing sites, daily data upload would not be an undue burden 

on the facility. Even lower cost air monitors have a data logging capability either to post directly online or to be uploaded. Mobile 

monitors can directly upload data to a manufacturer-provided webpage through Wi-Fi connection. Even if the facility chooses a 

monitor without a wireless module, the monitors may be easily connected to a computer to upload and display real-time data. Further, 

a number of available models have internal off-line data logging systems that can record the data on an SD card in case of any 

connection malfunction or for later upload at the end of the operating day. Evaluation of Nine Low-Cost-Sensor-based Particulate 

Matter Monitors, Li, J., Mattewal, S.K., Patel, S., and Biswas, P., Aerosol; Air Qual. Res. 20: 254-270 (Feb. 2020) available at 

https://aaqr.org/articles/aaqr-18-12-lcs-0485. 

https://www3.epa.gov/airquality/greenbook/anayo_il.html
https://www.epa.gov/outdoor-air-quality-data
https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/Air_Quality_Health_doc_FINALv4.pdf
http://www.stateoftheair.org/assets/SOTA-2020.pdf
https://www3.epa.gov/airquality/greenbook/anayo_il.html
https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/Air_Quality_Health_doc_FINALv4.pdf
https://www.airnow.gov/?city=Chicago&state=IL&country=USA
https://www.epa.gov/sites/default/files/2019-12/documents/frm-fem_and_air_sensors_dec_2019_webinar_slides_508_compliant.pdf
https://www.epa.gov/sites/default/files/2019-12/documents/frm-fem_and_air_sensors_dec_2019_webinar_slides_508_compliant.pdf
https://twobtech.com/aqlite-air-monitoring-packages.html
https://spokanecleanair.org/air-quality/current-air-quality/
https://spokanecleanair.org/air-quality/current-air-quality/
https://twobtech.com/aqlite-air-monitoring-packages.html
https://aaqr.org/articles/aaqr-18-12-lcs-0485
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Given the severity of the risks associated with rock crushing dust, the urgency of reporting, the ease of reporting, 

and the proximity of these facilities to overburdened residential areas, increased transparency and public 

participation regarding air monitoring must be written into the rules. At the very least, CEJN urges CDPH 

to require air monitoring data be posted to a publicly accessible website daily by the company then uploaded to a 

city run website monthly by CDPH. There should also be a requirement that, in addition to contacting CDPH, the 

facility must make an announcement on their webpage immediately following any time the facility’s monitors 

report pollutants exceeding the RAL for 15 minutes or more and detail response actions taken by the facility.  

 

As such, CEJN proposes the following changes to 5.8.7. Air Monitoring Requirements of CDPH’s proposed rules 

on reprocessable construction/demolition material facilities. In accordance with the information regarding other 

pollutants and PM4 set forth in our partner’s comments, all proposed additional requirements should be extended 

to any RALs needed beyond those included in the proposed rules.  

 

 

5.8.7.1.636 Data Reporting. On at least a daily basis, the owner or operator shall upload the hourly data 

for each monitor and weather station data for the same period in a format compatible with 

all or most devices to a publicly available online database operated by the Owner or 

Operator of the Facility. Data upload should occur frequently throughout the day, as close 

to real time as possible, but shall occur at least once by the end of each operating day.  

 

5.8.7.1.9 Alternate RAL. The applicant may propose an alternate PM10 RAL concentration or PM10 

RAL averaging time to CDPH after conducting sufficient public outreach and research. 

Such proposal shall Demonstrate the following:  

  

a. The current PM10 RAL is not reliable due to offsite ambient PM concentrations beyond 

the control of the Operator; 

 

b. The proposed PM10 RAL is protective of human health and the environment. This 

Demonstration shall include filter-based sampling showing the air concentration of 

lead, asbestos, silica, and pollutants handled at the facility; 

 

c. The proposed PM10 RAL will not substantially or unreasonably interfere with 

surrounding residents’ quality of life; and  

 

d. The proposed RAL does not violate any applicable local, state, or federal air quality 

standards or requirements.  

 

The Department may reinstate the RAL in subjection 5.8.7.1.7 should it find the alternate RAL 

insufficient in preventing nuisances and negative impacts on human health and the environment.  

 

5.8.7.1.10 Alternate RAL Public Notification. The owner operator must hold at least one public 

meeting, prior to submitting a proposal to CDPH, to explain the need for an alternate RAL, 

present findings included within the proposal, and provide an opportunity for public 

comments and questions to be recorded and submitted within the proposal. Once submitted 

this proposal and CDPH’s response to the proposal must be made publicly available. 

 

 
36 The numbering of this section thus accommodates this change with Reportable Action Level now being 5.8.7.1.7 but the language 

remaining the same.  
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5.8.7.1.11 Monthly Data Reporting. All data collected pursuant to subsection 5.8.7.1.5 must be 

submitted to CDPH within 14 days of the end of the month in which the data was collected 

via email to envwastepermits@cityofchicago.org. Upon receipt of such monthly data 

reporting, CDPH shall upload the data to a publicly accessible website within 14 days of 

the end of the month in which the data was collected.  

 

5.8.7.1.1437 RAL Public Notification. When a reportable action level is exceeded, the Operator shall 

place an alert on the publicly available website containing air monitoring and weather 

station data, referenced in 5.8.7.1.6 above, within 30 minutes of the recorded exceedance. 

The alert should be titled “RAL Alert Condition” in bolded type followed by the following 

information: 

  

a. The date and time of the RAL exceedance; 

 

b. The average wind speed and wind direction recorded over a 15-minute period; 

 

c. The concentrations of PM10 recorded by all monitors over the same 15-minute period;  

 

d. The location of monitors reporting the RAL exceedance with reference to cardinal 

direction and/or other qualifying directional descriptions such as street names;  

 

e. Any warning or recommended response to be taken by nearby residents i.e. limit 

outdoor activity for sensitive groups; and 

 

f. A description of response actions underway at the facility to contain the RAL 

exceedance and avoid or reduce additional RAL exceedances. 

 

CEJN Comment Two: Considering the extensive health and environmental impacts articulated in Comment 

One, CEJN believes the most appropriate approach is to require all rock crushing facilities to operate completely 

enclosed and equipped with a local exhaust ventilation system (“LEV”). CDPH has already cataloged enclosure 

as an available and appropriate measure for dust control in the Control of Emissions from Handling and Storing 

Bulk Materials Rules.38 39 The Control of Emissions from Handling and Storing Bulk Materials rules require 

enclosure for numerous parallel operations and dust sources including but not limited to conveyors, transfer 

points, storage piles, processing areas, and loading/unloading areas.40  

 

CEJN implores CDPH to require all new facilities to be built such that operations are completely enclosed, and 

any air output be filtered of dust through pollution controls. Ancillary operations within the rock crushing facility, 

including conveyors, transfer points, staging areas, storage piles, and loading/unloading areas should also be 

enclosed. CDPH should also include measures that require any existing rock crushing facilities to enclose their 

operations moving forward.  

 
37 The numbering of this section thus accommodates this change with RAL Recording now being 5.8.7.1.15 but the language 

remaining the same. 
38 City of Chicago Rules: Control of Emissions from Handling and Storing Bulk Materials, Chicago Department of Public Health, 

(January 2019), available at 

https://www.chicago.gov/content/dam/city/depts/cdph/InspectionsandPermitting/Control_EmissionsfromHandling&StoringBulkMater

ials_January2019.pdf   
39 CEJN echoes our partner, NRDC’s, comments that where analogous CDPH and state regulations, like the Control of Emissions 

from Handling and Storing Bulk Material rules, establish more stringent requirements for parallel operations or dust sources, CEJN 

believes CDPH should incorporate such stringent requirements to the proposed rules for rock crushers.  
40 Id.  

mailto:envwastepermits@cityofchicago.org
https://www.chicago.gov/content/dam/city/depts/cdph/InspectionsandPermitting/Control_EmissionsfromHandling&StoringBulkMaterials_January2019.pdf
https://www.chicago.gov/content/dam/city/depts/cdph/InspectionsandPermitting/Control_EmissionsfromHandling&StoringBulkMaterials_January2019.pdf
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If CDPH determines enclosure is not feasible for a specific facility, CDPH should require such facilities employ 

current accepted best practices (“BPs”) for air pollution, noise, and vehicle use within the regulations. Requiring 

a standard of BPs will streamline the permitting process, increase accountability, and ensure proper measures are 

being taken at each facility to minimize human health and environmental impacts. Some accepted BPs for each 

issue are articulated further below. CEJN also requests that CDPH provide these BPs within the rules as guidance 

to any rock crushing applicants and interested public. 

 

I. Air Pollution and Dust Control   

 

The proposed rules provide very little information on acceptable air pollution and dust control methods for rock 

crushing facilities. If full enclosure is determined to not be feasible, CEJN encourages CDPH to write into the 

rules that only current BPs will be acceptable as air pollution and dust control strategies. As detailed above, 

several hazardous constituents are within rock crushing dust therefore the adequacy of air pollution and dust 

control plans is crucial to protecting surrounding residents and the environment.  

 

In 2010, the Center for Disease Control (“CDC”) and the National Institute for Occupational Safety and Health 

(“NIOSH”) developed and published a BP handbook called Best Practices for Dust Control in Metal/Nonmetal 

Mining to address ongoing overexposures and reported silicosis deaths in miners. The handbook provides an 

extensive analysis of existing BPs and available engineering controls to assist in reducing worker and resident 

exposure to respirable silica and PM dust from all aspects of mining, including rock crushing. The handbook 

provides both general and in-depth information on dust control technology and extensive references. CEJN relied 

on the rock crushing section of this publication while developing these comments. The handbook is referenced at 

length below and it is attached to these comments for reference by CDPH.  

 

Wet Suppression and Water Use  

 

CEJN emphasizes at the outset that wet suppression methods are not a substitute for enclosure, and instead pose 

significant risks of uncontrolled emissions, due to challenges with ensuring consistent and precise wetting of 

varying operations over a range of weather conditions. That said, water sprays and wet suppression are dust 

control techniques widely used at construction sites to either prevent dust from rising by spraying the material 

directly or to control dust by spraying any already airborne particles.41 The technique is not one-size fits all. Site-

specific designs are required of each system and the use of water for dust control will not be effective at all sites.42 

As such, CEJN requests CDPH require each site to follow BPs for water use as a dust control method.   

 

Dust control for rock crushers is typically achieved by a combination of wet suppression and LEV systems.43 

Spraying material to coat the outer surface before it enters the crushing unit is most effective.44 However, water 

pressure at this stage must be closely monitored to avoid pressurizing and forcing dust from feed chute 

enclosures.45 Water pressure at the early stages of crushing should be kept below 60 psi and facilities must 

continue diligent evaluation as the material enters later stages with finer product sizing.46  

 

 
41 Best Practices for Dust Control in Metal/Nonmetal Mining, Colinet, J., Cecala, A., Chekan, G., Organiscak, J., Wolfe, A., 

Department of Health and Human Services, Centers for Disease Control and Prevention, and National Institute for Occupational 

Safety and Health, (May 2010), available at 

https://www.state.nj.us/health/workplacehealthandsafety/documents/silicosis/mining/mining_bestpractices_full.pdf  
42 Id.  
43 Id.  
44 Id. 
45 Id.  
46 Id.  

https://www.state.nj.us/health/workplacehealthandsafety/documents/silicosis/mining/mining_bestpractices_full.pdf
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Wet suppression and water spray systems require numerous site-specific considerations to be effective.47 For 

example, when wetting material to keep it from becoming airborne, droplet sizes above 100 microns are 

effective.48 However, when the goal is to knock down any already airborne particles, the droplets should be 10-

50 microns or in size ranges similar to the dust particles themselves.49 There are also nozzle options that must be 

tailored specifically to the site as effectiveness is directly dependent on the type and amount of material to be 

controlled.50 The nozzle must be cleaned regularly, and the water source should be filtered frequently to avoid 

any sediment or debris build-up.51 Facilities must also be careful not to overapply water to avoid equipment 

damage, increased mud, and other onsite dangers.52 According to BPs, a well-designed suppression system will 

not exceed .5% moisture or roughly 1 gallon per ton of material.53 CDPH and facilities must adequately weigh 

these considerations when applying for and approving a dust control plan, however the rules as proposed do not 

indicate that such considerations will be required.  

 

Dry Particulate Control Methods 

 

Dry dust control methods like baghouses, covers, and LEV systems may be useful to control PM pollution.54 

These methods are particularly helpful in freezing temperatures when the use of water suppression is not ideal.55 

BPs for dry particulate control methods vary based on site-specifics but follow general rules for rock crushing 

facilities as detailed below.56 

 

LEV systems are air systems that use a negative pressure exhaust ventilation technique to capture dust.57 These 

systems can capture and eliminate extremely fine particles, which may be difficult to otherwise control.58 This 

method is most effective if a capture device like an enclosure, hood, or chute is incorporated at the location of 

highest dust potential.59 Facilities should use a low-velocity transfer system where captured particles are 

transported through the ductwork below 1,800 feet per minute to reduce wear on the duct system, decrease energy 

usage, maintain effectiveness of the system, and increase product recovery.60 Several options of LEV systems are 

available but the BP for rock crushing facilities is typically considered a canister-type collector.61  

 

Determining the proper air volume required to keep the process under negative pressure is a critical component 

of effective LEV system.62 As the material is fed into a crushing or grinding unit, air is entrained along with the 

product which creates air volume that must be exhausted to overcome the “induction effect.”63 Ensuring effective 

 
47 Id.  
48 Id.  
49 Id.  
50 Id.  
51 Id.  
52 Id.  
53 Id.  
54 True Minor Source Stone Quarrying, Crushing, and Screening Facilities General Permit, United States Environmental Protection 

Agency, (Nov. 2013) available at https://www.epa.gov/sites/default/files/2016-

05/documents/stonequarryingbackgrounddocument_proposed.pdf  
55 Best Practices for Dust Control in Metal/Nonmetal Mining, Colinet, J., Cecala, A., Chekan, G., Organiscak, J., Wolfe, A., 

Department of Health and Human Services, Centers for Disease Control and Prevention, and National Institute for Occupational 

Safety and Health. 
56 Id. 
57 Id.  
58 Id.  
59 Id.  
60 Id.  
61 Id.  
62 Id.  
63 Id.  

https://www.epa.gov/sites/default/files/2016-05/documents/stonequarryingbackgrounddocument_proposed.pdf
https://www.epa.gov/sites/default/files/2016-05/documents/stonequarryingbackgrounddocument_proposed.pdf
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sealing can also impact the volume of exhaust air produced.64 By minimizing the area of the opening using belting 

and plastic stripping, exhaust air volume can be lowered but acceptable negative pressure to contain the dust will 

still be maintained.65  

 

Baghouses are air pollution control devices and dust collectors often used at rock crushing facilities to prevent 

releases of PM and other pollutants.66 The baghouse discharges collected dust into a dumpster, drum, or bin.67 It 

is crucial to ensure the connection between the baghouse and dust receptacle is airtight to avoid releasing dust 

into the environment.68 BPs to address this concern vary based on the type of receptacle the dust is emptied into. 

For example, if a drum is being used for collection, a flange or sleeve manufactured into the drum lid must made 

to fit a flexible boot to be clamped to and attached to a sleeve from the baghouse discharge point.69 Any spillage 

must be immediately cleaned by a vacuum that is plumbed into the dust collector with a valve.70 Frequent routine 

vacuuming must be performed regardless of spillage.71   

 

Covers can be used to avoid fugitive dust on any potentially polluting materials including product stockpiles, 

product or by-product storage or waste containers, machinery, hauling trucks, or other equipment.72  

 

Transfer Points   

 

Transfer points are a potential source of significant fugitive dust within a rock crushing site, but the rules provide 

little to no guidance on how to control such dust. “The two primary dust emission points of all crushing and 

grinding units are at the feed and discharge points.”73 To ensure the critical dust control plan is effective, CDPH 

should require BPs of all facilities by enclosing all transfer points and installing properly designed chutes or 

transfer points with rubber seals between stationary and moving components.74  

 

In addition to enclosures, transfer point systems can be designed to control and suppress dust generated through 

site and material specific BPs.75 For example, transfer point chutes should be sized to allow materials to flow 

without clogging.76 Though chute size will depend on the amount of material processed at the facility, a general 

rule of thumb is “chute depth should be at least three times the maximum lump size to avoid clogging.”77  

 

Though many of the plans will be site-specific, many BPs can be utilized as blanket requirements and ensure 

some level of uniformity. To avoid an excessive release of dust, certain constraints must be required of all transfer 

points. For example, dumping should occur on a sloping bottom or rockbun.78 Fall height must be minimized with 

 
64 Id.  
65 Id.  
66 Surface Water Management: Industrial Stormwater Best Management Practices Manual, Jurries, D. and Ratliff, K., Oregon 

Department of Environmental Quality, (Feb. 2013) available at https://www.oregon.gov/deq/FilterDocs/IndBP021413.pdf  
67 Id.  
68 Id.  
69 Id.  
70 Id.  
71 Id.  
72 Best Management Practices for Construction Sites¸City of Eugene Public Works, (March 2016), available at https://www.eugene-

or.gov/DocumentCenter/View/4717/Best-Management-Practices?bidId=  
73 Best Practices for Dust Control in Metal/Nonmetal Mining, Colinet, J., Cecala, A., Chekan, G., Organiscak, J., Wolfe, A., 

Department of Health and Human Services, Centers for Disease Control and Prevention, and National Institute for Occupational 

Safety and Health. 
74 Id.  
75 Id.  
76 Id.  
77 Id.  
78 Id.  

https://www.oregon.gov/deq/FilterDocs/IndBMP021413.pdf
https://www.eugene-or.gov/DocumentCenter/View/4717/Best-Management-Practices?bidId=
https://www.eugene-or.gov/DocumentCenter/View/4717/Best-Management-Practices?bidId=
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rock ladders, telescopic chutes, spiral chutes, and bin-lowering chutes.79 A head enclosure, designed with strip 

curtains and skirt boards to position the material on the center of the belt, should be used when transferring 

material onto and via a conveyor.80 An exit velocity from the enclosure or chute should be kept below 500 fpm 

to minimize the entertainment of large particles.81  

 

Conveyor Use  

 

Conveyors are often used at rock crushing facilities to transport crushed material throughout the site. There are 

four main areas of dust generation from conveyors: (1) when material is dumped onto the belt; (2) as material 

travels down the belt; (3) carryback on the belt becoming released from the underside return idlers; and (4) when 

material is dumped from the conveyor.82 If not properly maintained and operated, they can be a source of 

significant fugitive dust on the site even when not transporting material.  

 

Conveyors and transfer points should be enclosed to appropriately contain dust as the material is moved 

throughout the site. CEJN advocates for full enclosures of ancillary operations of rock crushing facilities like 

conveyors and transfer points where applicable. If a full enclosure is not feasible facilities should follow BPs for 

partial enclosures. Often, partial type enclosures are achieved with skirting, which keeps the material on the belt.83 

Partial enclosures are especially important immediately after the material exits the loading chute.84 An inclined 

skirting design, where the skirting belt is angled at approximately 30 degrees from vertical is more effective than 

a standard vertical design because it can withstand more use without wear issues.85 It also improves loading and 

reduces the amount of dust generated when loaded onto and transported on the conveyor.86 Dust curtains are 

another effective form of dust control enclosures and are cost effective.87 Enclosures at the head and tail ends of 

the conveyor are also important to control dust at locations where the material is moving.88  

 

An LEV should be tied into the enclosures at the conveyor dump and transfer locations to capture and filter the 

dust from the air.89 The takeoff port to the LEV system should be at least six (6) feet from the dump point to 

minimize pickup of oversized particles.90 Further, the air velocity should be kept below 500 fpm at the exhaust 

port to avoid pick up of larger particles but must be kept at least or above 250 fpm intake to eliminate dust 

leakage.91 Plastic stripping and other types of sealing systems should be used to minimize openings and maximize 

intake velocity.92  

 

Water suppression is often used to control dust while using the conveyor. According to accepted BPs, the 

conveyor sprays should wet the entire width of the product on the belt but ensure that moisture is varied depending 

on site specific characteristics like load capacity, product, and weather.93 1% moisture added to product ratio is a 

good starting point that may be manipulated as the product is used.94 For use with conveyors, the water system 

 
79 Id. 
80 Id.  
81 Id.  
82 Id.  
83 Id.  
84 Id.  
85 Id.  
86 Id.  
87 Id.  
88 Id.  
89 Id.  
90 Id.  
91 Id.  
92 Id.  
93 Id. 
94 Id. 
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nozzle should be a fan spray.95 Fan sprays minimize the volume of water added for coverage, so no product is left 

over or under saturated.96 The fan nozzle must be located at the front of the dust source on the conveyor belt to 

encourage the material and water to continually mix as it progresses down the belt.97  

 

Equipment must be outfitted with BPs for ensuring effective and efficient use.98 A belt scraper must be used to 

remove any “carryback” before it dries.99 A belt wash must also be used to capture any smaller particles that 

remain after scraping.100 Effective belt loading is achieved with slider bar cradles to absorb any shock and cushion 

the impact on the belt.101 This can reduce belt sag and vibration during loading.102 Side shields must also be used 

to contain material within the belt.103 Enclosures should be located at the conveyor dump and transfer locations 

to contain and filter dust.104  

 

Conveyors must be designed to effectively withstand and operate at a rock crushing facility.105 They also require 

constant vigilance for operation, repair, and replacement of any worn or broken parts.106 However, the proposed 

rules fail to mandate any operation, repair, or reporting requirements specific to the use of conveyors. CDPH must 

hold facilities to the standard of BPs to ensure responsible and effective operation and repair of conveyors and 

other equipment.   

