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LIFE TABLE AND MORTALITY ANALYSTIS

FOREWORD

This publication on advanced methods of analysis of the mortality of
populations is the second in a series of teaching aids addressed to a wide
spectrum of professionals in the health field, statisties and demography.

The first, a Manual on methods of analysis of national mortality statisties
for public health purposes, was published in 1977 and focussed on basic methods

of analysis which are commonly used in National Statistical Departments.

Public Health and Demography owe so much to the quantitative study of
mortality. For centuries, the primary determinant of population trends has
been mortality and it still remains so in many less developed countries; it
was mortality that formed the primary challenge to the medical professions;
it was the prevention of early death that was the primary objective of public
health workers and of social legislation. Nowadays, this central role of the
study of mortality has gradually ylelded way to concern for other phenomena
such as fertility and morbidity and the definition of positive health and the
study of the provision and use of health services. Nonetheless, the analysis
of mortality data is still an indispensable part of informed decision-making
and of the evaluation of policies on health services. New problems have
arisen even in the area of mortality analysis; the growing importance of
chronic diseases have raised new issues and problems; demands for statistlcal
analysis have become ever more sophisticated; +the improved quality of
certification of the causes of death has created a demand for a detailed
study of the difficulties encountered in their interpretation; the use of
computers has changed the problems of data processing and facilitated more
complex methods of analysis. It was with these considerations in mind that

the work on an up-to-date publication on mortality analysis was initiated.

This volume emphasiZes the more advanced methods in the study of survival
and mortality. The life table method of analysis, historically rooted in the
actuarial and demographic sciences has by now become an indispensable tool for
investigators in other disciplines such as epidemiology, zoology, manufacturing
etc. The classical concept of counting risks is introduced and integrated
into a coherent probabilistic approach to the study of a broad range of

processes with a stochastic distribution of exit from one or more competing
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causes with the 1life table as central theme. Follow-up studies with due
attention to truncated information are of great practical importance not only
for medical research but may prove particularly useful for health statisticians
in less developed countries who - in the absence of complete nation-wide vital
statisties - concentrate on the study of the survival experience of relatively

small population groups.

It is hoped that this volume will be of use for post-graduate courses in
biometry, demography and epidemiology, and together with the manual will also
serve as a background for training activities and refresher courses in health
statistics organized or sponsbred by the World Health Organization. In
fact, part of the manuscript has been tested in courses organized by the
World Health Organization with the financial support of UNFPA; the experience
gained in this practical application is reflected in the text.

This volﬁme has been prepared by Professor Chin Long Chiang, University
of California, Berkeley (U.S.A.) an outstanding authority and pioneer in the
application of the stochastic approach to the study of death processes. The
manuscript has also profited from the comments of the United Nations' Population
Division, Professors H. Campbell (U.K.) and S. Koller (Federal Republic of
Germany) and various staff members of the World Health Organization such as
the statis£ical officers in the Regional Offices. Dr H. Hansluwka, World
Health Organization was most actively involved in the design of this volume
and coordinated the various activities which led to the production of this

volume.
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Flora Fung, Bonnie Hutchings, Linda Kwok, Carol Langhauser, Patrick Wong, and

Rodney Wong. Their assistance is very much appreciated.



CRAPTER 1

ELEMENTS OF PROBABILITY

1. Introduction

A good understanding of the basic concept of probability is essential
for proper analysis of mortality data. Because of its potential as an analvtic
tool, probability has been increasingly used in vital statistics and life
table analyses. As a result, studies of vital data are no longer limited 1o
a mere doscription or interpretation of numerical values; statistical
inference can be made regarding mortality and survival patterns of an entire
population. While it is a mathematical concept, prchbability has an interasting
intvitive appeal. Many natural phenomena can be descritied by means of
probability laws; occurrence of daily events also seems to follow a definite
patterr.. Even such spontaneous events as zccidents can be predicted in
advance with a certain degree of accuracy. Mortality laws proposed by
Benjamin Gompertz in 1825 and by W. M. Makeham in 1860 have been used in
studies of human survival and death hoth in the field of health and in the actuarial
sciences. It is appropriate then to begin this manual by introducing
the fundamental probability concept, reiated formulas and illustrative
examples.

2. Elements of Probability

2.1. Components. The concept of probability involves three components:
(a) a random experiment, (b) possible outcomes, and (c) an event of interest.
A randomw experiment is an experiment that hns a number of possible ocutcomes
but it is not certain which of the cutcomes will occur before the
experiment is performed. Thus, in .p.aking of probability, one must have

in mind a random experiment und~: consideration and an event of interest.