 

As such, CEJN proposes the following changes regarding air pollution and dust control to be made and 

incorporated into the proposed rules.  

 

3.8.4 Location Standards  

 

3.8.4.1.7.  Enclosure. All Facility operations and stockpiles shall be fully enclosed such that all 

crushing, inspection of materials, loading and unloading, transporting, storage of material, 

and any other onsite operators are enclosed and attached to a local exhaust ventilation 

system to ensure proper air pollution management. A Facility may apply for a variance, as 

referenced in Section 7.0 of these rules, allowing for partial enclosure upon demonstration 

that full enclosure is not technically feasible at the Facility. Cost shall not be a consideration 

in making this determination. 

 

3.8.4.1.8 Partial Enclosure. If CDPH determines full enclosure of a Facility is not technically 

feasible, best practices for partial enclosure shall be followed. At a minimum, the head and 

tail ends of all conveyor belts, staging areas, storage piles, loading/unloading areas, 

dumping points, loading chutes, discharge points, and transfer points shall be enclosed 

using appropriate equipment and dust curtains, and all enclosures shall be tied to a local 

exhaust ventilation system to capture and filter dust from the air. Additional best practice 

technologies and techniques shall be imposed as determined by CDPH. 

 

 
95 Id.  
96 Id. 
97 Id. 
98 Id.  
99 Id. 
100 Id.  
101 Id. 
102 Id. 
103 Id. 
104 Id.  
105 Id.  
106 Id. 
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3.9.4. Dust Prevention and Dust Suppression. The Operating Plan shall include a listing and 

technical specifications of all Airborne Dust Prevention and all Airborne Dust Suppression 

measures deployed at each reprocessing device, conveyor, material drop point, and 

stockpile location, during freezing and non-freezing conditions.  

 

CDPH shall require all Airborne Dust Prevention and Airborne Dust Suppression measures 

utilize industry best practices including but not limited to the use of water, baghouses, local 

exhaust ventilation systems, enclosures, dust curtains, sweeping, and diligent and frequent 

equipment maintenance and repair. Design, operation, and maintenance of all Airborne 

Dust Prevention and Airborne Dust Suppression equipment shall be in accordance with 

best practice technologies and techniques as determined by CDPH. 

 

3.9.4.1 Water Suppression and Water Spray. If water is used on site to control dust, best practices 

as determined by CDPH shall be followed and used in conjunction with other dust control 

measures. Site and material specific water suppression plans shall be subject to CDPH 

approval.  

 

5.0 Operating Standards  

 

5.7 Vehicles and Equipment. Each Facility shall be designed as electrification-ready such that 

emerging zero-emission technologies for equipment and vehicles may be easily installed and 

operated on site as available within CDPH’s discretion. All vehicles and equipment shall be 

electrification-ready and/or outfitted with zero emission technologies to the greatest extent 

feasible.  

 

The Facility shall have sufficient vehicles and equipment available to accept and Process the 

Facility’s permitted volumes or weights of material. All vehicles and equipment shall be 

operated and maintained according to CDPH-determined best practices in a manner that 

minimizes emissions and noise pollution, including but not limited to, the following: 

 

5.7.2 Railcars and Barges. Railcars and barges must be loaded in a manner that will control dust 

through the use of best management practices such as, but not limited to, enclosures, the use 

of solid covers, telescoping load booms, dust chutes, and the application of dust suppression 

agents and/or water.  

 

5.8.2 Fugitive Dust. Except as provided herein, neither the Owner nor Operator shall cause or allow 

the emission of fugitive dust into the atmosphere. CDPH shall impose best practice 

requirements for fugitive dust control and shall comply with the following requirements:  

 

5.8.9. Equipment Maintenance. Equipment and vehicles used at the Facility shall undergo routine 

maintenance. All maintenance, routine or otherwise, shall be logged and submitted to CDPH 

with quarterly reporting as referenced in 5.8.16 of these rules.  

 

5.8.18. Conveyors. All conveyors used onsite shall be properly designed, operated, and maintained to 

prevent or minimize dust emissions and debris.  

  

5.8.18.1. Enclosure. All conveyor belts shall be fully enclosed. If full enclosure of all operations is not 

technically feasible at the facility, partial enclosure shall be designed using best practices 

within the industry at the time of application including but not limited to: 
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a. Enclosures at the head and tail end of the conveyor and any area immediately after material 

exits a loading chute shall be constructed; 

 

b. An inclined skirting design at an angle of approximately 30 degrees from vertical shall be 

utilized in place of a standard vertical designs where applicable;  

 

c. Dust curtains shall be used in conjunction with skirting enclosures to ensure proper dust 

control; and  

 

d. A local exhaust ventilation system designed and maintained in accordance with Section 

5.8.19 of these rules shall be tied to all enclosures at the conveyor dump and transfer 

locations to capture and filter dust from the air.  

 

5.8.18.2. Conveyor Water Suppression. Water use to control dust emissions from Facility conveyors 

shall include using fan sprays at the front of any dust source on the conveyor belt. Fan spray 

shall wet the entire width of the product while on the belt at a saturation specific to each Facility 

and material.  

  

5.8.18.3 Conveyors Design and Equipment. CDPH shall require all conveyors to be outfitted with 

equipment to prevent and minimize air emissions from conveyors, including but not limited to 

belt scrapers, slider bar cradles, enclosures, and side shields.  

 

5.8.18.4 Conveyor Maintenance. All conveyors shall be maintained to prevent and minimize air 

emissions. Repairs must be conducted as soon as reasonably possible. No conveyor in need of 

repair should be operated until such repairs can be completed. All routine and circumstantial 

repair information shall be logged and submitted within quarterly reports.  

 

5.8.19 Local Exhaust Ventilation Systems. A local exhaust ventilation system using negative pressure 

exhaust ventilation technique to capture dust shall be installed at all Facilities. Facilities shall 

use a canister-type collector attached to a low-velocity transfer system within which captured 

particles are transported through the ductwork at speeds below 1,800 feet per minute. 

Appropriate stripping and sealing shall be installed and maintained. Site and material specific 

components of the local exhaust ventilation system such as volume and velocity limits shall be 

subject to CDPH approval.  

 

5.8.19.1. Enclosures. Local Exhaust Ventilation Systems shall be connected to all enclosures on site. 

The local exhaust ventilation system shall follow current accepted best practices within the 

industry including the following:  

 

a. The take off port to the local exhaust ventilation system should be at least six (6) feet from 

the dump point to minimize pick up of oversized particles;   

 

b. The air velocity shall be kept below 500 fpm but above 250 fpm at the exhaust point to 

avoid pickup of larger particles while eliminating dust leakage; and  

 

c. Plastic stripping and other types of sealing systems shall be properly fitted to minimize 

openings and maximize intake velocity.  

 

5.8.19.2. Maintenance and Repair. Maintenance shall be conducted on the local exhaust ventilation 

system frequently. Repairs shall be conducted as soon as reasonably possible after a defect is 
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noted. Routine and circumstantial repairs shall be logged and submitted within quarterly 

reports as referenced in Section 5.8.16 of these rules.  

 

5.8.20. Transfer Points. CDPH shall require facilities to enclose all transfer points, including feed and 

discharge points, including installing properly designed chutes with rubber seals between 

stationary and moving components. Site and material specific transfer point systems shall be 

subject to approval by CDPH. Each facility shall, at a minimum, satisfy the following:  

 

a. Chute depth shall be at least three times the maximum lump size of material;  

 

b. Dumping shall occur on a sloping bottom or rockbox;  

 

c. Fall height shall be minimized with rock ladders, telescopic chutes, spiral chutes, and 

bin-lowering chutes;  

 

d. A head enclosure, designed with strip curtains and skirt boards, shall be used to position 

material on the center of the conveyor belt; and  

e. An exit velocity from the enclosure or chute shall be below 500 fpm.  

 

II. Noise Pollution  

 

Noise pollution is more than just a temporary irritation for surrounding residents, it can lead to significant human 

health and environmental impacts. Exposure to excessive loud noise can lead to hearing loss, high blood pressure, 

heart disease, sleep disturbances, stress, and anxiety.107 Studies show that children are especially impacted by 

noise pollution often suffering from stress, impairments in memory, attention level, and reading skill.108 Noise 

from rock crushing facilities can also impact the health and well-being of surrounding wildlife including 

impacting their ability to navigate, find food, and avoid predators.109  

 

CEJN supports the limitations placed on noise pollution from rock crushing facilities consistent with the Chicago 

Municipal Code and the required perimeter barrier. To strengthen these rules, CEJN urges CDPH to further limit 

noise pollution by requiring BPs for noise management and reduction. Noise reduction BPs also include utilizing 

quieter equipment or modifying existing equipment.110 Quieter equipment is often more expensive however, there 

are cost-effective ways to modify existing equipment to produce less noise pollution.111 Common modifications 

include retrofitting equipment with damping materials and mufflers.112 For example, a standard excavator with a 

diesel 4-53 engine had an overall noise level of 80.5 dB(A) at 50 feet.113 With an improved exhaust and intake 

muffling system, the fan disengaged, and three sound panels around the engine, the same excavator’s overall 

sound level was 71.5 dB(A) at a cost of approximately $200-400.114 Machines also become noisier with age and 

use so frequent and diligent repair and maintenance of all noise producing equipment on site is vital.115  

 

 

 
107 Nosie Pollution, National Geographic, (2021) available at https://www.nationalgeographic.org/encyclopedia/noise-pollution/.  
108 Id.  
109 Id.  
110 Controlling Noise on Construction Sites, Laborers Health and Safety Fund of North America, available at  

https://www.lhsfna.org/LHSFNA/assets/File/bpguide%202014.pdf  
111 Id.  
112 Id. 
113 Id.  
114 Id.  
115 Id.  

https://www.nationalgeographic.org/encyclopedia/noise-pollution/
https://www.lhsfna.org/LHSFNA/assets/File/bpguide%202014.pdf
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Enclosure is an efficient way to control noise pollution as it effectively contains the sound then dissipates it by 

absorption.116 117 To be effective, enclosure walls should be air-impervious and have sufficient mass dependent 

on the magnitude and frequency of sound.118  The enclosure should cover the machine or operation as fully as 

possible as any opening in the enclosure will compromise the noise reduction effect and should be minimized.119 

Correct usage of acoustic enclosure can achieve a noise reduction of up to 20dB(A).120  

 

Other noise control BPs are noise barriers or blankets surrounding particularly loud machines, placing noise-

generating construction equipment and construction staging areas away from sensitive or residential areas, 

allowing for setbacks or buffer zones, and implementing strict operating hours that may not qualify for variance.121  

 

CEJN proposes the following language to be added to the proposed rules to address noise pollution: 

 

3.8.19 Noise Impact Assessment  

 

3.8.19.2.1. Public Notification.  Any applicant requesting waiver to operate outside of the operating 

hours under Section 11-4-2000 (B) of the Code shall provide public notification of the 

application including date and time for operations exceeding the operating hours under 

Section 11-4-2000 (B) will begin, new operating hours, and contact information for 

complaints.   

 

5.0 Operating Standards  

 

5.7.4  Equipment Noise Mitigation. The Facility shall follow best practices for vehicle and equipment 

noise control and reduction specific to the Facility’s operation, including but not limited to: 

 

a. Utilizing quiet equipment models or modifying equipment to address and reduce noise 

pollution;  

 

b. Conduct frequent and diligent routine maintenance and repair of all noise producing vehicles 

and equipment;  

 

c. Control loud machinery with the use of constructed barriers or blankets;  

 

d. Incorporate setbacks or buffer zones between noise-generating equipment or vehicles and 

residential areas to the facility’s design plan; and  

 
116 Three Basic Methods: Workplace Noise Control, Stevens, R., Occupational Healthy & Safety, (Dec. 2019), available at 

https://ohsonline.com/articles/2019/12/02/three-basic-methods-workplace-noise-

control.aspx#:~:text=An%20acoustical%20enclosure%20functions%20by,of%20the%20sound%20being%20contained).  
117 In using enclosures to control noise at a metal shedder and recycling operation, “[t]he building enclosure was found to exceed 

expected performance. Additionally, community response is positive regarding the noise control performance of the enclosure.”  Noise 

Control for a Metal Shredder and Recycling System, Saxelby, L., J.C. Brennan & Associates, Inc., (August 2012), available at 

http://sandv.com/downloads/1208saxe.pdf  
118 Three Basic Methods: Workplace Noise Control, Stevens, R., Occupational Healthy & Safety, (Dec. 2019), available at 

https://ohsonline.com/articles/2019/12/02/three-basic-methods-workplace-noise-

control.aspx#:~:text=An%20acoustical%20enclosure%20functions%20by,of%20the%20sound%20being%20contained). 
119 Mitigation Measures  ̧Environmental Protection Department of Hong Kong, (2016), available at 

https://www.epd.gov.hk/epd/misc/construction_noise/contents/index.php/en/home2/mitigation-measures/item/158-construction-noise-

enclosure.html 
120 Id.  
121How to Control Noise on Construction Sites, Industrial Safety and Hygiene News, (Nov. 2011), available at  

https://www.ishn.com/articles/92031-how-to-control-noise-on-construction-cites  

https://ohsonline.com/articles/2019/12/02/three-basic-methods-workplace-noise-control.aspx#:~:text=An%20acoustical%20enclosure%20functions%20by,of%20the%20sound%20being%20contained
https://ohsonline.com/articles/2019/12/02/three-basic-methods-workplace-noise-control.aspx#:~:text=An%20acoustical%20enclosure%20functions%20by,of%20the%20sound%20being%20contained
http://sandv.com/downloads/1208saxe.pdf
https://ohsonline.com/articles/2019/12/02/three-basic-methods-workplace-noise-control.aspx#:~:text=An%20acoustical%20enclosure%20functions%20by,of%20the%20sound%20being%20contained
https://ohsonline.com/articles/2019/12/02/three-basic-methods-workplace-noise-control.aspx#:~:text=An%20acoustical%20enclosure%20functions%20by,of%20the%20sound%20being%20contained
https://www.ishn.com/articles/92031-how-to-control-noise-on-construction-cites
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e. Provide information on how to place a noise complaint to residential, recreational, and 

commercial property tenants within 2 blocks of the Facility.  

  

 

5.8.16.1.7. Quarterly Reporting. A chronological summary of the following events at the Facility: 

 

a. All environmental, health, fire, and building code violations, as well as all corrective 

actions implemented; 

 

   b. All emergencies that occurred at the Facility;  

 

c. All maintenance conducted on any vehicles, surfaces, or equipment used on site;  

 

d. All nuisance complaints received by the Owner or Operator, and their outcomes; and  

 

e. Any other information requested by CDPH to track compliance with the permit and these 

rules.  

    

The quarterly report shall be submitted to CDPH within 45 days following the end of each quarter 

by email to envwastepermits@cityofchicago.org and posted on the Owner or Operator’s publicly 

accessible website within 45 days following the end of each quarter.  

 

III. Vehicle Use  

 

Diesel Emissions 

 

Emissions from diesel fueled vehicles are a major concern for residents surrounding rock crushing facilities for 

its unpleasant smell, increase in smog, and health impacts. Diesel exhaust contains substances hazardous to human 

health and the environment including arsenic, benzene, formaldehyde, and nickel.122 Acute effects of diesel 

exhaust exposure include irritation of the nose and eyes, respiratory changes, headache, fatigue, and nausea.123 

Long term or chronic exposure can be associated with chronic cough and a decrease in lung function.124 It has 

also been found to be a cause of lung cancer and a potential cause for increased risk of bladder cancer.125  

 

The proposed rules require an applicant to submit an idling reduction plan that “[d]emonstrates compliance with 

Section 9-80-09 of the code and minimizes unnecessary idling of vehicles and equipment to avoid contributions 

to poor air quality and noise” (emphasis added). CEJN encourages CDPH to consider requiring a range of BPs  

in such plans, including anti-idling technologies and electrification to the highest extent feasible for all on and off 

site vehicles.126 CEJN also expresses its agreement with its partner, NRDC’s, comments regarding diesel 

emissions regulations and alternatives. 

 

 
122 Health Effects of Diesel Exhaust, California Office of Environmental Health Hazard Assessment, (May 2001), available at  

https://oehha.ca.gov/air/health-effects-diesel-exhaust  
123 Id.  
124 Id.  
125 IARC: Diesel Engine Exhaust Carcinogenic. International Agency for Research on Cancer, (June 2012), available at 

https://www.iarc.who.int/wp-content/uploads/2018/07/pr213_E.pdf  
126 Idle Reduction Technologies, California Air Resources Board, (2021), available at https://ww2.arb.ca.gov/our-work/programs/idle-

reduction-technologies/idle-reduction-technologies  

mailto:envwastepermits@cityofchicago.org
https://oehha.ca.gov/air/health-effects-diesel-exhaust
https://www.iarc.who.int/wp-content/uploads/2018/07/pr213_E.pdf
https://ww2.arb.ca.gov/our-work/programs/idle-reduction-technologies/idle-reduction-technologies
https://ww2.arb.ca.gov/our-work/programs/idle-reduction-technologies/idle-reduction-technologies
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CDPH should require facility owned trucks operating on and off site should be electric and/or zero emissions 

(“ZE”) vehicles to the greatest extent possible. Only 10% of all vehicles on road are medium- and heavy-duty 

trucks, but they account for more than 60% of tailpipe nitrogen oxide (NOx) and PM emissions.127 Deploying ZE 

vehicles has the potential to greatly decrease these harmful emissions.128 “[E]liminating tailpipe emissions from 

new medium- and heavy-duty vehicles by 2040 could provide up to $485 billion in health and environmental 

benefits as a result of pollution reductions.”129 

 

CEJN, and its partners, believe that electrification infrastructure in the site yard would eliminate any actual need 

for idling diesel vehicles used as power for ancillary equipment on site. The development of ZE and electric 

equipment is quickly underway. For example, large market competitors are developing ZE mining vehicles and 

signified that these technologies will be widely available soon.130 Many ZE equipment options are already 

available to industrial users and maintain the same working efficiency as diesel systems.131 For example, ZE large 

capacity forklifts are designed with a capacity from 30,000 to 70,000 lbs., minimal maintenance requirements, 

and quick-charge battery systems.132 CDPH should anticipate these emerging technologies by requiring sites to 

be electrification ready under now and to use ZE technologies for facility controlled onsite and offsite equipment 

and vehicles as soon as available.  

 

CEJN acknowledges that rock crushing facilities may not necessarily have control over the electrification on anti-

idling technologies installed on all commercial vehicles utilized in rock crushing operations. As such, CDPH 

should also consider notice requirements to surrounding residents before use of diesel-powered vehicles that 

would include information on how to file a complaint regarding idling vehicles or diesel emissions in their area.133  

 

Vehicle Tracking 

 

The proposed rules do not meet BPs for vehicle tracking. In the proposed rules, facilities are required only to use 

street sweepers to address tracking concerns. However, street sweepers alone do not adequately protect from 

tracking. Instead, CEJN urges CDPH to require street sweepers in conjunction with vehicle tracking BPs, 

including stabilized construction exits and entrances, to properly abate tracking of site materials onto public 

roadways or paved roads within the site.  

 

Tracking occurs when vehicles leaving a site inadvertently deposit sediment from the site onto other roadways 

and can lead to safety hazardous, increased debris, and pollution.134 Vehicle tracking BPs are stabilized 

construction entrances and exits which can be rock pads, shaker racks, or wheel washers, that are designed to 

 
127 Medium- & Heavy-Duty Vehicles: Market Structure, Environmental Impact, and EV Readiness, Lowell, D., Culkin, J., MJB & A, 

an ERM Group Company, (July 2021), available at 

http://blogs.edf.org/climate411/files/2021/08/EDFMHDVEVFeasibilityReport22jul21.pdf  
128 Id.  
129 Id.  
130 Zero-Emission Mining Trucks in Development, Caterpillar – Cat, (August 2021), available at 

https://www.forconstructionpros.com/equipment/material-processing-debris-handling/press-release/21627946/caterpillar-cat-

zeroemission-mining-trucks-in-development  
131 Zero-Emission Off-Road Strategies, California Air Resources Board, available at https://ww2.arb.ca.gov/sites/default/files/2020-

11/ZEV_EO_Off-Road_Fact_Sheet_111820.pdf  
132 Zero Emissions Forklifts Now Here, XLLifts, (September 2018), available at https://xlliftsinc.com/electric-forklifts/zero-emissions-

forklifts-now-available/  
133 Operational Best Management Practices for PM from Land Use Development Projects, Sacramento Metropolitan Air Quality 

Management District, (October 2020), available at 

https://www.airquality.org/LandUseTransportation/Documents/ch4OperationalBPS-PMFinal10-2020.pdf  
134 Sediment Control Practices – Vehicle Tracking BPs, Minnesota Pollution Control Agency, (May 2019), available at  

https://stormwater.pca.state.mn.us/index.php/Sediment_control_practices_-_Vehicle_tracking_BPs  

http://blogs.edf.org/climate411/files/2021/08/EDFMHDVEVFeasibilityReport22jul21.pdf
https://www.forconstructionpros.com/equipment/material-processing-debris-handling/press-release/21627946/caterpillar-cat-zeroemission-mining-trucks-in-development
https://www.forconstructionpros.com/equipment/material-processing-debris-handling/press-release/21627946/caterpillar-cat-zeroemission-mining-trucks-in-development
https://ww2.arb.ca.gov/sites/default/files/2020-11/ZEV_EO_Off-Road_Fact_Sheet_111820.pdf
https://ww2.arb.ca.gov/sites/default/files/2020-11/ZEV_EO_Off-Road_Fact_Sheet_111820.pdf
https://xlliftsinc.com/electric-forklifts/zero-emissions-forklifts-now-available/
https://xlliftsinc.com/electric-forklifts/zero-emissions-forklifts-now-available/
https://www.airquality.org/LandUseTransportation/Documents/ch4OperationalBMPS-PMFinal10-2020.pdf
https://stormwater.pca.state.mn.us/index.php/Sediment_control_practices_-_Vehicle_tracking_BMPs
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remove soil and mud from vehicles to decrease the likelihood of sediment leaving the work site.135 Vehicle tacking 

BPs also include vegetative buffers, stabilized stations for vehicles to pass over prior to entering an onsite paved 

area, and stabilized construction roadways.136 These tools are used in conjunction with street sweepers, frequent 

inspection of surrounding streets, curbs, and gutter systems, and other cleaning methods.137 Numerous 

jurisdictions require vehicle tracking BPs as sediment control for all sites where vehicles pass through disturbed 

areas prior to entering a public roadway.138  

 

CDPH should require each rock crushing facility to install the tracking BP that best fits their facility after 

considering characteristics including the underlying soils on site, the frequency of use, the size of the exit and 

entrance, necessary rock depth to effectively scrape tires, size and type of vehicles used, frequent weather events 

of the area, type of aggregate used, and the frequency of maintenance available.139 Such design specific 

requirements include size and depth minimums, location requirements, and pad requirements.140 For example, a 

wheel wash may not always be necessary on a site but are crucial features in areas with high rain or particularly 

muddy sites.141 Further, to avoid any soil or water pollution, each tracking BP must be designed so that the 

drainage and removed sediment leads to a trap, silt fence, or other settling device.142 No onsite vehicle should 

enter a public roadway without exiting through a tracking BP.143  

 

CEJN proposes the following language to address vehicle use at rock crushing facilities to be incorporated into 

the proposed rules: 

 

3.8.6 Pavements:  

 

3.8.6.1.1144 A plan scaled drawing and technical description of stabilized construction exits at each 

point where a vehicle will travel from unpaved roads to pavement on or offsite. 

 

5.7 Vehicles and Equipment  

 
135 Id.; see also https://www.mdt.mt.gov/publications/docs/manuals/env/BP-manual-jan15.PDF; Urban Storm Drainage Criteria 

Manual Volume 3: Vehicle Tracking Control, Colorado Department of Transportation: Urban Drainage and Flood Control District, 

(Nov. 2010), available at https://udfcd.org/wp-content/uploads/2014/07/SM-04-Vehicle-Tracking-Control.pdf.; Stormwater Quality 

Best Management Practices Construction Sites, Indiana Department of Transportation, available at 

https://rockislandcounty.org/uploadedFiles/vehicle_tracking_pads.pdf; Storm Water Quality Handbooks: Construction Site BPs 

Manual, Nevada Department of Transportation,  (May 2004), available at 

https://www.rockislandcounty.org/uploadedFiles/vehicle_tracking_pads_nv.pdf; Pollution Controls and Best Management Practices 

for Storm Water During Construction Field Guide, Wyoming Department of Transportation, available at 

https://dot.state.wy.us/files/live/sites/wydot/files/shared/Construction/WYDOT%20Storm%20Water%20Field%20Guide%204-6-

11.pdf; Idaho Construction Site Erosion and Sediment Control Field Guide, Idaho Small Business Development Center, (March 

2014), available at https://www.cityofboise.org/media/3642/esc_fieldguide_2014.pdf  
136 Erosion and Sediment Control Best Management Practices Manual, Montana Department of Transportation, (Jan. 2015), available 

at https://www.mdt.mt.gov/publications/docs/manuals/env/BP-manual-jan15.PDF  
137 Id.; Sediment Control Practices – Vehicle Tracking BPs, Minnesota Pollution Control Agency, (May 2019).; 

https://dot.state.wy.us/files/live/sites/wydot/files/shared/Construction/WYDOT%20Storm%20Water%20Field%20Guide%204-6-

11.pdf; Idaho Construction Site Erosion and Sediment Control Field Guide, Idaho Small Business Development Center. 
138 i.e., Montana, Minnesota, Colorado, Indiana; Nevada, Wyoming, California, and Idaho, among others, recognize stabilized 

construction exits and entrances and other practices articulated in this comment as BPs for sediment and tracking control. All states 

mentioned either require for strongly suggest such BP usage at all industrial and construction sites including rock crushers. Document 

citations from all states are listed in footnote 135 above.  
139 Id.  
140 Id.  
141 Urban Storm Drainage Criteria Manual Volume 3: Vehicle Tracking Control, Colorado Department of Transportation: Urban 

Drainage and Flood Control District (Nov. 2010). 
142 Id.   
143 Id.  
144 The numbering of this section thus accommodates this change with the proposed rules 3.8.6.1.1. now being 3.8.6.1.2.  

https://www.mdt.mt.gov/publications/docs/manuals/env/bmp-manual-jan15.PDF
https://udfcd.org/wp-content/uploads/2014/07/SM-04-Vehicle-Tracking-Control.pdf
https://rockislandcounty.org/uploadedFiles/vehicle_tracking_pads.pdf
https://www.rockislandcounty.org/uploadedFiles/vehicle_tracking_pads_nv.pdf
https://dot.state.wy.us/files/live/sites/wydot/files/shared/Construction/WYDOT%20Storm%20Water%20Field%20Guide%204-6-11.pdf
https://dot.state.wy.us/files/live/sites/wydot/files/shared/Construction/WYDOT%20Storm%20Water%20Field%20Guide%204-6-11.pdf
https://www.cityofboise.org/media/3642/esc_fieldguide_2014.pdf
https://www.mdt.mt.gov/publications/docs/manuals/env/bmp-manual-jan15.PDF
https://dot.state.wy.us/files/live/sites/wydot/files/shared/Construction/WYDOT%20Storm%20Water%20Field%20Guide%204-6-11.pdf
https://dot.state.wy.us/files/live/sites/wydot/files/shared/Construction/WYDOT%20Storm%20Water%20Field%20Guide%204-6-11.pdf
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5.7 Vehicles and Equipment. Each Facility shall be designed as electrification-ready such that 

emerging zero-emission technologies for equipment and vehicles may be easily installed 

and operated on site as available within CDPH’s discretion. All vehicles and equipment 

shall be electrification-ready and/or outfitted with zero emission technologies to the 

greatest extent feasible.  

 

The Facility shall have sufficient vehicles and equipment available to accept and Process 

the Facility’s permitted volumes or weights of material. All vehicles and equipment shall 

be operated and maintained according to CDPH-determined best practices in a manner that 

minimizes emissions and noise pollution, including but not limited to, the following: 

 

5.7.1 Vehicles. All inbound and outbound trucks within the Facility’s control shall have the latest 

engine type with the lowest combustion and/or emission levels available.  

 

All inbound and outbound trucks carrying dirt, aggregate (including minerals, sand, gravel, 

limestone, or any other ore or mineral which may be mined), or other similar material 

susceptible to becoming windborne, shall be sealed or tarped. All containers and tarps shall 

be properly maintained to prevent leaking or tears. The operator shall immediately repair 

or replace any damaged or torn tarps.   

5.7.3. Stationary Equipment. All stationary mechanical equipment shall be electrification-ready 

and operate with the lowest combustion and/or emissions levels possible. All stationary 

mechanical equipment shall also meet or exceed the emission control level required under 

the Facility’s local, state, and federal air permits, as applicable.  

 

5.8.11. Material Handling, Paved Surface: 

 

5.8.11. All material handling activities, including unloading, screening, Processing, and loading, 

shall be conducted on a surface paved with concrete, hot-mix asphalt, compacted CA-6 

aggregate, or gravel with fines content of less than 15%, subject to Commissioner approval. 

Fines are the fraction of material pressing the #200 sieve per ASTM C136 or C136M-19. 

Frequent and diligent sweeping and maintenance shall be conducted on any surface where 

material handling activities are conducted. Sweeping of such areas shall occur at least once 

every 4 hours or once within the same shift when material handling takes place.  

  

5.8.13 Pavement Maintenance and Cleaning:  

 

All driveways, access roads, parking areas, and other areas used for vehicle traffic shall be properly maintained 

to prevent using current accepted vehicle tracking best practices in conjunction with street sweeping, and frequent 

inspection of surrounding streets, curbs, and gutters systems to prevent or minimize any dust emissions, standing 

water, and the tracking of mud offsite.  

 

5.8.13.1.1145  Stabilized Exit and Entrance. Stabilized construction exits and entrances shall be 

constructed and maintained at all areas where a vehicle tracking on or off site is possible. 

Specifically, stabilized construction exits, and entrances must be constructed at any ingress 

or egress where a vehicle enters a public or private roadway from the Facility. Each 

stabilized exit or entrance must be site specific and may be rock pads, shaker racks, and/or 

 
145 The numbering of this section thus accommodates this change with “Sweeping” now being 5.8.13.1.2. but the language remaining 

the same. 
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wheel washers dependent on the needs and characteristics of the Facility. Each stabilized 

exit or entrance shall be designed so that the drainage and removed sediment leads to a 

trap, silt fence, and/or other settling device. No onsite vehicle shall pass onto a public right-

of-way without first passing over a stabilized construction exit.  

 

5.8.13.1.7 Inspection. All site pavements, adjacent pavements accessible by the Owner or Operator, 

gutter systems, curbs, and public rights-of-way within a quarter mile of the Facility, at a 

minimum, should be inspected twice daily for dust, mud, or spilled or emitted materials 

from the Facility’s operation. If excessive dust, mud, or spilled or emitted materials from 

the Facility’s operation are found, action must be taken to clean the affected area.  

 

5.8.13.1.8  Inspection Log. The date and time when inspection detailed in section 5.8.13.1.6 was 

performed, any offsite tracking detected, and the total vehicle count shall be recorded each 

operating day.  

3.8.13 Traffic:  

 

3.8.13.1.5146  A certified copy of letter of notification regarding vehicle use sent from the owner or 

operator of the facility to the alderman for the ward in which the facility is located and to 

all residents within a quarter mile radius of the facility’s ingress and egress. Information 

within the notification shall include at a minimum: 

  

a. A summary the average and maximum number of vehicles generated by the facility;  

b. A description of peak facility traffic hours;  

c. A summary of the idling reduction plan to be enforced at the facility referenced in 

3.8.13.1.3; and  

d. Instructions for filing a complaint with CDPH regarding idling vehicles and/or 

excessive traffic caused by the Facility, including the name and contact information for 

the Facility operator.   

 

CEJN Comment Three:  Because of the potential significant, adverse and disproportionate risks to 

environmental justice communities arising from the operations of this category of facilities in Chicago, CEJN 

asserts the following provision should be added to the regulations: 

 

CDPH shall mandate any additional measures that are necessary to protect public health, safety, and 

welfare and to prevent nuisance conditions.  If a facility cannot operate in a manner that protects public 

health, safety, and welfare and that avoids creating nuisance conditions, CDPH shall deny the permit 

application. In making determinations under this provision, CDPH shall consider the operating history 

and compliance history of the permit applicant including the record of public complaints. 

 

 

 

 

 

 

 

 

 

 
146 The numbering of this section thus accommodates this change with the first requirement for new and existing facilities now being 

3.8.13.1.4 but the language remaining the same. 



22 
 

 

Thank you for your consideration of these comments.      

 

Sincerely, 

 

/s/ Cassandra Hadwen 

 

/s/ Keith Harley 

 

Attorneys for the Chicago Environmental Justice Network 

Greater Chicago Legal Clinic, Inc. 

17 N. State, Suite 1710 

Chicago, IL 60602 

(312) 726-2938 

kharley@kentlaw.iit.edu 

chadwen@kentlaw.iit.edu 

 

 
 

mailto:kharley@kentlaw.iit.edu
mailto:chadwen@kentlaw.iit.edu
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INTRODUCTION 
Respirable silica dust exposure has long been known to be a serious health threat to workers in 
many industries. Overexposure to respirable silica dust can lead to the development of silicosis— 
a lung disease that can be disabling and fatal in its most severe form. Once contracted, there is no 
cure for silicosis so the goal must be to prevent development by limiting a worker’s exposure to 
respirable silica dust. In addition, the International Agency for Research on Cancer (IARC) has 
concluded that there is sufficient evidence to classify silica as a human carcinogen. 
 
For workers in the metal/nonmetal mining industry, the Mine Safety and Health Administration 
(MSHA) regulates and monitors exposure to respirable silica dust through personal dust 
sampling. Recent MSHA personal sampling results indicate that overexposures to respirable 
silica dust continue to occur for miners in metal/nonmetal mining operations. From 2004 to 
2008, the percentages of samples that exceeded the applicable respirable dust standard for the 
different mining commodities were:  

•  12% for sand and gravel 

•  13% for stone 

•  18% for nonmetal 

•  21% for metal 

Of the 2,407 deaths attributed to silicosis in the United States from 1990–1999, employment 
information was available for 881 deaths. Metal/nonmetal mining was the industry recorded for 
over 15% of these 881 deaths, with mining machine operator the most frequently recorded 
occupation. 
 
In light of ongoing silica overexposures and reported silicosis deaths in metal/nonmetal miners, 
an ongoing threat to miners’ health is evident. This handbook was developed to identify 
available engineering controls that can assist the industry in reducing worker exposure to 
respirable silica dust. The controls discussed in this handbook range from long-used controls 
which have developed into industry standards, to newer controls, which are still being optimized. 
The intent is to identify the “best practices” that are available for controlling respirable dust 



 

levels in underground and surface metal/nonmetal mining operations. This handbook provides 
general information on the control technologies along with extensive references. In some cases, 
the full reference(s) will need to be accessed to gain in-depth information on the testing or 
implementation of the control of interest.  
 
The handbook is divided into five chapters. Chapter 1 discusses the health effects of exposure to 
respirable silica dust, while Chapter 2 discusses dust sampling instruments and sampling 
methods. Chapters 3, 4 and 5 are focused upon dust control technologies for underground 
mining, mineral processing, and surface mining, respectively.   
 
Finally, it must be stressed that after control technologies are implemented, the ultimate success 
of ongoing protection for workers is dependent upon continued maintenance of these controls. 
On numerous occasions, National Institute for Occupational Safety and Health (NIOSH) 
researchers have seen appropriate controls installed, but worker overexposures continued to 
occur in the absence of proper maintenance of these controls. 
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CHAPTER 1. HEALTH EFFECTS OF OVEREXPOSURE TO 

RESPIRABLE SILICA DUST 


By Anita Wolfe and Jay  Colinet  

Pneumoconioses are lung diseases caused by the inhalation and deposition of mineral dusts in the 
lungs. Known pneumoconioses include, but are not limited to, coal workers’ pneumoconiosis 
and silicosis. These diseases are usually associated with working in a high-risk, mineral-related 
industry such as mining.  

SILICOSIS 
Occupational exposures to respirable crystalline silica occur in a variety of industries and 
occupations because of its extremely common natural occurrence. Respirable crystalline silica is 
defined as particles with aerodynamic diameters less than 10 microns [NIOSH 2002]. Workers 
with high exposure to crystalline silica include miners, sandblasters, tunnel builders, silica 
millers, quarry workers, foundry workers, and ceramics or glass workers. Silica refers to the 
chemical compound silicon dioxide (SiO2), which occurs in a crystalline or noncrystalline 
(amorphous) form [NIOSH 2002]. Crystalline silica may be found in more than one form: alpha 
quartz, beta quartz, tridymite, and cristobalite [USBM 1992a; Heaney 1994]. In nature, the alpha 
form of quartz is the most common [Virta 1993]. This form is so abundant that the term quartz is 
often used in place of the general term crystalline silica [USBM 1992b; Virta 1993].  
 
Quartz is a common component of rocks; consequently, mine workers are potentially exposed to 
quartz dust when rock is cut, drilled, crushed, and transported. Occupational exposures to 
respirable crystalline silica are associated with the development of silicosis, lung cancer, 
pulmonary tuberculosis, and airways diseases. These exposures may also be related to the 
development of autoimmune disorders, chronic renal disease (loss of kidney function), and other 
adverse health effects. In 1996 and 2009, the International Agency for Research on Cancer 
(IARC) reviewed the published experimental and epidemiologic studies of cancer in animals and 
workers exposed to respirable crystalline silica and concluded that there was sufficient evidence 
to classify silica as a human carcinogen [IARC 1997; Straif et al. 2009].  
 
Silicosis is also a fibrosing disease of the lungs caused by the inhalation, retention, and 
pulmonary reaction to the crystalline silica. When silicosis becomes symptomatic, the primary 
symptom is usually dyspnea (difficult or labored breathing and/or shortness of breath), first noted 
with activity or exercise and later, as the functional reserve of the lung is also lost, at rest. 
However, in the absence of other respiratory diseases, there may be no shortness of breath and 
the disease may first be detected through an abnormal chest x-ray. The x-ray may at times show 
quite advanced disease with only minimal symptoms. The appearance or progression of dyspnea 
may indicate the development of complications including tuberculosis, airways obstruction, 
progressive massive fibrosis (PMF), or cor pulmonale (enlargement of the right side of the 
heart). Productive cough is often present.  
 
A worker may develop one of three types of silicosis, depending on the airborne concentrations 
of respirable crystalline silica: 

3 




 

 

   

(1) 	 Chronic Silicosis: Usually occurs after 10 or more years of exposure at relatively 
low concentrations. Swellings caused by the silica dust form in the lungs and lymph 
nodes of the chest. This disease may cause people to have trouble breathing and 
may be similar to chronic obstructive pulmonary disease. 

(2) 	 Accelerated Silicosis:  Develops 5 to 10 years after the first exposure. Swelling in 
the lungs and symptoms occur faster than in chronic silicosis.  

(3) 	 Acute Silicosis: Develops after exposure to high concentrations of respirable 
crystalline silica and results in symptoms  within a period of a few weeks to 5 years 
after the initial exposure [NIOSH 1986; Parker and Wagner 1998]. The lungs 
become very inflamed and can fill with fluid, causing severe shortness of breath and 
low blood oxygen levels. 

PMF can occur in either simple or accelerated silicosis but is more common in the accelerated 
form. Figure 1-1 shows a lung that has been damaged by silicosis. 

Figure 1-1. Section of freeze-dried human lung with silicosis. 

In an effort to prevent the development of silicosis in miners working in metal/nonmetal mines, 
MSHA regulates their exposure to respirable silica. When quartz levels in respirable dust 
samples are greater than 1%, a respirable dust standard (permissible exposure limit) is calculated 
by dividing 10 mg/m3 by the sum of the percent quartz plus 2. For example, if a sample contains 
8% quartz, the respirable standard would be equal to 1 mg/m3 (i.e., 10 ÷ (8 + 2)). This regulation 
places the upper limit of exposure to respirable quartz at 100 µg/m3. 
 
MSHA compliance sampling data identify those occupations in metal/nonmetal mining that are 
high-risk occupations for overexposure to quartz. Figure 1-2 shows the percent of samples 
collected by MSHA inspectors that exceeded the permissible exposure limit (PEL) for a number 
of high-risk occupations in metal/nonmetal mining. 
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Figure 1-2. Inspector samples for select occupations from 2004–2008 that exceeded the PEL. 

DIAGNOSIS AND TREATMENT  
A doctor may diagnose silicosis based on the combination of an appropriate history of exposure 
to silica dust, compatible changes in chest imaging or lung pathology, and absence of plausible 
alternative diagnoses. A chest radiograph is often sufficient for diagnosis, but in some cases a 
computed tomography (CT) scan of the chest can be helpful. Lung biopsy, a procedure where a 
sample of lung tissue is taken for lab examination, is not usually required if a compatible 
exposure history and findings on chest imaging are present. Pulmonary function tests and blood 
tests to measure the amounts of oxygen and carbon dioxide in the blood (arterial blood gases) 
can help in objectively assessing the level of impairment caused by silicosis.  
 
Epidemiologic studies of gold miners in South Africa, granite quarry workers in Hong Kong, 
metal miners in Colorado, and coal miners in Scotland have shown that chronic silicosis may 
develop or progress even after occupational exposure to silica has been discontinued [Hessel et 
al. 1988; Hnizdo and Sluis-Cremer 1993; Ng et al. 1987; Kreiss and Zhen 1996; Miller et al. 
1998]. Therefore, removing a worker from exposure after diagnosis does not guarantee that 
silicosis or silica-related disease will stop progressing or that an impaired worker’s condition will 
stabilize.  
 