2.2. Definition of probability. The probability of the occurrence of event

A is defined as the ratio of the number of outcomes where event A occurs to the
total number of outcomes. For simplicity, we shall use the term "the
probability of event A" for "the probability of the occurrence of event A."

Suppose that a random experiment may result in a number n of possible (and
equally likely) outcomes, and in n(A) of these outcomes event A occurs. Then
the probability of event A is defined as follows:

n(a)
n

Pr{A} = (2.1)

Thus, the probability of event A in a random experiment is a measure of the
likelihood of occurrence of the event.

2.3. Examples. The following examples may elucidate the concept of
probability.

Example 1. In tossing a fair coin once, what is the probability of a

head turning up? Here, tossing a fair coin once is the random experiment, and

the possible outcomes are a head and a tail. Let event A be "a head." The
number of possible outcomes, n, is 2, and the number of outcomes where a head

occurs, n{(A), is 1. Therefore, the probability is

pria} = 24 _ 1
n 2

Example 2. 1In rolling a fair die once, there are 6 possible outcomes.

Let event A be 3 dots. Here n=6 and n(A) = 1; therefore:

pri{A}l

Let event B be an even number of dots, with n(B) = 3. The probability of

B is:




Pr{B} = n(B) _3_
n 6

N | =

Example 3. A name is drawn at random from a group of 120 people
consisting of 39 females and 81 males. Let event A be the drawing of a female name.

The probability of event A is:

n(a) _ 39 _ 13
n

pria} = 120 ~ 40

Example 4. A list of n=100 names consists of n(s) = 98 names of survivors
and n(d) = 2 of those who have died. A name is drawn at random from the list.

The probability that the name drawn will be that of a survivor is

P(s) = nr(ls) = l—gg— = .98

and that of one who has died is

_nld) _ 2 _
P(d) - 100 .02

Clearly, the sum of the two probabilities is unity:

P(s) + P(d) = .98 + .02 = 1

2.4. Values of a probability. From the definition we see that the probability

of an event A is.an (idealized) proportion or relative frequency. Thus, a

probability can only take on values betwcen zero and one, i.e.,
0 < pPr{a} <1 . (2.2)

2.5. Sure event and impossible event. A sure event is an event that

always occurs. If I is a sure event, then

Pri1} =1 . (2.3)




An impossible event is an event that never occurs. If @ is an impossible

event, then
pript =0 . (2.4)

2.6. Complement of an event (or negation of an event) can be best illustrated

with examples. Let A be the complement of event A.

Example A A

Sex of a baby male female

Toss of a coin head tail

Toss of a die 3 dots i anything but 3 dots

Toss of a die even no. odd number of dots
of dots

Survival analysis survival death

Thus, the complement A occurs when and only when event A does not occur. In
a random experiment the total number of outcomes can be divided into two

groups according to the occurrence of A or of X,
n = n(A) + n(a)

The probability of A in a random experiment is, by definition,

Pr{K} = n(a)
n

It is clear then that, whatever event A may be,

Pr{A} + Pr{A} =1 (2.5)

or




Pri{a} = 1 - pria} . (2.5a)

In words, the probability of the complement of A is equal to the comple-
ment of the probability of A.

2.7. Composite event (A and B). Given two events A and B, we define a

composite event A and B (or AB for simplicity) by saying that the event AB
occurs if both event A and event B occur.
Example 5. Consider a group of 200 newborn babies divided according to

sex and prematurity as shown in the following 2x2 table:

Male Female Marginal
A A row total
Premature 11 9 20
B n(AB) n(AB) n(B)
Full term 93 87 180
3 n(AB)  n(aB) n(B)
Marginal 104 96 200
Column Total n(A) n(A) n
Let A = male, A = female, B = premature, B = full term.

A baby is picked at random from the group; the composite event AB is a premature

boy. The corresponding probability is

. n(AB) _ 11
Pr{AB} = - 550 . (2.6)

Other possible composite events are

AB = a full term boy
AB = a premature 8irl
AB = a full term girl
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The probabilities Pr{AB}, Pr{AB}, and Pr{AB} can be computed from the above
table.