Treatment of silicosis may include use of bronchodilators (medications to open the airways) or 
supplemental oxygen. Once disease is detected, it is important to protect the lungs against 
respiratory infections, therefore a doctor may recommend vaccinations to prevent influenza and 
pneumonia. In some cases of severe disease, a lung transplant may be recommended. Prognosis 
depends on the length and level of exposure to respirable quartz dust. There is no cure for this 
lung disease and it cannot be reversed. Consequently, control technologies must be implemented 
in an effort to prevent the development of the disease. As an added measure of protection, a 
respirator program can be implemented for workers exposed to silica dust.  
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CHAPTER 2. SAMPLING TO QUANTIFY RESPIRABLE DUST 

GENERATION 


By Jay  F. Colinet 

The respirable fraction of airborne dust is the dust that reaches the lungs and leads to the 
development of silicosis. Respirable dust cannot be seen with the eye. Conversely, if a dust cloud 
is visible, it is likely that a portion of the airborne dust will be in the respirable size range. In 
order to quantify the amount of harmful respirable dust that is in the mine air, sampling 
instrumentation must be used.  

RESPIRABLE DUST SAMPLERS FOR USE IN MINING 
The most common type of sampler used in the mining industry is the gravimetric sampler, which 
is designated by the Federal Coal Mine Health and Safety Act of 1969 for use in compliance dust 
sampling (Figure 2-1). 

Figure 2-1. Gravimetric sampling pump, cyclone and filter cassette. 

This sampler consists of a constant-flow sampling pump, a size-selective 
cyclone, and a filter cartridge. In metal/nonmetal mining operations, the pump should be 
operated at 1.7 lpm. The 10-mm Dorr-Oliver cyclone separates the oversize dust from the 
respirable fraction (usually considered to have an aerodynamic diameter of 10 microns or less). 
The oversize dust is deposited into the grit pot at the bottom of the cyclone, while the respirable 
fraction is deposited onto a 37-mm-diameter polyvinyl chloride (PVC) filter. Care must be taken 
after a sample is collected to ensure that the cyclone assembly stays in an upright position. 
Otherwise, the oversize dust particles that are in the grit pot can be deposited onto the filter and 
invalidate the sample. The filter collects the respirable dust and is weighed to determine the mass 
of dust that has been collected during sampling. The mass of dust and the volume of sampled air 
are used to calculate the average concentration of respirable dust in mg/m3. 

In order to determine the silica content of a gravimetric sample, the filter should be sent to an 
accredited laboratory for analysis. For samples collected in metal/nonmetal mines, x-ray 
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diffraction (XRD) using NIOSH Analytical Method 7500 [NIOSH 1994, 2003] is the analytical 
technique used by MSHA’s accredited laboratory [Parobeck and Tomb 2000] to quantify silica 
in the samples for compliance purposes.  
 
In addition to the gravimetric samplers, a real-time dust sampler is available for use in mining. 
The personal DataRam (pDR) has dust-laden air pass through a sensing chamber in the sampler 
and passes a light beam through this dust. A sensor in the sampler measures the amount of light 
scatter caused by the dust and relates this scatter to a relative dust concentration. This 
concentration is correlated to the time when the sample was measured and stores this information 
in the internal data logger. The sample data can then be downloaded to a computer for analysis. 
Figure 2-2 illustrates a typical graph obtained with the pDR, as well as, a photo of the pDR. This 
data can be analyzed for specific time intervals (e.g., loading a cut), with average dust 
concentrations calculated for these intervals.  
 

Figure 2-2. Example of dust measurements obtained with pDR. 
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Unfortunately, the accuracy of the light-scattering monitor can be compromised by measuring 
dust clouds with different size distributions, different dust compositions, and/or water mist/fog in 
the ambient air. Consequently, when NIOSH utilizes pDR samplers, gravimetric samplers are 
placed adjacent to the pDR and individual pDR dust measurements are adjusted based upon the 
ratio between the average gravimetric concentration and the average pDR concentration [Thermo 
Scientific 2008]. For example, if the gravimetric concentration was 1.3 mg/m3 over a 6-hour 
measurement period and the pDR average concentration was 1.0 mg/m3 for the same 6 hours, 
then all individual pDR measurements would be multiplied by 1.3. 



 

 
  

The personal dust monitor (PDM) [NIOSH 2006] is another real-time sampler, which has been 
developed and tested by NIOSH, has been approved for use in underground mines by MSHA, 
and has reached commercial production. The PDM uses tapered element oscillating 
microbalance (TEOM) technology to obtain a real-time, gravimetric-based measure of respirable 
dust concentrations. The TEOM is a hollow tube that vibrates at a known frequency and has a 
filter mounted on the end. As respirable dust is deposited onto this filter, the TEOM frequency 
changes and this change can be related to a dust concentration. The PDM provides the wearer 
with a readout of the cumulative dust concentration to that point in the shift and the percent of  
the permissible exposure limit (PEL) that has been reached. This information can be used by the 
wearer to reduce their dust exposure prior to becoming overexposed. The sampler is incorporated 
into a standard cap lamp housing and has the sampling inlet located at the cap lamp (see Figure 
2-3). 

Figure 2-3. Personal dust monitor (PDM) with TEOM unit removed and shown on right. 

SAMPLING STRATEGIES 
In order to effectively control the respirable silica dust exposure of mine workers, it is necessary 
to identify the sources of dust generation and quantify the amount of dust liberated by these 
sources. Once the dust sources are identified and dust liberation from each source has been 
quantified, appropriate dust control technologies can be applied that offer the greatest protection 
to the mine workers.  
 
In order to quantify the amount of dust liberated by a source, area dust sampling can be 
conducted in a manner that isolates the potential dust source. This is achieved by placing dust 
samplers upwind and downwind of the source in question and utilizing the difference between 
these sampling results to determine the quantity of dust liberated by the source. An example of 
area sampling from a NIOSH research project is provided next to illustrate this sampling method.  
 
In an underground limestone mine, samplers were placed in the immediate intake and return of 
an underground crusher to determine the amount of dust liberated during the dumping/crushing 
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of the limestone. Figure 2-4 illustrates these sampling locations. Samplers are placed on both 
sides of the entry at both sampling locations to obtain more representative measurements of the 
airborne dust concentrations. 

Figure 2-4. Sampling locations used to isolate dust generated at an underground crusher. 

The concentrations from both sides of the entry are then averaged. 
If gravimetric samplers are used for this evaluation, the samplers must operate long enough to 
ensure that sufficient mass is collected during sampling.  
 
In addition, a great number of variables that can impact dust liberation are encountered in mining 
operations. It is often desirable to place multiple gravimetric samplers at a single area sampling 
location. An average dust concentration from the multiple samplers can be calculated, increasing 
the confidence that the measured dust levels are representative of the true dust concentration. 

For quantifying exposures for an operator of a more mobile piece of equipment, such as a haul 
truck in an underground gold mine, the use of a real-time sampler such as the pDR would be 
beneficial to quantify dust exposure from multiple sources. Similar to Figure 2-2, the haul truck 
operator would be exposed to dust generated during loading of the truck, hauling to and from the 
dump site, and during the dumping of the load. Gravimetric and real-time samplers were 
mounted near the operator’s compartment on the underground haul truck (see Figure 2-5) to 
monitor dust exposures throughout the normal haul cycle. Time study information was collected 
and used to separate each of these operations during analysis of the real-time data [Chekan et al. 
2002]. In this manner, the average dust exposure during each segment of the haul cycle could be 
isolated to determine where the greatest dust exposure was realized. Figure 2-6 shows the dust 
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concentrations from each segment of the cycle. Even though the dumping operation took the 
shortest time, it resulted in the highest dust levels. 

Figure 2-5. Dust samplers mounted on haul truck in gold mine. 

Figure 2-6. Average dust generated by each segment of sampled haul truck cycle. 

If a consistent ventilation pattern is not present, it would be necessary to use multiple samplers in 
an effort to quantify dust from a particular source. For example, in order to quantify the amount 
of respirable dust that is generated by a drill at a surface mine, it would be necessary to place an 
array of samplers around the drill to account for dust liberated during changing wind directions. 
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The dust concentrations from these samplers would be averaged to quantify dust liberation 
around the drill. It would also be necessary to place a background dust sampler far enough away 
from the drill to monitor ambient dust levels. The dust levels from the ambient sample would be 
subtracted from the drill samples that have been averaged to determine dust liberated by the drill. 
Figure 2-7 shows sampling locations around a surface drill.  

Figure 2-7. Sampling locations around surface drill. 

After identifying the most significant dust sources, appropriate dust controls should be selected 
and implemented. In order to determine the impact of the additional controls, sampling would 
once again be conducted. Typically, an A-B comparison would be needed to quantify the impact 
of added control technologies. The A portion of the test would be completed under original 
operating conditions (e.g., mining equipment and methods, production, geologic conditions) and 
used to establish baseline dust levels. The control technology of interest would then be installed 
and the B portion of the testing completed. The most valid comparisons can be made if the 
operating conditions do not change between the A and B segments of testing. The difference in 
dust levels measured for each test condition would be calculated to quantify the effectiveness of 
the installed control.  
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CHAPTER 3. CONTROLLING RESPIRABLE SILICA DUST IN 

UNDERGROUND STONE AND METAL/NONMETAL MINES 


By Gregory  J. Chekan  

The health hazards associated with overexposure to respirable crystalline silica dust in the 
mining industry have been well documented. Studies of molybdenum, lead, and gold miners in a 
Colorado mining community found that silica exposure was strongly associated with silicosis 
prevalence rates, with 13% silicotics among those with an average exposure of 0.025–0.05 
mg/m3, 34% among those with exposures > 0.05–0.1 mg/m3, and 75% among those with 
exposures > 0.1mg/m3 [Steenland and Brown 1995; Kreiss and Zhen 1996]. An analysis of the 
Mine Safety and Health Administration (MSHA) compliance dust sampling data has shown that 
a high percentage of samples with more than 1% silica from underground stone, metal, and 
nonmetal mines exceeded the applicable permissible exposure limit (PEL). For inspector samples 
collected from 2004 through 2008, over 17% of samples exceeded the PEL. High risk 
occupations that had samples over the PEL include crusher operator at 36%, front end loader 
operator at 16%, and truck driver at 11% [MSHA 2008]. 
 
The stone and metal/nonmetal mining industry encompasses many types of commodities. The 
potential for respirable silica dust exposure to workers in the stone and metal/nonmetal mining 
industry is related to the percentage of silica in the product being mined or processed. For 
crushed and broken stone or dimension stone, silica percentages are on the high end, with 
sandstones and granites averaging 70% to 90%. On the low end are limestones, averaging 20% 
to 30%. For all metal/nonmetal ores, silica percentages average from 5% to 20% [USBM 1992]. 
Therefore, airborne concentrations of silica dust are dependent upon the silica percentage in the 
rock and ore being mined. Each commodity has common dust sources related to the mining 
cycle, which includes drilling, blasting, loading, hauling, and crushing.  
 
The purpose of this chapter is to address best practices in controlling respirable silica dust in 
underground stone and metal/nonmetal mines. Dust control methods commonly used in 
underground operations can be divided into three distinct areas: (1) the application of local and 
mine-wide ventilation systems to dilute, transport, and remove dust from the ambient air and 
direct dust away from workers, (2) the isolation of workers from airborne dust using dust 
filtration systems on enclosed cabs and booths, and (3) the capture of dust after generation using 
water sprays and wetting agents to mitigate dust entrainment.  
 
This chapter addresses best practices for respirable silica dust control generated from four 
primary dust sources: (1) crushing facilities, (2) production shots, (3) mucking operations, and 
(4) drilling. 

CRUSHING FACILITIES 
Sampling surveys have shown that underground crushing facilities, which include the dump, the 
crushers, and the associated conveyor belts and transfer points, can be a significant source of 
silica dust generation. Airborne silica concentrations can be extremely high depending on the 
bulk content of silica in the rock and crusher production capacity. At one limestone mine, with 
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rock composed of 30% silica by weight and the crusher operating at 1,000 tons per hour, the 
silica concentration measured directly above the crusher jaws was 1.8 mg/m3 [Cheken and 
Colinet 2002; Chekan et al. 2003]. Occupations typically exposed to silica dust from this source 
obviously include the crusher operators and truck drivers, and also the mechanics, cleanup men, 
and laborers whose tasks require them to work in this area. Several methods for reducing worker 
exposure to silica dust at crusher locations are recommended, as follows: 

•	  Isolate the facility from the general mine air circuit. Dust generated from this 
source can be adequately contained using brattice or permanent stoppings to isolate 
the entire facility (dump, crusher, and belt). Booster fans using blowing ventilation 
should be positioned in key locations to increase airflow around the facility and dilute 
and transport dust away from the location to a return entry. Booster fans may be 
either axial vane or propeller, but recent studies have shown that propeller fans dilute 
and transport dust more effectively, especially in large-opening mines [Chekan et al. 
2006]. Figure 3-1 shows the plan view of a limestone crusher facility isolated from  
the other mine developments using stoppings and a blowing propeller fan to move 
dust-laden air into the return.  

Figure 3-1. Typical method used to isolate crushing facility from mine air. 

•	  Ventilate with a closed ventilation system. A closed ventilation system, where a 
plenum is located under the crusher, may be required in cases where the facility 
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cannot be isolated and dust cannot be directed to the return entries. Air is exhausted 
from under the plenum, creating an indraft at the crusher jaws to capture the dust. The 
dust-laden air is then directed to a nearby return, a bag house, or a fan-powered dust 
collector where it is captured by filters and the clean air can be discharged into the 
mine air [NIOSH 2003a]. Figure 3-2 shows a conceptual approach to control crusher 
dust in a stone mine using a closed ventilation system. 

Figure 3-2. Closed ventilation system using plenum. 

•	  Use filtration/pressurization systems in mobile equipment cabs and operator 
booths. As mining equipment ages, many of the original components on the cab 
enclosure deteriorate through normal operation in harsh mine environments. As a 
result, the effectiveness of the air filtration system and cab seals is lessened and the 
protection initially afforded to operators is compromised, possibly exposing them to 
elevated levels of respirable silica dust. NIOSH has worked with a number of 
manufacturers to develop cost-effective methods to improve both filtration 
effectiveness and cab integrity on these older cabs with the goal of reducing silica 
dust levels inside the cabs. Research results show dust levels inside upgraded cabs 
were reduced from 65% to 95% when compared to levels outside the cabs [NIOSH 
2008]. Retrofit options from several manufactures are available for both enclosed 
cabs and booths. Figure 3-3 shows an effective design of an enclosed filtration and 
pressurization system.  
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Figure 3-3. Filtration and pressurization system components and design. 

•	  Consider five key factors for maintaining and operating enclosed cabs and 
booths.  

(1) Ensure good cab enclosure integrity to achieve positive pressurization against 
wind penetration into the enclosure. Studies show that significant improvements in 
cab protection factors were achieved when cab pressures exceeded 0.01 inches of 
water gauge [Cecala et al. 2005]. 

(2) Utilize high-efficiency respirable dust filters on the intake air supply into the cab. 
Filter efficiency performance specifications used in the field were 95% or greater on 
respirable-sized dusts. Laboratory experiments showed an order of magnitude 
increase in cab protection factors when using a 99%-efficient filter versus a 38%
efficient filter on respirable-sized particles [NIOSH 2008].  

(3) Use an efficient respirable dust recirculation filter. All the cab field 
demonstrations used recirculation filters that were 95% efficient, or greater, on 
respirable-sized dusts. Laboratory experiments showed an order of magnitude 
increase in cab protection factors when using an 85%- to 94.9%-efficient filter on 
respirable-sized dusts as compared to using no recirculation filter [NIOSH 2008]. 
Laboratory testing also showed that the time for interior cab concentration to decrease 
and reach stability after the cab door is closed was cut by more than half when using 
the recirculation filter. 
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(4) Minimize dust sources in the cab by using good housekeeping practices, such as 
periodically cleaning soiled cab floors, using a sweeping compound on the floor, or 
vacuuming dust from a cloth seat [NIOSH 2001b]. Also, relocate heaters that are 
mounted near the floor. These units have been shown to blow air across soiled cab 
floors and increase dust levels inside the cab [NIOSH 2001a]. 

(5) Keep doors closed during equipment operation. One study showed a ninefold 
increase in dust concentrations inside the cab when doors were frequently opened 
during the sampling period [Cecala et al. 2007].  

•	  Use canopy air curtains. In many underground mines, operator enclosures cannot be 
used due to various mining or operational parameters. An alternative option for 
operators in open cabs and crusher compartments is a canopy air curtain, which filters  
and blows clean air over the operator’s breathing zone (Figure 3-4) [Goodman et al. 
2006; Goodman and Organiscak 2001]. In one case study, NIOSH research has 
shown that the primary dust source for load-haul-dump operators without enclosed 
cabs occurred while dumping at the crusher. Dumping accounted for 34% of the 
operator’s silica exposure, despite being the shortest segment of the haulage cycle 
[Chekan and Colinet 2002]. 

Figure 3-4. Canopy air curtain blows filtered air over worker. 

PRODUCTION SHOTS 
In underground stone and metal mines, production shots generate a considerable volume of dust 
and can be a distinct point source of respirable silica dust [Chekan et al. 2004]. Gravimetric filter 
samples collected 100 feet from the faces being shot showed that silica can account for over 10% 
of the respirable dust sample by weight, reaching concentrations as high as 0.1 mg/m3 [Chekan 
and Colinet 2002]. In large mine openings, low air velocities (< 25 fpm) are common because of 
the large open-space volume and the extremely low airflow resistance [Krog and Grau 2006]. As 
a result, airflow in the entries can be stratified, or the direction of airflow can be readily affected 
by the movement of mine equipment. The respirable dust that becomes airborne after the 
production shot will remain entrained in the air and circulate with the general airflow patterns in 
the mine. Typically, several faces are shot at the same time, usually during an off-shift with no 
personnel in the mine. However, if adequate ventilation is not present or air recirculation is 
occurring, significant levels of silica dust can remain at the mine face and in the general mine 
atmosphere when workers return to begin the production cycle. 
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To effectively remove and reduce the retention time of silica dust after production shots, three 
key design parameters should be included in the mine ventilation plan: 

•	  A main mine fan used to establish air circuits on a mine-wide scale. These fans 
include axial vane fans, jet fans, and more recently low-pressure, high-volume  
propeller fans. Depending on mine size, minimum air volumes of 250,000 cfm are 
required to adequately ventilate and maintain air velocities necessary to remove dust. 
Main mine fans should be mounted at the bulkhead and operated in the exhaust mode 
[Krog and Grau 2006; Grau et al. 2002].  

•	  Permanent or brattice stoppings installed in key locations throughout the mine 
to more efficiently direct and control the airflow.  Incorporating a stopping line into 
the ventilation plan using a combination of long pillars, permanent stoppings 
(metal/block) or temporary stoppings (brattice/curtain) has been shown to 
significantly improve airflow in main entry developments by providing a directional 
flow of air which did not exist before the systems were installed [Grau et al. 2006; 
Timko and Thimons 1987].  Studies showed that stopping lines reduced the retention 
time of dust generated by production shots and decreased the length of time for the 
dust to travel from the shot location to the main mine fans [Chekan et al. 2004]. 
Figure 3-5 shows an example of shot dust exiting the mine as recorded by a real-time 
dust monitor.  
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Figure 3-5. Movement of dust after production shot as recorded by real-time dust sampler. 



 

 

•	  Booster fans to improve local ventilation. Booster fans, either axial vane or 
propeller, should be in operation near production shot locations to move dust to the 
primary ventilation circuit where the main mine fan can remove the dust from the 
mine [Chekan et al. 2004]. Permanent installation of electric axial vane fans should 
be located so that they blow through the fresh air stream and assist the main mine fan 
[Krog and Grau 2006]. Because of their mobility, diesel-powered propeller fans can 
be positioned closer to the shot location and oriented to produce turbulence to dilute 
and transport dust to the primary ventilation circuit [Chekan et al. 2006]. Figure 3-6 
shows an axial vane and a diesel-powered propeller fan used to assist ventilation and 
remove dust near production faces.  

Figure 3-6. Axial vane fan (left) versus propeller fan (right). 

MUCKING OPERATIONS 
Hard rock mining requires drilling and shooting of faces to produce a “muck” which is loaded 
and hauled using different types of production vehicles depending on commodity and mining 
type. Production equipment is usually diesel-powered, and vehicle cabs may be either enclosed 
or open depending on commodity. For instance, limestone and granite mines generally use the 
room-and-pillar mining method, with entry widths ranging from 30 to 60 feet and entry heights 
on development ranging from 20 to 45 feet. Production equipment includes large front-end 
loaders and 50- to 100-ton capacity trucks with enclosed cabs.  
 
Gold and other metal operations may use sublevel caving, long-hole open stoping, or cut-and-fill 
methods with entries ranging from 15 to 20 feet wide and 12 to15 feet high. Open cab load-haul
dump vehicles and muckers are commonly used in the above operations. Local ventilation and 
water application to the muck pile are the primary means of dust control during the loading and 
hauling cycle. 
 
In mucking operations, several dust control methods should be considered to lower airborne 
levels of silica dust: 

•  Establish an air circuit and keep fans as close to the loading area as possible. 
Dead-end entries and stopes are difficult to ventilate and they create conditions where 
exposure to silica dust is most prevalent. In stone mines, booster fans located in key 
locations are commonly used to improve local ventilation and provide a more direct 
and controlled volume of airflow.  Using a combination of booster fans in both the 
blowing and exhaust mode will provide both turbulent air to dilute dust and an air 
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circuit to sweep the face and remove airborne particulate. In metal operations, 
blowing and exhaust systems using ventilation tubing directed into the dead-entry are 
more applicable. A blowing system delivering 10,000 cfm and kept within 100 feet of 
the face is required to provide adequate dilution. For exhaust systems to effectively 
transport dust-laden air into return entries, the tubing needs to be kept within 10 feet 
of the dust source for adequate dust capture [NIOSH 2003b]. Figure 3-7 shows a 
typical fan set-up for ventilating a dead-end entry in a limestone mine.  

Figure 3-7. Fans positioned to ventilate dead-end entries. 

•	  Keep muck wet when loading. The amount of water applied to the muck pile will 
differ between commodities, depending on the acceptable amount of moisture 
allowed during processing. Keeping the muck wet to reduce airborne dust levels 
while loading is a widely accepted practice, and studies have shown it also reduces 
silica dust levels in gold mining [Chekan  2002]. Silica generation in stopes that had a 
wet muck was 28% less than that produced by a dry muck. Silica exposures for load-
haul-dump (LHD) machine operators were impacted during the loading and dumping 
activities with wet muck, with 32% and 35% dust reductions, respectively.  

•	  Control haul road dust. The most common method of controlling haul road dust is 
surface wetting with water, but other dust control methods include adding 
hygroscopic salts, surfactants (commonly referred to as wetting agents), soil cements, 
bitumens, or films (polymers) to the road surface [Organiscak and Reed 2004]. Haul 
road wetting with water trucks in stone mines has been demonstrated to be very 
effective when continual wetting is practiced. Wetting is primarily conducted on the 
main tram roads; however, other trucks and mine equipment using secondary tram  
roads can raise the silica levels in the mine atmosphere and have the potential for 
exposing other mine workers conducting tasks unrelated to the production cycle. 
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DRILLING 

Wet drilling has been shown to be effective in controlling dust and is commonly found on face 
drills or jumbo drills. Regular maintenance, as recommended by the drill manufacturers, should 
be completed to ensure proper operation and maximized protection of these systems.  
 
Dry hole drills, where water is not used to suppress dust, are commonly used on downhole drills 
in preparation for shooting benches. Silica dust is generated by compressed air (bailing airflow) 
flushing the drill cuttings from the hole. Dry dust collection systems, incorporated into the 
drilling machine by the original equipment manufacturers, tend to be the most common type of 
dust control. Ninety percent of dust emissions with this type of system are attributed to drill deck 
shroud leakage, drill stem bushing leakage, and dust collector dump discharge.  

•	  Minimize silica dust generation and reduce levels in the ambient mine air by 
using the following recommended drill operating parameters: (a) maintain a tight  
drill deck shroud enclosure with the ground, (b) maintain a collector-to-bailing 
airflow ratio of at least 3:1, (c) install a shroud on the collector dump discharge that 
extends close to the ground, and (d) maintain the dust collector as specified by the 
manufacturer [NIOSH 1998, 2005; Reed et al. 2004]. 

•	  Use booster fans to improve local ventilation. Booster fans should be used to 
improve local ventilation and remove dust from the drill site when drilling benches in  
areas where ventilation provided by the main mine fan is not adequately diluting and 
transporting dust. Studies have shown that diesel-powered propeller fans, because of 
their mobility and entry coverage, have favorable ventilation characteristics for this 
application [Chekan et al. 2006; NIOSH 2003a]. 

To protect drill operators from dust that escapes the controls discussed above, enclosed cabs 
should be used on drills and should be properly equipped with an upgraded filtration and 
pressurization system. 
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CHAPTER 4. CONTROLLING RESPIRABLE SILICA DUST IN MINERAL 

PROCESSING OPERATIONS 

By Andrew B. Cecala 

The U.S. surface metal/nonmetal mining industry is composed of a wide range of different 
mineral types and processes. In 2007, there were 12,270 mines (256 underground, 12,014 
surface) in the metal, nonmetal, stone, and sand and gravel industries, employing 149,177 miners 
(17,862 underground, 131,315 surface) [MSHA 2009]. A significant portion of these miners 
were working in mineral processing operations as the ore removed from the pit or quarry was 
processed. Throughout the mineral processing cycle, mined ore goes through a number of 
crushing, grinding, cleaning, drying, and product-sizing sequences as it is processed into a 
marketable commodity. Because these operations are highly mechanized, they are able to process 
high tonnages of ore. This in turn can generate large quantities of dust, often containing elevated 
levels of respirable crystalline silica, which can be liberated into the work environment. 
 
The Mine Safety and Health Administration’s (MSHA) respirable quartz personal dust samples 
from 2003–2007 verify that there were a significant number of over-exposures in many job 
classifications within mineral processing operations. Table 4-1 shows the job classification and 
the percentage of samples taken that exceeded the permissible exposure limit (PEL) over this 
time period. 

Table 4-1. Percent of samples exceeding PEL for select occupations.  
Job Classification Samples exceeding PEL (percent)  

Underground Crusher Operator  36
 
Stone Polisher/Cutter  33
 

Bagging Operator  27
 
Belt Cleaner  25 


Hammer Mill Operator 23 

Kiln/Dryer Operator 19 


Cleanup Man  19
 
 Underground Frontend Loader Operator  18
 

 Laborer, Bullgang  16
 
Drill Operator  11 


The purpose of this chapter is to summarize current state-of-the-art control technology available 
for lowering respirable crystalline silica dust at mineral processing operations. This chapter 
addresses dust control techniques from the time the ore reaches the primary crusher until it is 
packaged into some type of shipping container to be delivered to the customer. By applying the 
current state-of-the-art engineering controls, methods, and techniques to lower respirable dust 
levels, managers, engineers, and health specialists can lower respirable dust exposures to miners 
and work toward the ultimate goal of eliminating silicosis and other chronic respiratory diseases 
from miners in this industry.  
 
The following is a listing of sections presented in this chapter: 
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•	  Primary Dumping 

•	  Crushing and Grinding 

•	  Transfer Points  

•	  Conveying 

•	  Wet Suppression (Water Sprays) 

•	  Local Exhaust Ventilation (LEV) Systems  

•	  Low Velocity Transport System 

•	  Total Mill Ventilation System 

•	  Operator Booths, Control Rooms, Enclosed Cabs 

•	  Screening  

•	  Packaging/Bagging Product for Shipment  

•	  Clothes Cleaning System 

•	  Background Issues 

PRIMARY DUMPING 
Ore is normally loaded into haul trucks from the pit or quarry and driven to the primary crusher 
location. This ore is then either dumped directly into the primary hopper, which feeds the 
primary crusher, or it is dumped in a stockpile. If it is stockpiled, a front-end loader then takes 
the ore product and dumps it into the primary hopper. In either case, a dust cloud is created 
during this dumping process. There are two dust sources that must be addressed during this 
primary dumping process—billowing and rollback. 
 
Billowing. The first dust source is from dust that billows out from the hopper as the large volume 
of product is dumped from the truck or front-end loader in a very short time period. During the 
dumping process, ore is grinding on ore and creating dust. In addition, there is already a 
substantial amount of dust contained within the ore from blasting and haulage to the primary 
dump. As the air in the hopper is quickly displaced from the incoming ore during dumping, it 
entrains (carries along in the air current) these dust particles and billows out from the hopper.  
 
Rollback. The second dust source is from rollback under the dumping mechanism. This rollback 
occurs either under the bed of the haul truck or the bucket of the front-end loader. 
 
For a dust control system to be effective at the primary dump location, the dust generated from  
both billowing and rollback must be controlled. There are three methods to control the billowing 
of dust from the hopper (suppress, enclose, and filter) and one method to control rollback (a tire-
stop water spray system). 

Controlling Dust Billowing From Enclosure 

•	  Suppress. Normally, the first dust control technique attempted for primary dump locations is 
water spray application. The general rule of thumb is to add enough moisture to the product 
where the weight of water added is equivalent to 1% of the processed ore [Quilliam 1974]. 
From this point, the percentage can be adjusted based upon the improvement gained from  
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additional moisture versus any consequences from adding too much water. The amount of 
moisture that can be added at primary dump locations is normally not as sensitive as in later 
stages of the mineral processing cycle, thus higher rates or percentages can usually be tried. 
One important feature with a primary dump application is to only activate the water sprays 
during the actual dump cycle through the use of a photo cell or a mechanical switching 
device. Since the actual dump cycle is a very small portion of the total time, it is not 
appropriate to continually use water sprays during the idle time because this can cause  
clogging problems, as well as, wasting water. A delay timer should also be used in this 
application so that the sprays continue to operate and suppress dust for a short time period 
after the dump vehicle has moved away. For specifics about water spray types, refer to the 
“Wet Suppression” section of this chapter.  

•	  Enclose. Enclosures for primary dump application normally require a custom design and are 
usually dependant on the type and size of dump  vehicles being used. In some cases, walls can 
be constructed around the primary dump location to form an enclosure. The walls can be 
either stationary or removable, based in particular on whether maintenance work is 
necessary. In some cases for a removable enclosure, a breathable tarp fabric material, similar 
to the material used on over-the-road haul trucks, can be laid over to seal the top of the 
enclosure.  
Another technique gaining in popularity is the use of staging curtains (Figure 4-1). Staging 
curtains, also called stilling curtains, are curtains of varying lengths which physically prevent 
the natural tendency for dust to billow out of the primary dump as a large volume of product 
is dumped [Weakly 2000]. By minimizing the billowing airflow effect, the amount of dust 
released from the primary hopper is reduced. 

If staging curtains are not used, another option is to enclose the front of the enclosure using 
panels of flexible plastic stripping. This plastic stripping employs an overlapping sequence 
which provides for a very effective seal (Figure 4-2). One noteworthy benefit to the plastic 
stripping is that the panels are not damaged if contacted by the bucket of the front-end loader 
or the bed of the haul truck during dumping. 

•	  Filter. When using an enclosure, it is also possible to incorporate a local exhaust ventilation 
(LEV) system to filter the dust-laden air from the hopper area. This would be most applicable 
when the primary dump is at a location where the dust could enter an adjoining structure or 
impact outside miners. The enclosure helps to contain the dust cloud that billows up from the 
hopper during the dumping process, but the dust remains airborne unless it is suppressed or 
removed. An LEV can be an effective technique incorporated to remove and filter this dust if  
it is properly designed and sized to the hopper. Since hoppers are usually large, a significant 
amount of airflow is typically required to create a negative pressure necessary to contain the 
dust cloud [MSA 1978]. Because of the large volume that must be ventilated in this 
application, using an LEV system would be a much more expensive control technique than 
the wet suppression technique. 
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Figure 4-1. Staging curtains reduce dust billowing during dumping. 

Figure 4-2. Plastic stripping holds dust inside enclosure allowing water sprays to knock down dust. 

Controlling Rollback Dust 
 
A tire-stop water spray system is recommended for reducing the dust source that causes liberated  
dust to rollback under the dumping mechanism. A tire stop or Jersey barrier should be positioned 
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at the most forward point of dumping for the primary hopper. To the back side of this tire stop, a 
water spray manifold should be attached to knock down and force the dust, which would 
otherwise roll back under the dumping mechanism, to remain in the hopper. Additionally, a 
shield should be placed over this water spray manifold to protect it from damage from falling ore 
(Figure 4-3). Finally, a system should also be incorporated that allows the water sprays to only 
be activated during the actual dumping process. 

Figure 4-3. Tire-stop water spray system reduces rollback under dumping mechanism. 

CRUSHING AND GRINDING 
Crushing and grinding at mineral processing operations include a wide range of different types of 
equipment and processes. On the crushing side, primary crushers are typically jaw crushers, but 
may sometimes include gyratory and/or cone crushers. These crushers use compressive forces to 
break the ore and do not normally generate large volumes of dust. Secondary crushers may 
include the gyratory and cone, as well as hammermill and impact crushers. Hammermill and 
impact crushers use a rotating device (hammers) to thrust the ore against the outer walls of the 
crusher with the intent to break the ore by impaction against the outer surface. Because the ore is 
impacted at high velocities to induce breakage, high dust generation and liberation rates can 
occur from these types of crushers. After ore is fed into the crusher, it remains in the unit and 
continues to be crushed until it reaches a size small enough to be discharged from the unit.  
 
Grinding and pulverizing the ore is performed later in the mineral process to reduce the product 
down to the smaller size ranges, normally measured in mesh sizes. Grinding mills are used to 
perform this process and are cylindrical, horizontal drums that rotate and have rods, balls, or 
pebbles inside to grind the ore down to the desired size ranges. 
 
The two primary dust emission points of all crushing and grinding units are at the feed and 
discharge points. Controlling this dust by properly designing chutes or transfer points with 
rubber seals between stationary and moving components, as well as enclosing this area, is critical 
to an effective dust control plan.  
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Dust control for the crushing and grinding processes is normally achieved by either wet 
suppression or LEV systems, or a combination of both. Spraying the ore with water sprays to 
coat the outer surface helps to prevent dust from becoming liberated. Applying the water to the 
ore before it enters the crushing or grinding unit is most effective. In addition, it has been shown 
that the water pressure at early stages of crushing should be kept below 60 psi to avoid 
pressurizing and forcing dust from the feed chute enclosures [NIOSH 2003]. The amount of 
moisture is not as critical during the early stages of the process but should be closely evaluated 
as the ore enters the later stages when the finer product sizing is taking place. In these cases, full 
and hollow cone sprays would normally be used to wet the ore and minimize dust liberation. 
(See the “Wet Suppression” section for more information on water spray systems.) 
 
When using an LEV system to capture and remove the dust from the crushing and grinding 
processes, a critical component to maintaining an effective system is determining the amount of 
air volume required to keep the process under negative pressure. As ore is fed into the crusher or 
grinder, it entrains air along with the product, creating a significant volume of air which must be 
exhausted to overcome the induction effect [MSA 1978; Yourt 1990]. The volume of exhaust air 
is also dependant on the effectiveness of sealing the crusher’s or grinder’s intake opening. By 
minimizing the area of the opening using belting and plastic stripping, the volume of exhaust air 
can be lowered while still maintaining an acceptable negative pressure necessary to contain the 
dust liberated during this transfer process.  
 
One final component that must be considered in all crushing and grinding processes is 
maintaining a proper seal on the device. If product is observed on the floor below the device or if 
visible dust is seen liberating from a unit, this indicates that a hole has been created or a seal has 
worn out, and maintenance needs to be performed to repair the problem. 

TRANSFER POINTS 
Transfer points are used to move ore from one process or one piece of equipment to another. 
Although this seems like a simple process, significant dust generation and liberation can result 
from transfer points if they are not properly designed and installed. The following are some  
important design considerations for an effective transfer point or chute: 

•	  Transfer chutes should be sized to allow ore to flow without clogging or jamming. A 
general rule of thumb is that the chute depth should be at least three times the 
maximum lump size to avoid clogging [Martin Marietta Corp 1987].  

•	  The dump point of the ore should be designed to impact on a sloping bottom or a 
rockbox. Rockboxes are designed to allow ore product to build up so that ore contacts 
ore during transfer, which reduces wear and abrasion of the chute.  

•	  Any abrupt changes in product direction or flow should be avoided.  
•	  Fall height of ore should be minimized whenever possible through the use of rock 

ladders, telescopic chutes, spiral chutes, and bin-lowering chutes.  
•	  A head enclosure should be used when transferring ore onto a conveyor. The head 

enclosure should be designed with strip curtains to minimize air induction into the 
enclosure and skirt boards to position the ore on the center of the belt.  
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•	  An LEV system should be used at transfer enclosures and chutes to capture and filter 
the dust from the air. These enclosures should be designed to have approximately a 
250-fpm intake velocity at any opening to eliminate dust leakage from the area. To 
accomplish this, plastic stripping and other types of sealing systems should be used to 
minimize openings and maximize intake velocity.  One study also recommended that 
the exhaust port to the LEV system be located at least 6 feet away from the transfer 
dump point to minimize the possibility of entraining large particles [MAC 1980].  

•	  The exit velocity from the enclosure or chute should be kept below 500 fpm to 
minimize the entrainment of large particles of ore [Yourt 1990].  

CONVEYING 
At mineral processing operations, conveyors are the major component used to transfer ore from  
one process to another. A conveyor can generate significant quantities of respirable dust and be 
one of the greatest sources of dust emissions within an operation. There are four main areas of 
dust generation and liberation from conveyors: 

•	  When ore is dumped onto the belt. 

•	  As ore travels on the belt. 

•	  From the underside return idlers due to carryback on the belt. 

•	  When ore is dumped or transferred to another belt or process. 

One of the challenges with conveyors is the number of belts used and the total distance traveled 
throughout a mineral processing plant. Some belts are located outside where dust liberation is not 
as critical as when they are within a facility. Another challenge particular to conveyors is their 
ability to generate or liberate dust while operating, whether they are loaded with ore or empty. 
 
Controlling dust from conveyors requires constant vigilance by the maintenance staff to repair 
and replace worn and broken parts. There are a number of techniques to reduce dust liberation 
from conveyors, as follows: 

•	  Suppress. When properly designed and installed, water sprays are a cost-effective 
method of controlling dust from conveyors. The most common and effective practice 
for conveyor sprays is to wet the entire width of product on the belt. The amount of 
moisture applied should be varied and tested at each operation to determine the 
optimum quantity, but 1% moisture added to product ratio is a good starting point. A 
number of studies have indicated that wetting the return side of the conveyor belt also 
helps reduce dust liberation. This is effective because it reduces dust generation from  
the idlers as well as at the belt drives and pulleys. In many cases, water sprays located 
on the top (wetting the product) and the bottom (reducing dust from  the idlers) at the 
same application point can be an effective strategy [Courtney 1983; Ford 1973]. 
These locations are also beneficial from an installation and cost standpoint. 

When considering nozzle type for these suppression systems, fan spray nozzles are 
normally the most common design because they minimize the volume of water added 
for the amount of coverage. For these types of applications, it is more advantageous 
to locate the water sprays at the beginning of the dust source (i.e., the dump or 
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transfer location), because as the water and ore continually mix together, the amount 
of wetted surface area of the ore increases, thus increasing the suppression potential 
and reduction in dust liberation. Using sprays at higher flow rates can sometimes 
create air turbulence, which makes it more difficult to contain/suppress the dust. 
Because of this, it is normally recommended to use more spray nozzles at lower flow 
rates and position them at locations closer to the ore [NIOSH 2003]. 

•	  Enclose. Enclosures are an effective dust control technique for many applications 
within mineral processing plants if they are correctly designed and installed, and this 
principle also applies to conveyors. Enclosures for conveyor and transfer points can 
be either full or partial type [Zimmer 2003]. One of the most common partial types of 
enclosures is with the use of skirting, which keeps the material on the belt, especially 
immediately after it exits a loading chute. An inclined skirting design, in which the 
skirting belt is angled at approximately 30 degrees from vertical, is more 
advantageous over a standard vertical design because of wear issues. This skirting 
design improves the loading of ore onto the conveyor and reduces the amount of dust 
generated. 

Enclosures at head and tail ends of the conveyor are a common practice because they 
are effective at controlling dust at these locations. Designing the proper size enclosure 
is a critical factor because, as the ore is dumped onto the conveyor, it entrains a 
measurable amount of air (venturi effect) and this can pressurize the enclosure if it is 
undersized. Dust curtains are another form of enclosure used to contain dust within a 
conveyor and are very cost effective to install. These curtains are normally installed at 
the head and/or tail ends of the conveyor. 

In many instances, a LEV is tied into the enclosure at these conveyor dump or 
transfer locations to capture generated dust. It has been shown that the takeoff port to 
the LEV system should be a least 6 feet from the dump point to minimize the pickup 
of oversized particles [MAC 1980]. The air velocity at this exhaust port should also 
be kept below 500 fpm to avoid the pickup of larger particles [Yourt 1990]. 

•	  Belt scraper. An effective method to reduce dust being liberated from conveyors is 
with belt scrapers. Although belt scrapers come in many different styles, types, and 
trade names sold by numerous commercial manufacturers, their function remains the 
same, which is to reduce the amount of carryback on the belt once the ore is 
discharged. Carryback is the material that sticks or clings to the conveyor belt after 
the material is discharged at the head pulley. As this material dries and passes over 
the return idlers, it falls from the belt and the respirable portion of this dust becomes 
airborne. The goal is to remove this carryback product before it is released into the air 
and becomes a source of contamination to the workers. When dust levels are high, a 
common practice is to use two or three belt scrapers at different locations in an effort 
to further reduce the amount of carryback material on the belt [Roberts et al. 1987]. 

•	  Belt wash. Some studies have shown that the oversized material is more easily 
removed through scraping but the smaller respirable-sized particles tend to remain 
adhered to the conveyor. When this occurs, a belt wash should be installed. A belt 
wash sprays the conveyor belt with water while simultaneously scraping it to remove 
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the product. In a number of published studies in this area, this technique has been 
shown to increase the cleaning effectiveness by approximately 14% [Planner 1990]. 

•	  Effective belt loading. Providing an effective belt loading area helps to reduce the 
amount of dust generated during belt loading. The first design goal of an effective 
system is to reduce belt sag and vibration during ore loading. To do this, some  
operations are using slider-bar cradles which stabilize this area [Stahura and Marti 
1995]. These cradles can be made to provide a shock-absorbing action to cushion the 
impact during belt loading. This goal can also be achieved with low-friction bars that  
provide a flat support area for loading, which minimizes belt sag. Effective belt 
loading should also include side shields which contain the fine-sized particles and 
help to minimize the liberation of dust. 

Figure 4-4 shows a combination of the various techniques discussed that help enclose and 
minimize dust generated during conveying. 

Figure 4-4. Techniques for reducing respirable dust liberation from conveyor belts and transfers. 