If T is a sure event, then
Pr{AT} = Pr{A} . (2.7)

1f ¢ is an impossible event, then
priagl = 0 . (2.8)

2.8. Conditional probability. The conditional probability of R given that A

has occurred is defined by:

PriB|a} = %E%%%l (2.9)

Since
Pr{AB} = n(AB) and Pria} _n() ,
n n
we have
Pr{B|A} = n(AB)/n _ n(AB) . (2.10)

n(A)/n  n(A)

In terms of the previous example, Pr{BlA} is the probability that a baby

chosen at random from the boys will be premature. Since there are n(A) = 104
boys, and among them n(AB) = 11 are premature, we have
Pri{B|A} = n(AB) _ .11

n(A) 104 °

or, using

n(AB) = i and Pr{a} = n(a) _ 104

Prias} = = 200 a 200 °

and




_ PriaB} _ 11/200 _ 11
prislal = gy < 1047200 ~ 104 °

we obtain the same value.
It is clear that the conditional probability Pr{B|A} is differcnt from
the conditional probability Pr{A|B}. In the above example the prcbability

that a premature baby will be a boy is computed from

11
PriA = — = =
ri{ |B} 20

n(AB)

n(B)
The reader is advised to use the above example to compute and interpret the
following conditional prcbabilities: Pr{B[X}, Pr{EIA}, Pr{ﬁ]g}, Pr{A|ﬁ},
Pr{A|B!, and Pr{A|B}.

In applying conditional probability to a practical problem, opre should
beware of a sequence that may exist in the occurrence of evenfs. If event A
occurs before event B, then the conditional probability Pr{A|B} may not be
meaningful, whereas the conditional probability Pr{B'A} is meaningful. For

example, in a study of sex differential infant mortality, sex of infant,

male (A) or female (A), is determined before mortality in the first year of
life (denoted by B) occurs. Comparison of infant mortality of males with
females requires the conditional probabilities Pr{B‘A} and Pr{B|K}. But it
may be difficult to comprehend the conditional probability Pr{A‘B} that an
infant who dies will be male.

2.9. Independencg; Event B is =aid tc be independent of ecvent A if the
conditional probability of B given A is equal to the (absolute) probability
of B. 1In formula

PriB|A} = Pr{B} . (2.11

This means that the likelihood of the occurrence of B is not influenced be

the occurrence of A. C(Clearly, if B is independent of A, B is also

that of

)



independent of K; or

Pr{B|A} = Pr{B} = Pr{B|A} . (2.12)

Let A = male, B = prematurity. If
Pr{premature baby|male} = Pr{premature baby},

then
Pr{premature baby|female} = Pr{premature baby},

and we say that prematurity is independent of sex of the baby.
To verify whether an event B is independent of an event A in a particular

problem, we compute separately
Pr{B|A} and Pr{B}

If the two numerical values are equal, we say that B is independent of A.

In the example in section 2.7

9
PI‘{B'A} = IGZ and Pr{B} = 588

Since 11/104 is not equal to 20/200, according to the information given in this
example, prematurity is dependent on. the sex of a baby.

2.10. Multiplication theorem. The probability of AB is equal to the product

of probability of A and the conditional probability of B given A, or

Pr{AB} = pPr{A} x Pr{B|A} . (2.13)
Proof:
pr{ap} = MAB) _ @A) n(B) _ 5 14y pris|a)

n n X -1(A)
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With reference to the 2x2 table in example 5, we see that

11
Pr{AB} 508
and
104 11 11
Pr{A} x PriB|A} = 555 x 157 = 500
therefore

Pr{AB} = Pr{A} x Pr{B|A}

Since event AB is the same as event BA, the multiplication theorem has an

alternative formula:
Pr{AB} = Pr{B} x Pr{A|B} . , (2.14)
The formulas of the multiplication theorem for three and four events are

Pr{aBC} = Pr{A} x Pr{B|A} x Pr{c|AB} (2.15)

and
Pr{ABCD} = Pr{A} x Pr{B|A} x Pr{c|AB} x Pr{D!ABC} . (2.16)

2.11. Multiplication theorem (continuation). If events are independent,

then the formulas of the multiplication theorem become

Pr{AB} = Pr{A} x Pr{B} , (2.17)
pr{ABc} = pr{A} x pri{B} x Pric} , _ (2.18)
Pr{ABCD} = Pr{A} x Pr{B} x Pr{C} x Pr{D} . (2.19)

2.12. A theorem of (pairwise) independence. If B is independent of A,

then A is independent of B, and A and B are said to be independent events.

Symbolically, the theorem may be stated as follows:




Ir priBlA} = pr{B}

then

pri{a|B} PriA}

Proof: According to the mulriplication theorem,

pPriAB} = Pr{A} x Pr{B|A} and Pr{AB} = Pr{B} x Pr{A|B}
It follows that

pr{A} x Pr{B|A} = Pr{B} x Pr{A|B} . (2.20)
If B is independent of A so that Pr{B|A} = Pr{B},vthen (2.20) becomes

pe{A} x Pr{B} = Pr{B} x Pr{a|B} ,
and consequently

pria} = Pr{A|B}

Conversely, if B is dependent of A, then A is dependent of B.