This includes the use of plastic stripping to minimize 
the opening size, a rockbox, belt skirting, and the dust collection pick-up point. In addition, wet 
suppression is also shown, which will be discussed in the next section of this report. 

WET SUPPRESSION 
Wet suppression systems are probably the oldest and most often used method of dust control at 
mineral processing operations. In the vast majority of cases for mineral processing operations, 
the wet suppression system used is a water spray system. Although the use of water sprays is a 
simple technique, there are a number of factors that should be evaluated to determine the most 
effective design for a particular application. There are two methods to control dust using water 
sprays at mineral processing operations: 

•	  Preventing dust from becoming liberated and airborne by directly spraying the ore. 

•	  Knocking airborne dust down by spraying the dust cloud and causing the particles to 
collide with water droplets and fall out of the air.  
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Most operations use a combination of both methods in the overall dust control plan. When 
considering the use of a wet suppression system, some general considerations and guidelines 
apply: 

•	  The effectiveness of water spray application is dependent on nozzle type, droplet size, 
spray pressure, spray pattern, spray angle, spray volume, spray droplet velocity, and 
spray droplet distribution. 

•	  Each ore type and application point is a unique situation and needs to be evaluated 
separately to achieve the optimal design. 

•	  Water evaporates and needs to be reapplied at various points throughout the process 
to remain effective.  

•	  Water freezes and its use is limited during certain times of the year and in certain 
climates.  

•	  Wet suppression cannot be used with all ores, especially those that have higher 
concentrations of clay or shale. These minerals tend to cause screens to bind and 
chutes to clog, even at low moisture percentages.  

•	  Over application in the volume of moisture is a problem in all operations and can 
impact the equipment as well as the total process. In most cases, a well-designed 
suppression system will not exceed 0.5% moisture application, which is roughly 
equivalent to one gallon per ton of ore. 

•	  The suppression system should be automated so that sprays are only used during 
times of production when ore is actually being processed. For dust knockdown, a 
delay timer may be incorporated into some applications to allow the suppression 
system to operate for a short time period after a dust-producing event. 

When considering sprays, one of the primary aspects is the droplet size. When wetting the ore to  
keep dust from becoming airborne, droplet sizes above 100 microns should be used. In contrast, 
when the goal is to knock down existing dust in the air, the water droplets should be in size 
ranges similar to the dust particles. The intent is to have the droplets collide and attach  
themselves to the dust particles, causing them to fall from the air. In these cases, droplets in the 
range of 10 to 50 microns have been shown to be most effective [Bartell and Jett 2005]. 
Uniformity of wetting is also a very important issue for an effective system. By far the best dust 
reductions can be achieved by spraying the ore with water and then mechanically mixing the ore 
and water together to achieve a uniformity of wetting. 
 
The following is a list of the spray nozzles used in the mineral processing industries and some of 
their defining characteristics (Figure 4-5): 

•	  Full-cone. Full-cone nozzles employ a solid cone-shaped spray pattern with a round 
impact area that provides high velocity over a distance. They produce medium to 
large droplets sizes over a wide range of pressures and flows. They are normally used 
when the sprays need to be located further away from the dust source. 
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 Figure 4-5. Spray nozzles commonly used in mineral processing operations. 

•	  Hollow-cone. These nozzles use a circular outer ring spray pattern (hollow cone) in 
three different designs: whirlchamber, deflector, and spiral sprays. They produce 
small to medium droplet sizes. 

•	  Flat-fan. The flat-fan pattern is produced in three different designs: tapered, even, 
and deflected type sprays. Flat-fan nozzles produce small to medium droplet sizes 
over a wide range of flows and spray angles and are normally located in narrow, 
enclosed spaces.  

•	  Air atomizing. Different spray patterns are available in two different designs: 
hydraulic and air-assisted. Hydraulic nozzles produce fine-mist droplet sizes and have 
low-volume capacities. Air-assisted nozzles produce the smallest droplets of all 
sprays but are the most expensive because they require compressed air. To be 
effective, both types of air-atomizing sprays need to be located close to the dust 
source. 
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Figure 4-6 shows the airborne capture performance of the different spray nozzles performing at 
different operating pressures.

Figure 4-6. Airborne dust capture performance of four types of spray nozzles. 

 As shown, atomizing sprays are the most efficient for dust 
knockdown, followed by the hollow-cone sprays. Hollow-cone sprays are a good choice for 
many applications in mineral processing operations because significant coverage or wetting of 
the ore occurs, even at low moisture percentages. They are also very beneficial because they 
have large orifice sizes and are less likely to clog as compared to the other nozzles. Full-cone 
sprays would be most applicable in the early stages of the process where the quantity of moisture 
added is not as critical. Flat-fan sprays are most appropriate for spraying into a narrow 
rectangular space because less water is wasted by spraying against an adjacent rock or metal 
surface.  

Surfactants, commonly called wetting agents, are sometimes used in wet suppression 
applications because they lower the surface tension of the water solution. This in turn increases 
the solution’s ability to produce finer and a greater number of water droplets, while increasing 
the rate at which the droplets are able to wet dust particles. They use less moisture to produce the 
same effects as a straight water application. However, they are not very often used in the 
metal/nonmetal mining industry based upon the following limitations: 

•  Surfactants are more expensive than a typical water application. 
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•	  Surfactants may alter the properties of the mineral or material being processed. 

•	  Surfactants can damage some equipment such as conveyor belts and seals. 

•  Surfactant systems require more upkeep and maintenance than typical water systems. 

A fundamental consideration with any suppression system is the cleanliness of the water. If spray 
nozzles become plugged with sediment or debris, they render the suppression system ineffective. 
Since the water to be used for suppression systems at most mineral processing operations would 
be drawn from a settling pond, the issue of water purity is a legitimate concern. It is 
recommended to use some type of water filtering system to eliminate the possibility of sediment 
and debris clogging the water sprays. Most spraying companies offer filtering systems for this 
purpose. A hydrocyclone with a built-in accumulator flush should be considered in these 
applications [USBM 1976, 1981]. 

LOCAL EXHAUST VENTILATION (LEV) SYSTEMS 
The most common dust control technique at mineral processing plants is local exhaust 
ventilation (LEV) systems. These systems capture dust at the various processes such as crushing, 
milling, screening, drying, bagging, and loading and then transport this dust via ductwork to a 
dust collection filtering device. LEV systems use a negative pressure exhaust ventilation 
technique in an attempt to capture the dust before it escapes from the process. By capturing the 
dust at the source, it is prevented from becoming liberated into the processing plant and exposing 
workers. This technique is most effective when a capture device (e.g., enclosure, hood, or chute) 
is incorporated at the dust source to maximize the collection potential. LEVs have a number of 
advantages: 

•	  Ability to capture and eliminate very fine particles, which are difficult to control 
using wet suppression techniques. 

•	  Providing the option of reintroducing the captured material back into the production 
process or discarding the material so it is not a detriment later in the process. 

•	  Effectiveness in cold weather conditions because of not being greatly impacted by 
low temperatures as with the wet suppression technique. 

•	  May be the only dust control option available for some operations whose product is 
hygroscopic or suffers serious consequences from even small percentages of moisture 
(e.g., clay or shale operations). 

There are many different types of dust collection systems available for use at mineral processing 
operations, including electrostatic precipitators, fabric collectors, wet collectors, and dry 
centrifugal collections; however, an LEV system using a canister-type collector is often the best 
choice for the majority of the minerals processing industry. The American Conference of 
Governmental Industrial Hygienists (ACGIH) produces a manual entitled Industrial Ventilation 
Handbook—A Manual of Recommended Practice for Design, currently in the 26th edition. This 
manual provides extensive and authoritative information for designing an effective LEV system. 
It is not the intent of this chapter to duplicate this information, but to briefly describe a canister-
type LEV system. For more information on various dust collector types and design 
considerations, please refer to the ACGIH Industrial Ventilation Handbook [ACGIH 2007]. 
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The canister-type collector is the most recent generation of fabric-type collectors. Currently, all 
other fabric collectors use filter media made of felt-type collector bags. Instead, the canister-type 
collector uses a rigid cartridge that houses a pleated filter media (Figure 4-7).

Figure 4-7. Canister-type dust collector system. 

 The following are 
some advantages of using this system:  

•	  Various types of filter cartridges are available to meet a wide range of ore types and 
filtering needs. 

•	  The filter canisters are self-cleaned in the collector unit when the internal pressure  
reaches a set value. This self-cleaning is performed using the conventional pulse-jet 
cleaning action. 

•	  The pleated-type canister filters increase the surface area of the filter media and 
provide for a greater cycle time before cleaning, when compared to the typical bag-
type filters. 

•	  Workers are exposed to very low respirable dust concentrations when replacing filter 
canisters. The normal replacement procedure is to remove the new filter canister from  
the cardboard shipping package, then remove the used canister from the collector unit 
and place it in the cardboard shipping container to be discarded. The cardboard 
container lid is closed and taped shut to minimize the potential for any dust leakage. 

LOW-VELOCITY TRANSPORT SYSTEMS  
As stated in the previous section, LEV systems are the most common dust control technique used 
at mineral processing plants to capture and filter dust from the air. With these systems, once the 
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dust is captured at the source, it is carried through ductwork to the filtering unit. This section 
deals with a novel method of transporting dust from the collection point to the filtering unit. 
 
For many years, the only recommended practice was to transport dust particles in a high-velocity 
design in which the air velocities within the duct were kept in the 3,500 to 4,000 feet per minute 
range. The intent with a high-velocity system is to prevent the dust particles from settling out 
from the airstream and clogging the duct. However, since the air velocities are so high, duct wear 
is a significant problem, especially at any elbows or transitions where holes are constantly 
developing. As holes develop, they compromise the system’s performance and cause dust to leak 
from the ductwork and into the work environment. 
 
A low-velocity system has been developed [Bresee 2008 ]where the transport velocities within 
the ductwork are held below 1,800 feet per minute. This section will present the advantages to 
the low-velocity design, which may be advantageous over the high-velocity design for some  
applications. This is especially true when dealing with an ore that contains silica due to the 
abrasiveness of the mineral. It must be noted that low velocity does not imply low airflow; in 
fact, hood capture velocities and negative pressure at the capture point are identical in both low- 
and high-velocity transport systems. 
 
There are significant differences between high- and low-velocity system designs. In high-
velocity systems, the ductwork is mainly oriented in either the horizontal or vertical format, and 
at the high-transport velocities, large-size dust particles are moved through the ductwork to the 
dust collector unit. This is not the case in a low-velocity system in which the basic principle is to 
only move respirable-sized particles. The low-velocity system is based upon a “sawtooth design” 
in which the up-slopes are positioned at a 45 degree angle and all down-slopes are oriented at 30 
degrees (Figure 4-8). This allows the larger particles to fall out from the airstream, slide down 
the slope, and be recycled back into the process at various points. Advantages to the low-velocity 
transport system include the following: 

•	  Wear and maintenance. Since the system is only moving particles in the respirable 
range at relatively low velocities, there is reduced abrasion to the duct, which allows 
for shorter radius and elbows to be used. 

•	  Energy costs. Friction and pressure losses in this system are significantly less than in 
the conventional high-velocity system, making overall power requirements 
significantly less.  

•	  Availability and reliability. The low-velocity system maintains a more consistent 
balance, since changes in airflow or pressure drops in ducts do not have significant 
impacts in the overall system. Since the system stays in balance, it does not lose its 
transport effectiveness as with the high-velocity transport system. 

•	  Product recovery. Product losses are significantly less since larger particles are 
captured by the LEV system and ultimately recycled back into the process at various 
points in the system. 

Although low-velocity transport systems have higher initial costs, the break-even point usually 
occurs sometime around the three-year time frame. The low-velocity transport system has been 
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tested and utilized in operating plants, with a projected life between 15 and 25 years. This 
performance time frame accounts for significant cost savings over the life of the system. 

Figure 4-8. Sawtooth design for low velocity transport system. 

TOTAL MILL VENTILATION SYSTEMS 
Although LEV is the most common dust control technique used at mineral processing operations 
to capture and filter dust from the major dust sources, it is not possible to capture and control all 
the minor dust sources within a mineral processing operation using this same technique. As these 
minor sources continually generate and liberate dust over a work shift, they can have a 
cumulative effect and cause respirable dust concentrations to gradually increase to unacceptable 
levels.  
 
The best way to address and deal with these minor dust sources is to install a total mill 
ventilation system (TMVS). A TMVS provides a general purging of the plant air to  minimize 
dust throughout the entire mill building, thus lowering respirable dust levels for all workers 
within the structure [Cecala and Mucha 1991; Cecala et al. 1995]. The TMVS lowers respirable 
dust levels by using clean outside air to sweep up through a building to clear and remove the 
dust-laden air. This upward airflow is achieved by placing exhaust fans at, or near, the top of the 
structure. The size and number of exhaust fans is based upon the initial respirable dust 
concentration and the total volume of the structure. All the processing equipment within a mill 
generates heat and produces a thermodynamic chimney effect that works in conjunction with the 
TMVS. To be effective, a TMVS must meet three design criteria: 

•	  Supply of clean make-up air. The TMVS must supply clean make-up air at the 
plant’s base. Any outside dust sources, such as bulk loading near an air inlet location, 
can cause outside dust-laden air to be drawn into the plant and make the problem  
worse. It is critical to ensure that the make-up air is clean by controlling the air’s 
entry location through inlets such as wall louvers, plants doors, or other openings. 

•	  Effective upward airflow pattern. The TMVS should provide an effective upward 
airflow pattern that ventilates the entire plant and also sweeps through dust sources, 
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work areas, and dust-laden areas. To create the most effective airflow pattern for 
purging the entire mill, the exhaust fans must be properly located on the roof or high 
outer walls, and the make-up air inlets must be located at the base of the structure. 

•	  Competent mill shell. Because a TMVS uses exhaust fans to draw make-up air 
through the points of least resistance, the plant’s outer shell needs to be intact and 
competent. Any unwanted openings, especially near the exhaust fans, can short-
circuit the ventilation system’s designed airflow pattern and reduce the effectiveness.  

Figure 4-9 shows the concept of the TMVS from an outside perspective.

Figure 4-9. Design concept of TMVS showing clean-air intakes and dust-laden air exhausts. 

42 


 A normal range of 
airflow for a TMVS would be 10–35 air changes per hour (ACPH). During the development of 
this technique, two different field studies were performed to document the effectiveness of a 
TMVS [USBM 1993]. In the first study, with a 10-ACPH ventilation system, a 40% reduction in 
respirable dust concentration was achieved throughout the entire mill building. In a second field 
evaluation, two ventilation volumes were tested—17 ACPH and 34 ACPH—and average 
respirable dust reductions were recorded at 47% and 74%, respectively. 
 
The TMVS has proven to be a cost-effective system to lower respirable dust concentrations 
throughout an entire mineral processing structure. Not only is the initial cost of this technique 
inexpensive when compared to the other engineering controls, the operation and maintenance are 
also minimal. To further reduce their costs, operations can potentially install all the components 
for this system with in-house personnel. Therefore, the TMVS can be a very cost-effective 
system to lower respirable dust levels at mineral processing operations [Cecala 1998; Cecala and 
Thimons 1997; Cecala, et al. 1996].  



 

OPERATOR BOOTHS, CONTROL ROOMS, ENCLOSED CABS 

Frequently at mineral processing plants, workers will be located in an operator’s booth, control 
room, or enclosed cab to give them a safe work area and to isolate them from dust sources. If 
these areas are properly designed, they can provide good air quality to the worker. On the other 
hand, if these enclosed areas are not properly designed and maintained, the air quality can 
deteriorate to unacceptable and unsafe levels.  
 
The most effective technique for reducing operators’ exposure to airborne dust in booths/control 
rooms/enclosed cabs at mineral processing operations is with filtration and pressurization 
systems. The most effective filtration and pressurization systems have the heating and air 
conditioning (HVAC) components tied in as an integral part of the system. A substantial amount 
of research has been performed over the past few years evaluating the air quality in enclosed 
cabs of surface mining equipment. This research is directly applicable to operator booths and 
control room dust control systems. As the research demonstrates, enclosed cabs on mobile 
equipment are harder to control and maintain since the moving of the equipment constantly 
stresses and compromises the competency of the enclosure. NIOSH recently conducted a 
controlled laboratory study to evaluate the key factors necessary for achieving an effective 
enclosure filtration and pressurization system [NIOSH 2008]. Through this laboratory and 
numerous field studies, the following items were identified as key components to an effective 
system: 

•	  Ensure booth/control room/cab integrity. Effective protection factors were realized  
in various field studies when positive pressures between 0.01 and 0.40 inches of 
water gauge were achieved within the booth/cab because of good enclosure integrity. 
These pressures correspond to wind velocity equivalents of 4.5 to 29 miles per hour 
and prevent against wind forcing dust laden air into the enclosure. 

•	  Use high-efficiency filters on intake air. Only intake filters with an efficiency of 
95% or greater were used during field studies [Cecala et al. 2004, 2005a; Chekan and 
Colinet 2003; Organiscak et al. 2004]. Laboratory experiments showed an order of 
magnitude increase in protection factors when using a 99%-efficient filter versus a 
38%-efficient filter on respirable-sized particles [NIOSH 2007]. 

•	  Use an efficient recirculation filter. All the field evaluations used recirculation 
filters that were 95% or greater on respirable-sized dusts [Cecala et al. 2004, 2005a; 
Chekan and Colinet 2003; Organiscak et al. 2004]. Laboratory experiments showed a 
tenfold increase in protection factors when using an 85%- to 94.9%-efficient filter on 
respirable-sized dusts as compared to using no recirculation filter [NIOSH 2007]. 
Laboratory testing also showed that the time needed for the interior to stabilize after 
the door was closed was reduced by more than 50% when using the recirculation 
filter.  

•	  Minimize interior dust sources. Good housekeeping practices are needed to keep 
enclosure interiors clean, which eliminates inside dust sources. One field study 
showed a significant increase in dust levels (0.03 to 0.26 mg/m3) when a floor heater 
was used. The fan from the floor heater stirred up dust lying on the cab floor [Cecala 
et al. 2001; NIOSH 2001b]. 
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•	  Keep doors closed. In a study on an enclosed cab of a surface drill, the operator’s 
dust exposure averaged 0.09 mg/m3 inside the cab with the door closed and 0.81 
mg/m3 when the door was briefly opened to add drill steels [Cecala et al. 2007b]. 
Although this procedure was performed after drilling stopped and the visible dust 
dissipated, it nevertheless produced a ninefold increase in dust concentrations inside 
the cab each time a drill steel was added.  

The above research findings also suggest that the use of a one-directional airflow pattern could 
be beneficial. In most systems, both the intake and discharge for the recirculation air are located 
in the roof. This could cause a portion of the air to short-circuit without penetrating deeply into 
the cab. Also, as cab air is drawn into the ventilation system at the roof, dust generated in lower 
portions of the cab may be pulled through the breathing zone of the worker. In a one-directional 
design, recirculated air is drawn from the bottom of the enclosure and away from the worker’s 
breathing zone. Figure 4-10 shows this one-directional airflow pattern. 
 

Figure 4-10. Airflow pattern for one-directional filtration system for an enclosed cab. 
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For some cases in operator booths and control rooms, stand-alone table-top air purifier units 
containing a high efficiency particulate air (HEPA) filter have been installed and shown to 
improve the air quality. Obviously, these table-top systems are small, portable units available at a 
fraction of the costs of permanent systems. These systems can be effective if they are sized to 
handle the volumetric capacity of the booth or control room and if the filters are replaced when 
necessary [Logson 1998]. Obviously, one shortcoming with this type of system is that they do 
not provide any pressurization to keep dust from leaking into the booth or room. 



 

 

SCREENING 
Screens are the most common device used at mineral processing operations to separate dry ore 
material into different size ranges, normally measured in mesh sizes. By having the ore 
processed on different mesh-sized screens, an array of various-sized materials can be produced. 
Screen sizes for mineral processing operations range from large openings that can be inches in 
size all the way down to 400 mesh, which has a 35-micron cut point. The amount of dust 
generated during screening is dependent on the ore type, the particle size, the moisture content, 
and the type of equipment. Normally, screening finer-sized ore material produces more dust. 
 
Screening has been performed at mineral processing operations for many years and has been 
perfected by most screen manufacturers. New screening equipment units today are well-sealed 
units which liberate very little dust into the work environment when they are properly maintained 
and operated (Figure 4-11). 

Figure 4-11. Screening unit with LEV system. 
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When processing any ore that has significant silica content, screens 
should be tied into an LEV dust collector system to help keep the process under negative 
pressure and capture respirable-sized particles liberated within the unit. If visible dust is seen 
leaking from a screening unit, or if product is visible on the ground underneath a screen, this 
indicates that a problem exists and needs to be corrected. The first course of action is to 
determine if a seal or part has worn and is leaking product. In addition, the LEV exhaust port 
should be examined to ensure it is operating properly and is exhausting the screening unit at the 
required airflow and pressure. 
 
Another problem occurs when a screen cover is lifted during operation to clean the screen 
surface. This basically renders the LEV system ineffective because the increased area with the 
cover lifted is so great that the screen area is not able to be kept under negative pressure. This is 
a known problem throughout the industry. The only safety option currently available to workers 
when performing this task is to wear fit-tested personal protective equipment (PPE) that is rated 
for the levels and type of dust being processed. 



 

 

 

PACKAGING/BAGGING PRODUCT FOR SHIPMENT 

Ore is processed so that it can be packaged and sold to customers. Mineral processing operations 
package their product in a wide spectrum that includes 50- and 100-pound bags as well as bulk 
loading into railcars and trailer trucks. This section will provide some recommended methods to 
control respirable dust while loading ore into each of the different packaging containers to be 
delivered to the customer. 

Bag Filling Machines Packaging 50- and 100-Pound Bags  

•	  Dual bag nozzle system. The dual bag nozzle system was designed to reduce dust 
from three major sources during bagging [USBM 1984a, b, 1986c; Cecala and 
Muldoon 1985; Cecala and Thimons 1989]. The system is composed of an improved 
bag clamp designed to reduce the amount of product blowback during bag filling 
(Figure 4-12). 

Figure 4-12. Dual bag nozzle design. 

The clamp reduces blowback by making direct contact with 
approximately 80% of the fill nozzle. The system incorporates a dual nozzle system, 
which is a nozzle within a nozzle. The inner nozzle is the normal fill nozzle. The 
outer nozzle incorporates an air exhaust system, which exhausts excess pressure from  
the bag when it has finished filling. The exhaust system is powered by an eductor, 
which uses the venturi effect to exhaust the bag at approximately 50 cfm.  
Depressurizing the bag reduces the “rooster-tail” of product which spews from the 
bag when it is ejected from the fill station. By reducing the blowback and rooster tail, 
the amount of product and dust on the outside of the bag are minimized, which also 
reduces the dust liberated during this process. During a field analysis on this dual bag 
nozzle system, the bag operator’s dust exposure was reduced by 83% [USBM 1984a]. 

•	  Overhead air supply island system (OASIS). The OASIS is used to reduce bag 
operators’ dust exposures while performing the bag loading processes. Normally, the 
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bag operator sits while loading bags, and the OASIS would be installed over his/her 
position to provide a clean envelope of filtered air down over the worker. (For more 
information, see the “Background Issues” section of this chapter.)  

•	  LEV. A local exhaust ventilation system is very effective at minimizing the dust 
exposure to the bag operator while loading bags of product. When designing these 
systems, the dust generated during bag loading must be pulled down toward the floor 
to prevent the dust from passing over the worker’s breathing zone as it is captured by 
the exhaust ventilation system. 

•	  Automated systems. A number of manufacturers have been making advances in 
automated equipment that mechanically takes 50- or 100-pound bags, loads them onto 
fill spouts, then ejects the bags once they have reached the desired bagging weight. 
Normally, the bag loading area is sealed with plastic stripping to isolate it. This area  
is connected to an LEV system and kept under slight negative pressure to capture and 
remove respirable-sized dust particles liberated during the bag loading process. 

Bag Conveying 

•	  Bag and belt cleaning devices. These automated systems use a combination of 
mechanical devices such as brushes and air sprays to clean dust and product from the 
outside of the bags as they are being conveyed from the loading station to the stacking 
area [USBM 1995; Cecala et al. 1997]. It is recommended that bag cleaning be performed 
in an enclosed system so that all the dust removed is contained and exhausted to an LEV 
system. By having a hopper located under this cleaning unit, product removed from the 
bags can be recycled back into the process (Figure 4-13). 

Figure 4-13. Bag and belt cleaner device. 
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•	  Bag valve type. A study was performed that evaluated the dust liberation differences 
in relation to five commercial bag valves: (1) standard paper, (2) polyethylene, (3) 
extended polyethylene, (4) double trap, and (5) foam. This study showed that the bag 
operator’s and bag stacker’s respirable dust exposures were reduced by 62% and 
66%, respectively, when using the extended polyethylene valve, as compared to the 
standard paper valve [USBM 1986a; Cecala and Muldoon 1986]. The extended 
polyethylene valve was a plastic liner 4½ inches inside a standard paper valve. The 
plastic was then extended for another 1½ inches. It appears that this plastic section 
allowed the bag valve to seal very effectively to keep product and dust from escaping 
from this valve. This study was performed two decades ago, and during the time of 
the study the additional cost was less than one cent per bag, which was very cost-
effective when considering the significant reductions measured to both the bag 
operator and the bag stacker. 

Pallet Loading 

•	  LEV. When the pallet loading process is manually performed by bag stackers, an 
LEV system should be incorporated to capture and remove the dust generated during 
this process. When designing these systems, the dust generated during bag loading 
must be pulled down toward the floor to prevent the dust from passing over the 
worker’s breathing zone as it is captured by the exhaust ventilation system. 

•	  OASIS. The OASIS is also applicable to the pallet loading process to reduce the dust 
exposure to the bag stacker(s). The OASIS should be installed over the work station 
and provide a clean envelope of filtered air down over the bag stacker(s).  

•	  Semiautomated system. Semiautomated systems use workers in conjunction with an 
automated system to perform the bag stacking process. This can include a vast array 
of different setups and types of systems. In one case, a worker performs the bag 
stacking task manually but is assisted by using a hydraulic lift table. This lift table 
allows the height for stacking the bags to remain constant throughout the entire pallet 
loading cycle. The bag loading height is set to approximately knuckle-high for the 
worker, which is the most ergonomic loading height. A push-pull ventilation system  
is used on either side of this pallet (Figure 4-14) to capture the dust liberated during 
bag stacking processing [USBM 1988a, 1989]. 

In other cases, the workers slide the bags of product on an air table one layer at a 
time, but the actual stacking of the bags onto the pallet is performed automatically. 
Since back injuries are such a major lost-time injury for bag stackers, this design 
significantly reduces stress by not requiring them to manually lift any bags of 
product. One problem with an air slide device is that it can cause dust to be blown 
from the bags of product into the worker’s breathing zone. In this case, either an 
exhaust hood should be placed over the air slide area that is tied into an LEV system, 
or an OASIS-type system should be placed over the worker [Cecala et al. 2000; 
NIOSH 2001a]. 
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  Figure 4-14. Semiautomated pallet loading system using push-pull ventilation. 

•	  Automated systems. Significant advances have been made by different 
manufacturing companies to design systems that either mechanically or robotically 
performs the bag stacking process, and these systems are being used at mineral 
processing plants. Automated systems reduce fatigue (back and other body parts) of 
the worker performing the task manually, as well as, the respirable dust exposure to 
the worker [Cecala and Covelli 1990]. When using these automated systems, the 
amount of respirable dust liberated still needs to be evaluated and controlled to ensure 
that it does not remain on the product bags and does not escape to the surrounding 
environment. This is normally performed by enclosing the area and using an LEV 
system to exhaust the respirable dust from the area. 

One-Ton Bulk Bags 
 
One-ton bulk bags of product material have become more popular over recent years because they 
are more cost effective than the 50- or 100-pound bags. The most effective method to control the 
dust liberated during the one-ton bulk bagging is to isolate this area from the rest of the plant. A 
worker enters this area and manually attaches an empty bag to the loading device. The worker 
then leaves the area and once outside, remotely activates a start button to begin bag filling. The 
area is exhausted and under negative pressure by virtue of being tied into a LEV system. Once 
bag loading is completed, the worker reenters the area and removes the bag for shipping and 
begins the process again. 

Bulk Loading 

•	  Enclosed cabs. Frequently, bulk loading is performed using a front-end loader to load 
open-container trailer trucks. This is normally performed outdoors with coarser 
product material, which does not generate a substantial amount of respirable dust. 
Nevertheless, the front-end loader should have a structurally competent enclosed cab 
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with an effective filtration and pressurization system. (See the “Operator 

Booths/Control Rooms/Enclosed Cabs” section.) 


•	  Telescoping loadout spout. Many different manufacturers produce telescoping 
loadout spouts, which minimize the amount of dust generated during the bulk loading 
process. Allowing ore to fall or drop significant distances creates more dust than 
when the drop distance is minimized. To minimize the drop distance, telescoping 
loadout spouts extend the loading location so that it is directly above the ore. As the 
shipping containers fill with ore, the spout continually repositions upward until the 
container is completely loaded. Another feature of this device that further minimizes 
dust liberation is a dual tube arrangement. The inner tube delivers the ore product to 
the loading container. The outer tube is tied into an LEV system to create a negative 
pressure at the loading area, therefore exhausting the respirable-sized particles to a 
dust collector system (Figure 4-15). These systems have been used for many years 
and are effective at minimizing dust liberation during bulk loading.  

Figure 4-15. Telescoping bulk loading spout with an exhaust system. 

CLOTHES CLEANING SYSTEMS 
One significant area of respirable dust exposure to workers at mineral processing operations is 
from contaminated work clothing. For the mineral processing industry, a U.S. Bureau of Mines 
report documented two cases where a tenfold increase in a worker’s respirable dust exposures 
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came from dusty work clothes [USBM 1986b]. This study indicated that respirable dust levels 
liberated from the soiled clothes were elevated to the extent that workers could be over their 
permissible exposure limit (PEL) in less than two hours. As the individuals performed their work 
duties, dust was continually emitted from their clothing, and the only way to eliminate this dust 
source was to clean or change their work clothing. Although disposable coveralls have been in 
use for many years, as well as some new and improved clothing material less susceptible to dust 
capture, the vast majority of workers continue to wear clothing similar to what they have worn 
for years. In addition, dirty work clothing, if it is not cleaned or changed at the end of the shift, 
can also contaminate personal vehicles and expose family members [Langenhove and Hertleer 
2004; Hartsky et al. 2000; Salusbury 2004]. 
 
The MSHA-approved method of cleaning work clothing involves a filtered vacuuming system, 
which is both difficult and time-consuming for the worker. Because of this, workers sometimes 
use a single compressed-air hose to blow dust from their clothing, even though this is not an 
approved practice. This technique creates a significant dust cloud which increases the worker’s 
respirable dust exposure and contaminates the work area. 
 
To address these problems, NIOSH and Unimin Corporation developed a clothes cleaning 
system that is able to quickly, effectively, and safely remove dust from a worker’s clothing 
without exposure to the worker, the work environment, or coworkers during the cleaning process 
[NIOSH 2005]. This system has been shown to be significantly more effective than the 
vacuuming or single air hose technique, while being performed in a fraction of the time. 
 
The clothes cleaning system consists of four major components. Figure 4-16 shows the various 
components of the clothes cleaning system.  

•	  Cleaning booth. The cleaning booth used for testing has a base dimension of 48 
inches by 42 inches and provides a safe and controlled area to perform the clothes 
cleaning process. All intake air enters the cleaning booth through a 24-inch cutout on 
the roof. The air flows directly down and over the worker in the booth before flowing 
through expanded metal grating on the floor and exiting through a return air plenum  
at the bottom and back of the booth. All dust and product cleaned from the worker’s 
clothing is contained within the booth and then exits via the exhaust ventilation 
system. 

•	  Air spray manifold. The air spray manifold is composed of 26 spray nozzles, spaced 
2 inches apart, to remove the dust and product from the worker’s clothing [Pollock et 
al. 2005]. These spray nozzles are regulated to limit the operating pressure to a 
maximum of 30 psi. The top 25 spray nozzles are flat-fan air nozzles and are used to 
clean the clothing. The bottom nozzle is a circular design and is used for cleaning the 
individual’s work boots. 

•	  Air reservoir. The air reservoir supplies the required air volume necessary for the air 
nozzles used in the air spray manifold. A 240-gallon unit reservoir is recommended 
for the system because it allows for multiple cleanings to be performed one after 
another. The air reservoir is located next to the cleaning booth and hard-piped to the 
air spray manifold located inside the booth. 
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•	  Exhaust ventilation system. Exhaust ventilation is used to keep the cleaning booth 
under negative pressure throughout the entire clothes cleaning process. This exhaust 
ventilation system can be tied into a local exhaust ventilation system or directed 
outside the plant and exhausted from an elevated stack. Testing on this system has 
verified that an exhaust volume of 2,000 cfm is required to maintain a negative 
pressure throughout the entire clothes cleaning cycle [Pollock et al. 2006]. This 
exhaust ventilation system should only be operated when a worker enters the booth to 
perform a clothes cleaning cycle and can be de-activated once the process is 
completed and the worker exits the booth. 

Figure 4-16. Clothes cleaning system design. 

During the development of the clothes cleaning system, a matrix of tests was performed to 
evaluate the effectiveness of this technique in comparison to that of the HEPA vacuuming and 
the single compressed-air hose approach. For this testing, both 100% cotton and cotton/polyester 
blend coveralls were soiled with dust before a worker entered the cleaning booth. The new 
clothes cleaning technique was proven to be 40.8% and 50.6% more effective than the 
vacuuming and single compressed-air hose technique, respectively [Cecala et al. 2007a]. The 
clothes cleaning system was also superior in its ability to uniformly remove dust from all areas of 
the worker’s clothing. Another major benefit was that the complete cleaning process was 
performed in a fraction of the time. The average cleaning times were 317 seconds for 
vacuuming, 178 seconds for the air hose, and 18 seconds for the clothes cleaning system. This 
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test also indicated that polyester/cotton blend coveralls were cleaned more effectively than the 
100% cotton coveralls. Figure 4-17 shows the effectiveness of the technique before and after a 
worker performed the clothes cleaning process while weaing polyester/cotton blend coveralls. 

Figure 4-17. Test subject before and after using the clothes cleaning booth. 

All workers performing the cleaning process are required to wear a half-mask, fit-tested  
respirator with N100 filters, hearing protection, and eye protection. To perform the clothes 
cleaning process, the worker enters the booth wearing his/her PPE, pushes the start button, 
slowly spins in front of the air spray manifold (18 seconds), and exits the booth with clean 
clothing. This clothes cleaning system provides a quick and effective method for workers to 
clean dusty clothes during the workday without risk to the worker, coworkers, or the work 
environment [Cecala et al. 2005b]. MSHA recognized the benefits of this system and has 
approved Petitions for Modification so that the system can be used in place of HEPA vacuuming. 
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BACKGROUND ISSUES  
This area of the report will focus on four different background issues: secondary dust sources, 
open structure design, overhead air supply island system, and housekeeping practices. 

Secondary dust sourcesWhen a worker is overexposed to respirable dust, most often the 
assumption is that the dust exposure came from the worker’s primary job function. A study was 
performed that documented a number of cases where this was not the case [Cecala and Thimons 
1987]. When a worker obtains a high respirable dust measurement, the correct course of action is 
to evaluate the worker’s job function to determine the dust sources that contributed to this 
exposure and the magnitude of the exposure from  each of these sources. Sometimes a secondary 
or background dust source can be the major contributor to the worker’s overall exposure. 
Controlling these less obvious dust sources can have a major impact on bringing levels back to 
acceptable concentrations. 
 
The following examples will demonstrate the impact that secondary dust sources can have on a 
worker’s respirable dust exposure: 

•	  Outside dust sources traveling inside structures. When outside dust sources travel 
inside structures, every worker inside the structure is impacted. Most bagging 
operations at mineral processing plants use an exhaust ventilation system to draw the 
dust generated from the bagging process down into the fill hopper. It is important that 
the air being drawn into this exhaust ventilation system, commonly called make-up 
air, be clean air. At one operation, the make-up air was drawn directly from the bulk 
loading area outside the mill. The dust generated from this bulk loading process 
traveled through an open door into the mill, substantially contaminating the workers 
inside the mill. During periods when bulk loading was not performed, the bag 
operator’s dust exposure was 0.17 mg/m3. As trucks were loaded at the bulk loading 
area, the bag operator’s exposure increased to 0.42 mg/m3 due to this contaminated air 
[USBM 1986b]. If outside air is used as make-up air, it must be from a location where 
the air is not contaminated. 

•	  Performance of job function. During an evaluation of a dust control system at one 
processing plant, substantial variations existed in the dust exposures of two different 
workers due to differences in their work practices. A number of factors were 
identified that impacted these differences.  

One factor was the amount of time the bag operator allowed the bag to remain on the 
fill spout before removing it. If the bag remained on the fill spout for a few seconds 
after it was filled, there was less dust generated from the rooster tail of product that 
spewed from the bag valve and fill nozzle as the bag was removed. A second factor 
was the extent to which the bag valve was sealed by the bag operator. One operator 
did not pay attention to where he grasped the bag as he lifted it from the fill spout to 
transfer it onto a conveyor belt. A second operator grasped the bag at the fill spout 
and crimped it closed as he placed the bag on the conveyor. This substantially 
lowered the amount of product that spewed from the bag as it was placed on the 
conveyor. A third factor impacting the operator’s dust exposure was the general 
manner in which the operator removed the bag from the bag spout and placed it on 
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the conveyor. More dust was generated when this was done in a forceful manner, as 
compared to a more continuous and gentle fashion [Cecala and Thimons 1993]. 

A number of modifications were tested to lower these workers’ respirable dust 
exposures. However, regardless of the effectiveness of the dust control system, the 
worker who performed his work duties in a rough and careless manner had 
approximately a 70% higher respirable dust exposure when compared to his coworker 
who performed the tasks in a conscientious and gentler manner. 

•	  Broken bags of product. In most cases, bag breakage occurs because of flaws in the 
bags delivered from the bag manufacturer. At one particular operation, a bag 
operator’s dust exposure went from 0.07 mg/m3 before the bag break to 0.48 mg/m3  
afterwards. Although the bag broke during the conveying process and not directly in 
front of the worker, the dust substantially contaminated the surrounding mill air, 
which flowed over the bag operator. Once again, this occurred because the exhaust 
ventilation system in the bag loading area created a negative pressure that draws 
background air from the mill. 

For mineral processing operations to keep workers at acceptable dust levels, management must 
be aware of the various dust contamination sources and methods to reduce these sources. The 
substantial effects of the various secondary dust sources should be recognized, identified, and 
controlled in an effort to minimize workers’ dust exposures. 

Open-structure design  
 
Many different types of structures and materials have been used to build mineral processing 
facilities through the years. Although structure type and building material were not viewed as 
significant factors affecting the health of employees in these facilities when they were built, a 
recent study was performed that compared dust levels with three different building types: 
masonry, an open-structure design, and a steel-sided design [Cecala et al. 2007c]. Respirable 
dust measurements were taken within these structures to evaluate and compare levels. When 
considering the data, the most effective structural design of these three building types from a dust 
standpoint was an open-structure design. Respirable dust concentrations were significantly lower 
in the open structure because the natural environment acts as the best source of ventilation to 
dilute and carry away dust generated and liberated within the structure. In this study, when 
production levels were normalized, respirable dust levels at the open structure were more than 
four times lower than at the masonry structure and over 1,000 times lower than at the steel-sided 
structure [Cecala et al. 2006].  
 
From a federal standard basis, the only consideration for an open-structure design would be the 
Environmental Protection Agency’s opacity dust measurement, which is a qualitative 
measurement taken by a federal regulator based on a visible dust plume. If any plumes are 
visible, source dust controls must be implemented to address the problem. 
 
Figure 4-18 shows a conceptual drawing of a typical walled processing facility, then an 
identically sized facility with an open-structure design and a roof. Obviously, a roof would 
provide a little more protection from the natural elements than a totally open design. When 
building new facilities, the open-structure design  is more cost-effective because there are lower 
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material and construction costs involved. Some companies may also want to consider modifying 
their existing structures with a more open design to further reduce dust levels. If an open-
structure design is considered for an operation, a number of issues need to be addressed: 

•	  Safety railings, guards, and/or chain-link wall containments must be installed to 
minimize the potential for any personnel or objects falling from the structure. 

•	  Equipment and personnel must be protected from environmental elements such as 
rain, snow, sleet, and hail. One possibility to minimize this concern would be to 
design a structure with a sufficient overhang.  

•	  An open-structure design must be considered a secondary design. The first approach 
to lower dust exposures in any structure is to have an effective primary dust control 
plan that captures major dust sources at their point of origin, before they are allowed 
to liberate into the plant and contaminate workers. 

Figure 4-18. Drawing of a conventional and an open structure with a protective overhang. 

Overhead air supply island system 

A successful control technique to reduce respirable dust exposures at mineral processing 
operations when workers are at stationary positions is with Overhead Air Supply Island System  
(OASIS). The OASIS air cleaning device is suspended over a worker and provides a flow of 
filtered air over the work station. Mill air is drawn into the system and passed through a primary 
cartridge filter. This primary filter is self cleaning, automatically using the reverse pulse 
technique when excessive filter pressure is sensed. The air can then pass through a heating or 
cooling chamber, which is optional depending on the mill air temperature, and from there into a 
distribution manifold, which also serves as a secondary filter (Figure 4-19). The resulting filtered 
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air flows down over the worker at an average velocity of approximately 400 fpm, which restricts 
mill air from entering the clean air zone. 
 
During development, OASIS systems were installed over bag operators at two different mineral 
processing operations. Testing at these two operations showed 98% and 82% reductions in the 
bag operators’ respirable dust exposures. An additional benefit with this system was a 12% 
reduction in general dust levels throughout the mill building as a result of the OASIS cleaning 
the mill air [Volkwein et al. 1988].  

Figure 4-19 - Overhead air supply island system. 

Housekeeping practices  
 
Although good housekeeping practices seem to be a minor or common-sense issue, it can be a 
significant factor in a worker’s respirable dust exposure at mineral processing operations. When 
housekeeping is performed properly and on a scheduled time frame, it can play a key factor in 
minimizing respirable dust exposure to workers at processing plants. When it is not performed, 
or performed improperly, it can have just the opposite effect. One example of this was 
documented when a worker was dry sweeping the floor with a push broom at a mineral 
processing operation. In this instance, the exposure of a coworker located one floor up from the 
person sweeping the floors increased from 0.03 mg/m3 before sweeping occurred to 0.17 mg/m3  
during and immediately after the occurrence. Dry sweeping is an unacceptable method of 
cleaning because of the dust it liberates into the work environment [USBM 1986b]. 
 