In the example in part 7,

: 11 20
P - o= , = =Y
r{B|A} 104 and Pr{B} 500
so that B is dependent of A, while
; 11 1C4
{ = — = ———
Pria[B} =55 and Pria} = 555 ,
so that A is dependent of B.
2.13. Composite cvent (A or B). By a compnsite event A or B we mean either

A or B or both. Thus the event A or B occurs if either A occurs, or B occurs,

or AB occurs.
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2.14, Mutual exclusiveness. Two events are said to be mutually exclusive

if the occurrence of one implies the non-occurrence of the other; in other
words, they cannot occur simultaneously in a single experiment. If A and B
are mutually exclusive events, then n(AB) = 0 and Pr{AB} = 0.

2.15. Addition theorem.

Pr{A or B} = Pr{A} + Pr{B} - Pr{AB}

Proof: Using the example in part 2.7 again and by direct enumeration, we see

that

n(A) + n(B) - n(AB)
n

Pr{A or B} =

Dividing every term in the numerator by the denominator, we have

Pr{A or B} = n(A) + n(B) - n(AB)
n n n
= Pr{A} + Pr{B} - pPr{aB} (2.21)
Example: Let A = male, B = prematurity. From example 5 in section 2.7, we compute
Pr{A or B} = Pr{A} + Pr{B} - Pr{B}
_ 104 20 11 113
200 200 200 ~ 200

The formulas of the addition theorem for three and four events are

Pr{A or B or C}

Pr{A} + Pr{B} + pPr{cC}

Pr{AB} - pr{BC} - Pr{cA} + Pr{ABC}

Pr{A or B or C or

b)

Pri{aA} + pri{B} + Pric} + priD}

Pr{AB} - Pr{AC} - Pr{aD} - Pr{BC}

(2.22)

Pr{BD} - Pr{cD}

Pr{ABC} + pr{aBD} + Pr{ACD} + Pr{BCD} - Pr{ABCD!}

(2.23)
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2.16. Addition theorem (continuation). When events are mutually exclusive

so that Pr{AB=0}, etc., then the formulas of the addition theorem become

Pr{A or B} = Pr{a} + Pr{B} s (2.24)
Pr{A or B or ¢} = Pr{A} + Pr{B} + Pric} (2.25)
Pr{A or B or C or D} = PriAa} + Pr{B} + Pr{C} + Pr{D} (2.26)

and so on.

2.17. Summary of the addition and multiplication theorems. Simple as they

may appear to be, the addition and multiplication theorems are indispensible
in computing probabilities. The following table is prepared to facilitate the

applications of these two theorems.

Which theorem Multiplication theorem | Addition theorem

w.h.e; _tozsefm_-_rA ansl B; S ————— AQ 4r B, Sen i s o e e
Theorem Pr{AB} = Pr{A} x Pr{B|A}| Pr{A or B} = Pr{A} + Pr{B} - Pr{AB}
Are the events independent? mutually exclusive?

Particular form If independent, then If mutually exclusive, then

of theorem Pr{AB} = Pr{A} x Pr{B} | Pr{A or B} = Pr{A} + Pr{B}

2.18. The distributive law. When the computation of a probability requires

both the addition and multiplication theorems, the rule of application of the
two theorems is similar to that in an arithmetic problem. The most useful
rule of operation is the distributive law:

23 +4) =2 x3+2x4
in an arithmetic problem, and
Pr{A(B or C)} =Pr{AB or AC} (2.27)

in probability; or




(2 +3) +5

and

) =
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2 x4 +2x5+3x4+3x5

Pr{(A or BY(C or D)} =Pr{AC or AD or BC or BD}

Using example 5 once again, we have

Pr{A(B or B)}

In this case, (B

Pr{AB or AB}

I

= Pr{AB} + Pr{AB}

11, 93 _ 104

200 '~ 200 ~ 200
or B) = I is a sur

¢ event,

Pr{A(B or B)} = Pr{Al} = Pr{A} = %%%
2.19. An example from the life table
Table 1. The number of survivors and the number died out of
100,000 live births
Nimber =~
Age Number dying in
Interval living interval
(in yoars) atege g ) Oy )
% 0 X S B R
D 2y (3)
0- 1 JLooooo ) 1801
1- 5 98199 | 316
5-10 97883 184
10-15 07699 183
15-20 ' 97516 550
20-25 26965 750
C25=30 | 96216 | el
30-35 955135 766
35-40 94769 1060
40-65 9309 |1
45-5() azi26 | 24
50-55 89672 3631
55=60_ | ee0al L 534l
60-65 80700 I 7171
65-70 73529 9480
60-75 _ 64049 11562
75-80 52487 14192
80-85 38295 14752
85+ 23563 | 23543

(2.28)




14 -

Example 6. Table 1 is a part of a life table for the 1970 California, USA,
population. Column (1) shows the age intervals in years. Column
(2) is the number of (life table) people living at the beginning of cach age
interval. Thus, the column shows that there are 100,000 (life table) people
alive at the exact age 0 (that is, the population size at birth); of these
98,199 survive to the exact age of 1 year (trhe first birthday), 97,883 survived
to the exact age of 5 years, etc., and finally 23,543 survived to the exact age of
85 years. Each figure in column (3) is the number of people dying within
the corresponding age interval. Among the 100,000 living at age 0, 1801
died during the age interval (0,1), 316 died between ages 1 and 5, etc., and
23543 died beyond age 85 years.

For the purpose of illustration, we consider 100,000 newborns who are subject
to the mortality experience of the 1970 California pepulation. What is the
probability that a newborn will survive to his first birthday? In this example,
the "random experiment' is the baby's first year of life; possible outcomes are
survival or death of the 100,000 infants; the event A of interest is a newborn's
survival to his first birthday. Since 98,199 of the 100,000 newborns (the
possible number of survivors) actually survived (event A occurred), the
probability that a newborn will survive to his first birthday is

II(A) = __98s19ﬂ__9_
n 100,000

= .98199 or 981.99 per 1,000

Similarlv, the probability that a newborn will survive to the fifth birthday
is 97883/100,000 = .97883, to the 10th birthday is 97699/100,000 = .97699.
For the probability of death, we use the corresponding number of deaths in

the numerator of the formula. Thus we have
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Pr{a newborn will die in the first year of life} = Iﬁﬁtbﬁﬁ

= .01801 or 18.01 per 1,000

and

316

Pr{a newborn will die in interval (1,5)} = 160,000

.00316 or 3.16 per 1,000

2.19.1. Conditional Probability. The probabilities computed above are

absolute probabilities based on the 100,000 live births. When the base

population is changed, we have conditional probabilities:

Pria child alive at age 1 will die in interval (1,5)}
= Pr{a child will die in interval (l,S)lhe is alive at age 1}

_ number dying in (1,5) _ 316 _
number living at age 1 98199 -00322 or 3.22 per 1,000,

and

-

Pria child alive at age 5 will die in interval (5,10)}

number dying in (5,10) _ 184 _
number living at age 5 97883

.00188 or 18.8 per 1,000

These conditional probabilities, which are based on the number of individuals
living at the beginning of the corresponding age interval, are known as the age-
specific probabilities of dying. Other conditional probabilities are possible,
depending upon the given condition and the event of interest. The following

are a few examples:
Pr{an individual of age 25 will survive to age 50!

number living at age 50 _ 89672

number living at age 25 = 96216 - .93199

and
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Pr{an individual of age 25 will die before age 50}

_ number dying between ages 25 and 50 _ 96216-89672

number living at age 25 96216

_ 6544

96216 = ,06801

where the number 6544 can be determined also from the number of deaths in all

the intervals from 25 to 50:
6544 = 681 + 766 + 1060 + 1583 + 2454

Since an individual alive at age 25 will either survive to age 50 or die

before age 50, the corresponding probabilities must add to unity:

.93199 + .06801 = 1.00000

For an individual alive at age 20, the corresponding probabilities are:

Pr{an individual of age 20 will survive to age 45}

92126
= Se5¢e = 95009

and

Pr{an individual of age 20 will die before age 45} = 1 - .95009 .04991.

2.19.2. Probabilities of Composite Events. Let A be an event that a

male of age 25 survives to age 50 and A he dies before age 50; let B be an event that
a female of age 20 survives to age 45 and B she dies before age 45. If they are
subject to the probability of dying shown in the above table and if their

survival is independent of one another, then we can use the multiplication

theorem to compute the following probabilities:
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Priboth male and female live for 25 years}

= Pr{A and B} = Pr{A}l x Pr{B}

. 93199 x .95008 = .88547,

Priboth die within 25 years}

= Pr{iA and B} = Pr{A} x Pr{B} = .06801 x .04991 = .00339

"
1l

Pr{male lives and female dies in 25 years}

= PriA and B} = Pr{A} x Pr{B} = .93199 x .04991 = .04652
and

Pr{male dies and female lives for 25 years}

= Pr{A and B} = Pr{A} x Pr{B} = .06801 x .95009 = .06462

Since either both male and female will survive a period of 25 years, or one
of them dies, or both die, the sum of the above probabilities is equal to

one:
.88547 + .00339 + .04652 + .06462 = 1
The reader may wish to compute similar probabilities for other ages or for a

period different from 25 years.