The most effective method of housekeeping is to wash down the plant with water on a regular 
basis. For the ideal system, floor drains and floors that are sloped correctly toward the drains 
should be incorporated into the structure’s design during construction. Housekeeping should be 
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performed at the end of each shift so that workers coming on to the next shift start with a clean 
work environment. 
 
A final component of effective housekeeping is proper upkeep and maintenance of plant 
equipment and processes. When product is observed building up on the floors of the plant, it 
indicates that some function or process is leaking ore. In some cases, visible dust can be seen 
leaking from holes or damaged equipment and this must be quickly corrected to minimize dust 
leakage. 
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CHAPTER 5. CONTROLLING RESPIRABLE SILICA DUST AT 

SURFACE MINES 


By John A. Organiscak  

Overexposure to airborne respirable crystalline silica dust (referred to here as “silica dust”) can 
cause silicosis, a serious and potentially fatal respiratory lung disease. Mining continues to have 
some of the highest incidences of work-related silicosis, with mining machine operators being 
the occupation most commonly associated with the disease [NIOSH 2003b]. Some of the most 
severe cases of silicosis have been observed in surface mine rock drillers [NIOSH 1992]. A 
voluntary surface coal miner lung screening study initiated in Pennsylvania in 1996 indicated 
that silicosis was directly related to age and years of drilling experience [CDC 2000]. 
 
Mine workers continue to be at risk of exposure to excessive levels of silica dust in the United 
States. The percentage of the Mine Safety and Health Administration (MSHA) dust samples 
from 2004 to 2008 that exceeded the applicable or reduced respirable dust standard due to the 
presence of silica were 12% for sand and gravel mines, 13% for stone mines, 18% for nonmetal 
mines, and 21% for metal operations [MSHA 2009]. At surface mining operations, occupations 
most frequently exceeding the applicable respirable dust standard are usually operators of 
mechanized equipment such as drills, bulldozers, scrapers, front-end loaders, haul trucks, and 
crushers. 
 
This chapter summarizes the current state-of-the-art dust controls for surface mines. Surface 
mining operations present dynamic and highly variable silica dust sources. Most of the dust 
generated at surface mines is produced by mobile earth-moving equipment such as drills, 
bulldozers, trucks, and front-end loaders excavating silica-bearing rock and minerals. Four 
practical areas of engineering controls designed to mitigate exposure of surface mine workers to 
all airborne dusts, including silica, are drill dust collection systems, enclosed cab filtration 
systems, controlling dust on unpaved haulage roads, and controlling dust at the primary hopper 
dump. 
 
Many surface mine dust control problems can be visually observed and diagnosed. Visible 
airborne dust emissions generated from a particular surface mine process usually indicate that 
respirable silica dust can be present and potentially become a worker exposure problem. Visual 
dust emissions affecting nearby workers indicates that an engineering control is needed or an 
existing control needs maintenance. Investigating  possible causes of visual dust emissions when 
using an engineering control can often uncover the reason for its poor dust control effectiveness. 
Frequent visual inspections of engineering control systems can identify needed maintenance to 
optimize its dust control effectiveness. Area dust sampling should be conducted in conjunction 
with personal sampling when workers are being overexposed to respirable silica dust that cannot 
be observed. Area dust sampling locations are usually selected near potential dust sources to 
examine their contribution to the worker dust exposure problem.   
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DRILL DUST COLLECTION SYSTEMS 
Drill dust is generated by compressed air (bailing airflow) flushing the drill cuttings from the 
hole being drilled. Because of their ability to be operated in freezing temperatures, dry dust 
collection systems tend to be the most common type of dust control method incorporated into 
drilling machines by original equipment manufacturers. The typical dry dust collection system as 
shown in Figure 5-1 is comprised of a self-cleaning (compressed air back-pulsing of filters) dry 
dust collector sucking the dusty air from underneath the shrouded drill deck located over the 
hole. 

Figure 5-1. Typical dry dust collection system used on surface drills. 

Ninety percent of dust emissions with this type of system are attributed to drill deck shroud 
leakage, drill stem bushing leakage, and dust collector dump discharge. Wet suppression is 
another drill dust collection method and involves injecting water into the bailing airflow 
traveling down the drill stem. The process of the bailing airflow, water droplets, and cuttings 
mixing together captures the airborne dust as it travels back up the hole. However, wet 
suppression is infrequently used because of operational problems in cold climates, lack of a 
readily accessible water supply, and shorter bit life. Studies by the U.S. Bureau of Mines and the 
National Institute for Occupational Safety and Health (NIOSH) have shown the practical aspects 
of optimizing these dust collection systems. These are discussed below for each dust collection 
method. 

Dry Dust Collector System 

•	  Maintain a tight drill deck shroud enclosure with the ground. Dust emissions are 
significantly reduced around the drill deck shroud by maintaining the ground-to-shroud gap 
height below 8 inches [NIOSH 2005; USBM 1987b]. This can be accomplished by better 
vertical positioning of the drill table shroud by the operator to minimize the ground-to-shroud 
gap. Dust levels were significantly reduced from 21.4 mg/m3 to 2.5 mg/m3 next to the drill 
deck shroud when the drill operator changed his drill setup procedure to minimize this gap 
[Organiscak and Page 1999]. Also, the ground-to-shroud gap can be more tightly closed by 
using a flexible shroud design that can be mechanically raised and lowered to the ground via 
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cables and hydraulic actuators. An adjustable-height shroud design maintains a better seal 
with uneven ground and was found to keep dust emissions next to the shroud below 0.5 
mg/m3 at several drill operations [NIOSH 1998, 2005]. Finally, a shroud constructed in 
sections with vertical gaps along sections or corners can also be a source of shroud leakage. 
Overlapping sections of shroud material reduces gaps and leakage. One conceptual shroud 
design for a rectangular drill table is construction with corner sections and overlapping side 
sections of shroud material [Page and Organiscak 1995].  

•	  Maintain a collector-to-bailing airflow ratio of at least 3:1. Dust emissions are 
significantly decreased around the shroud at or above a 3:1 collector-to-bailing airflow ratio 
[NIOSH 2005]. Dust collector airflow reductions under the shroud are generally caused by 
restrictions and/or leakages in the system. Loaded filters and material in the ductwork are 
likely causes of restrictions, while damaged duct work and holes are likely causes of leakage 
in the system. Thus, inspection and maintenance of the dust collection system is vital to 
achieving and maintaining optimal collector operation and airflow. 

•	  Maintain a good drill stem seal with the drill table. A rubber drill stem bushing (see 
Figure 5-1) restricts bailing airflow from blowing dust and cuttings through the drill deck 
and, therefore, needs to be replaced after mechanical wear. An alternative sealing method 
involves using a nonmechanical compressed air ring seal manifold under the drill deck. This 
manifold consists of a donut-shaped pipe with closely spaced holes on the inside perimeter 
which discharges air jets in a radial pattern at the drill stem. The high-velocity air jets block 
the gap between the drill stem and deck, reducing respirable dust leakage through the drill 
deck by 41%–70% [Page 1991]. 

•	  Shroud the collector dump discharge close to the ground. Dumping dust from the 
collector discharge several feet above ground level can disperse significant amounts of 
airborne respirable dust. Dust emission reductions of greater than 63% were measured by the 
collector discharge dump after installing an extended shroud near ground level (Figure 5-1) 
[Reed et al. 2004; USBM 1995]. These shrouds can be quickly installed by wrapping brattice 
cloth around the perimeter of the collector discharge dump and securing it to the discharge 
dump with hose clamps. 

•	  Maintain dust collector as specified by manufacturer. Collector system components 
should be frequently inspected and damaged components repaired or replaced. A 51% 
reduction in dust emission was measured at one drill after a broken collector fan belt was 
replaced, while another drill showed a reduction of 83% after the torn deck shroud was 
replaced [Organiscak and Page 1999]. 

Wet Suppression 

•	  Add small amounts of water into the bailing air until the visible dust cloud has been 
significantly reduced. Drill dust emissions are significantly reduced by increasing the water 
flow rate from 0.2 gpm to 0.6 gpm [USBM 1987b]. A needle valve and water flow meter 
installed on the water supply line provide adjustable control for wet suppression systems. 
However, adding excessive water down the hole can cause operational problems with no 
appreciable improvement in dust control. 

•	  Minimizing water flow to a rolling cutter bit can increase bit life. Wet drilling with 
rolling cutter bits can cause premature bit wear. A drill stem water separator installed 
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upstream of a rolling cutter bit can increase bit life without adverse effects on dust control 
[Listak and Reed 2007; USBM 1988]. The water separator is a bit stabilizer with an internal 
cyclonic or impaction water droplet classifier, which removes most of the water from the 
bailing airflow before it is flushed through the drill bit. The water removed by the internal 
separator is released through external holes in the bit stabilizer (Figure 5-2). 

Figure 5-2. Water separator discharging water before it reaches the drill bit. 

ENCLOSED CAB FILTRATION SYSTEMS  
Enclosed cab filtration systems are one of the mainstay engineering controls for reducing mobile 
equipment operators’ exposure to airborne dust at surface mines. Enclosed cabs with heating, 
ventilation, and air conditioning (HVAC) systems are typically integrated into the drills and 
mobile equipment to protect the operator from the outside environment. Air filtration is often 
part of the HVAC system as an engineering control for airborne dusts. Surface mining dust 
surveys conducted by NIOSH on drills and bulldozers have shown that enclosed cabs can 
effectively control the operator’s dust exposure, but cab performance can vary [Organiscak and 
Page 1999]. The enclosed cab protection factors (outside ÷ inside dust concentration) measured 
on rotary drills ranged from 2.5 to 84, and those measured on bulldozers ranged from 0 to 45. 
NIOSH also conducted field studies of upgrading older equipment cabs to improve their dust 
control effectiveness. These studies involved retrofitting older enclosed cabs with air-
conditioning, heating, and air filtration systems to demonstrate the effectiveness of upgrading 
older mine equipment cabs. During these retrofits, cab enclosure cracks, gaps, or openings were 
sealed with silicone and closed cell foam tape. Varying degrees of enclosure integrity were 
achieved. Table 5-1 shows the results in ascending order of performance achieved with these 
retrofitted installations. Additionally, NIOSH conducted controlled laboratory experiments to 
examine the key design factors of enclosed cab dust filtration systems. The key performance 
factors for effective enclosed cab dust filtration systems are summarized below. 
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Table 5-1.  Respirable dust sampling results of enclosed cab field studies.  

 Cab Evaluation  
 [Ref] 

 Cab Pressure 
 
 

 in w.g. 

#Wind 
 Velocity 

Equivalent 
mph 

Average 
 Inside Cab 
 Dust Level 

 mg/m3 

Average 
 Outside Cab 

 Dust Level 
 mg/m3 

Protection 
 Factor 

 
 Out/In 

Rotary Drill  
 [Organiscak et al. 2004]
 

  Haul Truck 
 [Chekan and Colinet 2003]
 

 Front-end Loader  
 [Organiscak et al. 2004]
 

Rotary Drill  
 [Cecala et al. 2004]
 

Rotary Drill  
 [Cecala et al. 2005]
 

 None Detected 

0.01

 0.015 

  0.20 to 0.40 

  0.07 to 0.12 

 0 

  4.5 

 5.6 

  20.3 to 28.7 

  12.0 to 15.7 

 0.08 

 0.32 

0.03

 0.05 

 0.07 

 0.22 

1.01

 0.30

 2.80 

 6.25 

 2.8
 

  3.2
 

  10.0
 

 56.0
 

 89.3
 

       # Wind Velocity Equivalent = (4000 √ Δpcab) fpm × 0.11364 mph/fpm @ Standard Air Temp & Pressure. 

Key Performance Factors for Enclosed Cab Filtration Systems  

•	  Ensure good cab enclosure integrity to achieve positive pressurization against wind 
penetration into the enclosure. As shown in Table 5-1, significant improvements in cab 
protection factors were achieved in the field studies when cab pressures exceeded 0.01 inches 
of water gauge. This corresponded to wind velocity equivalents (an indicator of cab wind 
velocity resistance) greater than 4.5 miles per hour. The cab enclosures with greater than 0.01 
inches of water gauge pressure were of close-fitted construction and their integrity could be 
readily improved by sealing cab enclosure cracks, gaps, or openings with silicone and closed 
cell foam tape. The loosely fitted cab construction on one of the drills and the truck were 
difficult to seal, which limited the amount of cab pressure that could be attained. 

•	  Use high-efficiency respirable dust filters on the intake air supply into the cab. Filter 
efficiency performance specifications used in the field were 95% or greater on respirable-
sized dusts [Checkan and Colinet 2003; Cecala et al. 2004, 2005; Organiscak et al. 2004]. 
Laboratory experiments showed an order of magnitude increase in cab protection factors 
when using a 99%-efficient filter versus a 38%-efficient filter on respirable-sized particles 
[NIOSH 2007]. 

•	  Use an efficient respirable dust recirculation filter. All the cab field demonstrations used 
recirculation filters that were 95% efficient or better in removing respirable-sized dusts 
[Checkan and Colinet 2003; Cecala et al. 2004, 2005; Organiscak et al. 2004]. Laboratory 
experiments showed an order of magnitude increase in cab protection factors when using an 
85%- to 94.9%-efficient filter as compared to no recirculation filter [NIOSH 2007]. 
Laboratory testing also showed that when using a recirculation filter the time for interior cab 
concentration to decrease and reach stability after the cab door is closed was cut by more 
than half.  

•	  Minimize dust sources in the cab. Use good housekeeping practices and move heater 
outlets that blow across soiled cab floors. Dust levels were shown to increase from 0.03 to 
0.26 mg/m3 by turning on a floor heater inside the cab [Cecala et al. 2005]. The floor heater 
was removed and cab heating was discharged down from the ceiling HVAC system, reducing 
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dust entrainment in the cab during colder winter months [Cecala et al. 2005]. Another 
method of reducing entrainment of dust from a soiled cab floor is placing a gritless (without 
sand added) sweeping compound on the floor during the working shift. Most commercial 
sweeping compounds have petroleum-based oils or wax added to the cellulose material. 
However, people sensitized to petroleum distillates could have allergic reactions to these 
sweeping compounds if used in enclosed cabs. A few companies offer nonpetroleum-base 
sweeping compounds that use either a natural oil or chemical additive for dust adhesion 
[NIOSH 2001]. It is also recommended to cover the floor with rubber matting instead of 
carpeting for easy cleaning. More frequent cleaning of heavily soiled floors may be a more 
straightforward alternative than using sweeping compounds to minimize this type of dust 
entrainment. 

•	  Keep doors closed during equipment operation. On one drill operation, the respirable dust 
concentrations inside the cab averaged 0.09 mg/m3 with the door closed and averaged 0.81 
mg/m3 when the door was briefly opened to add drill steels [Cecala et al. 2007]. Although 
this occurred after drilling stopped and the visible dust dissipated, opening the door, even 
briefly, produced a ninefold increase in respirable dust concentrations inside the cab during 
many drill steel changes made over a working shift.  

CONTROLLING HAULAGE ROAD DUST  
Off-road haul trucks used in the mining industry typically contribute most of the dust emissions 
at a mine site. Although most of the airborne dust generated from unpaved haulage roads is 
nonrespirable, up to 20% is in the respirable size range [Organiscak and Reed 2004]. The most 
common method of haul road dust control is surface wetting with plain water, but others include 
adding hygroscopic salts, surfactants, soil cements, bitumens, and films (polymers) to the road 
surface [NIOSH 2003a; USBM 1987a]. Figure 5-3 shows the effectiveness of road wetting with  
water on airborne respirable dust generation measured next to an unpaved haul road [Organiscak 
and Reed 2004]. The road was wetted in the morning and dried out in the afternoon. Although 
the road treatment methods have been shown to be very effective, their application generally 
involves continual maintenance due to road degradation from traffic, dry climatic conditions, and 
material spillage on the road. Road dust generation can be inevitable at times during the mining 
operation, until controls are applied. Given their mobility, trucks have the potential for exposing 
downwind mine workers to respirable dust, as well as other truck drivers traveling on the haul 
road. NIOSH has recently studied the size characteristics, concentrations, and spatial variation of 
airborne dust generated along unpaved mine haulage roads to examine the potential human 
health and safety impacts of this dust source and is examining other avenues of truck dust 
mitigation. Techniques for controlling haulage road dust are summarized below. 
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 Figure 5-3. Increase in dust when a wet haul road dries. 

Methods for Controlling Haulage Road Dust Exposures 

•	  Treatment of unpaved road surfaces. Figure 5-3 shows the effectiveness of road wetting 
on respirable dust next to the road and its time frame of effectiveness [Organiscak and Reed 
2004]. Other haulage road treatments, such as hygroscopic salts, surfactants, soil cements, 
bitumens, and films (polymers), can extend the time of effectiveness between treatments to 
up to several weeks [NIOSH 2003a; USBM 1987a].  

•	  Increase distance between vehicles traveling the haul road. Airborne dust concentrations 
generated from haulage roads rapidly decreased and approached ambient air dust levels 100 
feet from the road [Organiscak and Reed 2004]. This road dust dissipation and dilution 
occurrence provides administrative and mine planning controls to reduce worker dust 
exposure. The distance placed between trucks not following within 20 seconds of each other 
can result in a 41–52% reduction in airborne respirable dust exposure to the following truck 
[Reed and Organiscak 2006]. Finally, road layout and traffic patterns that can be 
economically incorporated into the mine plan could also isolate the haul road dust sources 
from other workers [Organiscak and Reed 2004].  

CONTROLLING DUST AT THE PRIMARY HOPPER DUMP  
Ore is normally loaded into haul trucks from the pit or quarry and driven to the primary crusher 
location. This ore is either dumped directly from the haul truck into the primary ore hopper 
feeding a crusher or dumped into a stockpile. If it is stockpiled, a front-end loader then takes the 
ore and dumps it into the primary hopper. In either case during this dumping process, a dust 
cloud is billowed out of the hopper and rolled back under the truck bed or front-end loader 
bucket. Dust in the ore is released from the large volume of ore product being dumped in a short 
period of time, which quickly displaces the air in the hopper and transports the airborne dust 
released from dumping. If the equipment operators dumping the ore into the hopper have an 
effective enclosed cab filtration system (as described earlier) their exposure to this dust would be 
reduced. However, if other mine personnel, such as crusher operators and/or maintenance 
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workers, work near this primary dump, they can be exposed to this airborne dust. Several 
effective control methods include enclosing the hopper dump and using water sprays to suppress 
and contain the dust from rolling back out of the enclosure.  

Key Factors for Controlling Dust from the Primary Dump  

•	  Enclose the primary hopper dump. Walls can be constructed around the primary dump 
location to form an enclosure that must be custom designed to accommodate the dump 
vehicles being used. Walls can be either stationary (rigid) or movable (flexible material or 
curtains) based upon maintenance access within parts of the enclosure. Staging curtains 
(sometimes called stilling curtains) can be used in the enclosure to break up the natural 
tendency for dust to billow out of the primary dump hopper when a large volume of product 
is dumped in a very short time period (see Figure 5-4) [Weakly 2000]. Another option to 
restrict the dust from escaping the enclosure is using panels of flexible plastic stripping on 
the dump side of the enclosure. 

Figure 5-4. Staging curtains used to prevent dust from billowing out of enclosure. 

This plastic stripping employs an overlapping sequence 
which provides for a very effective seal and resists damage if contacted by the bucket of the 
front-end loader or the bed of the haul truck during dumping. Finally, a local exhaust 
ventilation (LEV) system can be used to filter the dust-laden air from the enclosed hopper 
area. This would be most appropriate when the primary dump is at a location where the dust 
could enter an adjoining structure or impact outside miners. Since hoppers are usually large, 
a significant amount of airflow would be required to create sufficient negative pressure to 
contain the dust cloud. This approach would be a more expensive alternative than using wet 
suppression [MSA Research Corp 1978]. 

•	  Use water sprays to suppress the dust in the enclosure. Water sprays directed at the ore 
dumped into the hopper will wet the material and suppress some of the generated airborne 
dust. A good starting point is to add 1% moisture by weight [MVS 1974]. This percentage 
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can be adjusted based upon the improvement gained from additional moisture versus any 
consequences from adding too much. Since continuous use of water sprays during long 
periods of idle time between dumping can have adverse operational effects, the water sprays 
can be activated during the actual dump cycle through the use of a photo cell or a mechanical 
switching device. A delay timer can also be used in this application so that the sprays 
continue to operate and suppress dust for a short time period after the dump vehicle has 
moved away.  

•	  Prevent the dust from rolling back under the dump vehicle. A tire-stop water spray 
system is recommended to reduce the dust liberated due to rollback under the dumping 
mechanism. A tire stop or Jersey barrier should be positioned at the most forward point of 
dumping for the primary hopper. A water spray system should be attached to the back side of 
this tire stop to knock down and force the dust that would otherwise roll back under the 
dumping mechanism into the hopper. Additionally, a shield should be placed over this water 
spray manifold to protect it from damage from falling ore (Figure 5-5). Finally, a system  
should also be incorporated that allows the water sprays to only be activated during the actual 
dumping process, as previously discussed.  

Figure 5-5. Tire-stop water spray system reduces dust rollback under the dumping vehicle. 
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