2.19.3. Probability of Dissolution of Marriage. The above probabilities can

be used to compute joint life insurance premiums or dissolution of marriages.
For example, if a husband is of age 25 and his wife of age 20, the probability
that their marriage will be dissolved in 25 years due to death may be computed

as follows:

Pr{dissolution of marriage in 25 years due to death!}

Pr{one or both of them die in 25 ycars}

[]

Pr{(A and B) or (A and B) or (A and B)} .
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Here the three events (A and B), (A and B), and (A and B) are mutually
exclusive; we use the addition theorem and the above numerical values to

obtain the probability

Pri(A and B)} + Pr{(A and B)} + Pr{(A and B)}

= .04652 + .06462 + .00339 = .11453

Thus the probability of dissolution of their marriage is better than 10

percent. On the other hand,
Pr{their marriage will not be dissolved in 25 years}
= Pr{both live for 25 years} = Pr{A and B} = .88547
Obviously, the two probabilities are complementary to each other, and

.11453 + .88547 = 1.00000
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CHAPTER 2

DEATH RATES AND ADJUSTMENT OF RATES

1. Age Specific Death Rates

For a specific age interval (x, ,x

.. .), the death rate, M., is defined as follows:
i’ i+l i

Number dying in (Xi’xi+l)

M, = p - - : (1.1)
i  Number of years lived in (Xi’xi+l) by those alive at X,

Suppose that of Qi people living at exact age X di die between age X and

xi+1,and each of di people lives on the average a fraction, a;, of the interval
(Xi’xi+l)' Then the death rate Mi defined in (1.1) may be expressed in the
formula
di
My = n.(8,-d,) + a,n.d, ’ (1.2)
i 71 Ti iii
where ni = Xi+l_xi is the length of the interval (Xi’xi+l)’ ni(Ri—di) is the

number of years lived in (x.,%X,,,) by the (£,-d,) survivors, and a.,n,d, is the
i’ i+l i i iii

number of years lived by the di people who die in the interval. The unit of a

death rate is the number of deaths per person-years. The corresponding

estimate of probability of dying, given by

d

q =t
qi = Q/. s (]_-3)
1

is a pure number. From (1.2) and (1.3), we find a relationship between as and Mi

oMy
i~ 1+(1-a_ )n.M. ° (1.4)
1 1 1

0 >

We see then that the age-specific death rate and the probability of dying are two
different concepts and they are related by formula (1.4). Consider as an
example the age interval (1,5) in the 1970 California life table population.

Here xl=l, X5 = 5, and nl=5—l=4. From Section 2, Table 1, we find %, = 98199,

1
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dy = 316, and from Appendix [V ], a; = .41. The death rate is

_ 316
1 ~ 4(98199-316) + .41 x & x 316

il

. 000806
and the estimate of the probability is

A~ _ 316 _
9 = gg199 - 00322

Formula (1.2) of the age-specific death rate is expressed in terms of a life
table framework where Qi people are followed for n, years to determine the
number of deaths (di) and the number of survivors (Zi—di) at the end of Pi
years. In a current population, such as the 1970 California population, an age
specific death rate is computed from the mortality and population data during a
calendar year (1970). Instead of di defined in a life table, we have Di’ the
observed number of deaths occurring to people in the age group (xi’xi+l) during
a calendar year. To derive a formula for the death rate as in (1.2), we let Ni
be the (hypothetical) number of people alive at exact age X, ; among them Di

deaths occur. Then we have the death rate

D,
_ i
Mi " n,(N,-D,) + a,n_D, (1.2a)
i~ i i iidi
and an estimate of the probability qi,
A Di
9 T ﬁ; : (1.3a)

They also have the relationship in (1.4).
Since Ni is a hypothetical number, the denominator of (1.2a) and the death

rate for a current population cannot be computed from (l.2a). Customarily,
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the denominator of (l.2a) is estimated by the midyear (calendar year) population

Pi for age group (xi,x ), and hence the age-specific death rate is given by

i+l

=
1l
I
e e

(1.5)

Although it is a well known and accepted definition of age-specific death rates,
formula (1.5) is much more meaningful when Pi is interpreted as an estimate of the
denominator in (1.1).

In California 1970, there were Dy = 1049 deaths occurring in age interval

(1,5), and P, = 1,302,198 people of ages 1 to 5 at midyear. Therefore, the

1

corresponding death rate is

1 _ 1049
= P~ 1,302,198 - -000806

A death rate usually is a small number; its significance is not easily
appreciated. To remedy this, the numerical value of a death rate is multiplied

by a number, such as 1000, which is called the base. The formula of a death rate

often appears as

D,
M, = == x 1000 . (1.5a)
i P,
i
, 1/
Thus, instead of M, = .000806, we have M, = .806 per 1000 person-years.—

i 1

It should be clear that in formula (1.5) and (1.5a) the number of deaths Di
in the numerator and the midyear population Pi in the denominator refer to
the same population, such as the 1970 California population between ages 1
and 5; The population and the base must Be clearly stated in a death rate.
For example, the death rate/for the age group 1 to 5 years in the 1970
California population is .806 per 1000.

1/

—'The words ''person-years'" are often deleted.
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When a death rate is for an entire life, it is called the crude death

rate. In formula:

M = g-x 1000 (1.6)
where
D=12D, (1.7)
. 1
1

is the total number of deaths occurring during a calendar year, and

P=17P, 1.8)
.1
i

is the total midyear population of a community, or a country, in question.

Death rates may be computed for any specific category of people in a
population. Sex-specific death rates, occupation-specific death rates,
age~sex-specific death rates, are examples. In each case, the specific rate
is defined as the number of deaths occurring to people in the stated
category during a calendar year divided by the midyear population of the same
category.

Death rates may also be computed for specific causes such as death rates from
cancer, tuberculosis, or heart diseases. Thesé are known as cause-specific death
rates. Here it is deaths, rather than population, that is divided into categories.
A cause-specific death rate is defined as the number of deaths from the specific
cause divided by the midyear population. In formula, the death rate from cause

RG is given by :

D
= 2 1)
Mg = 5 X 1€0,000 . (1.9

Here DG is the number of deaths from cause R8 during a calendar year in question,

the base is 100,000 because of the small magnitude of the rate,
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Prevalence of diseases varies with age. Cardiovascular disease, for
example, 1is more prevalent among the aged than among young people; the
converse is true for infectious diseases. Therefore, age-cause-specific death
rates are in common use. For the age interval (Xi’xi+1) and cause RG’ the

specific death rate, M,

i§’

is computed from
M,. == x 100,000 , (1.10)

where Di6 is the number of deaths from cause R6 occurring to people in age
group (Xi’xi+l) during a calendar year, and Pi is the midyear population of

the same age group. Here a base, 100,000, is used.

2, Infant Mortality

In the human population, mortality is the highest among newborns and among
the elderly. Infant mortality also has a great impact on the population
distribution in later years of life. Various efforts have been made in
different countries to reduce infant deaths, and many of these efforts have
resulted in a considerable amount of success. Mortality in the first year
of life has been decreasing, e¢specially in the developed countries prior to
1950. Since many different causes affect mortality from conception to the
end of the first year of life, this period of human life has been divided
into subintervals and designated by special names, as shown in the following

table.
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Table 1. Fetal death and infant mortality

Designation

Interval

Early fetal death
Intermediate fetal death
Late fetal death
Neonatal death

Post neonatal death

Infant death

Under 20 weeks of gestation

20-27 weeks of gestation

28 or more weeks of gestation

Under 28 days of age

28 days to end of first year of life

Under one year of age

The corresponding definitions of death rates differ somewhat from the

definition of the age-specific death rate discussed in the preceding section.

The following rates are measures of mortality for a defined population during

a given calendar year:

2.1. Fetal death rate (alias "'stillbirth rate"). Two definitions are

available:

Number of fetal deaths of 28 or more weeks of gestation

Number of live births + fetal deaths of 28 or more weeks 1000 2.1
of gestation
Number of fetal deaths of 20 or more weeks of gestation x 1000 @.2)

Number of live births + fetal deaths of 20 or more weeks

of gestation

2.2. Neonatal mortality rate.

Number of deaths under 28 days of age

Number of 1live births

x 1000 (2.3)

2.3. Perinatal mortality rate. There are two definitions in common use:

Number of deaths under 7 days + fetal deaths of 28 or more weeks.of gestation

Number of live births + fetal deaths of 28 or more weeks of gestation

(2.4)
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Number of deaths under 28 days of life + fetal deaths of 20 or more

o weeks of gestation < 1000

Number of live births + fetal deaths of 20 or more weeks of gestation

(2.5)
The second definition covers a longer period both in gestation and after birth.

2.4. Post neonatal mortality rate.

Number of deaths at age 28 days through one year
Number of live births - neonatal deaths

x 1000 . (2,6)

It is incorrect not to subtract neonatal deaths from live births in the denominator.
Difference in numerical value due to this error depends on neonatal mortality;
the difference may be considerable when neonatal mortality is high.

2.5. Infant mortality rate.

Number of deaths under one year of age
Number of live births

x 1000 2.7)

Mortality rates defined above are closer to probability than to age-specific
death rates, since in each instance the numerator is a part of the denominator.
There are measures of mortality which resemble neither probability nor age specific
death rates. Nevertheless, tﬁey are quite useful in mortality analysis. Some
examples follow.

2.6. Fetal dcath ratio.

Number of fetal deaths of 20 or more weeks of gestation

Number of live births x 1000 (2.8)
2.7. Maternal mortality rate.
Number of maternal deaths % 1000 . @ .9)

Number of live births

A maternal death is a death occurring to women due to complications of

pregnancy, childbirth and the peurperium (period after delivery). While
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not strictly a measure of risk, the maternal mortality rate indicates a
"price" in terms of mother's life that a human population pays for every
infant brought into the world.

It was indicated at the beginning of this section that fetal death and
infant mortality have experienced a constant decline. We shall now substantiate
this statement by citing a report prepared by Helen C. Chase in 1967. She
States:

"One of the notable health accomplishments in the 20th century has

been the decline in infant mortality. Over the first half of the

century the rapid decline in mortality among infants became an accepted

component of the Nation's health. In the past decade, it has become

difficult to adjust to the idea that infant mortality in the United

States is no longer declining at its former rate."

The deceleration of the rate of decline in infant mortality, however, was not
peculiar to the United States. Similar changes in trend have appeared in several
European countries. Tables2 and 3 summarize these findings. It may be

noted that even during the period from 1950 to 1962, the reduction in fetal

death and infant mortality was still substantial. Table 4 shows the fetal

and infant mortality in the United States from 1960 to 1970. The reductions in

all categories are still quite considerable.

Table 2. Infant mortality rates and percent reduction: Selected
countries, 1935, 1950, and 1962

Infant Mortality Rate Percent Reduction
Country 1935 1950 1962 1935-62 1935-50 1950-62
Denmark 71.0 30.7 20.0 72 57 35
England & Wales 56.9 29.9 21.7 62 47 27
Netherlands 40.0 26.7 17.0 57 33 3é
Norway 44.4 28.8 17.7 60 35 39
Scotland 76.8 37.6 26.5 65 51 30
Sweden 45.9 21.0 15.3 67 54 27
United States 55.7 29.2 25.3 55 48 13

Rates per 1,000 live births.

SOURCE: Helen C. Chase, "International Comparision of Perinatal and
Infant Mortality: The United States and Six West European
Countries," Vital and Health Statistics, Series 3, No. 6,
pp- 1-97, U.S. Government Printing Office.
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Table 3. Fetal mortality rates* and percent reduction, selected
countries, 1955 and 1963

Fetal Mortality Rates . Percent
Country 1955 1963 Difference p.guction
Denmark 17.9 11.4 6.5 36.3
England & Wales 23.2 17.2 6.0 25.9
Netherlands 17.0 14.3 2.7 15.9
Norway 14.9 12.6 2.3 15.4
Scotland 24.6 19.1 5.5 22.4
Sweden 16.7 12.0 4.7 28.1
United States 12.6 11.3 1.3 10.3

*Fetal deaths of 28 or more weeks of gestation. Rates per 1,000

SOURCE: Helen C. Chase, ibid

Table 4. Fetal and infant mortality and percent reduction, United
States, 1960 and 1970

1960 1970 . Difference . crcent
Reduction

Fetal death rate
(20 weeks + gestation) 5.8 14.0 1.8 o 11.e
Neonatal mortality rate 18.7 15.1 3.6 19.3
Postneonatal mortality rate 7.5 4.9 2.6 34.7
Infant mortality rate 26.0 20.0 6.0 23.1
Fetal death ratio 16.1 14.2 1.9 11.8
Maternal mortality rate 37.1 21.5 15.6 42.0

(per 100,000)

Rates per 1,000
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3. Adjustment of Rates

Specific death rates presented in Section 3 are essential in
mortality analysis. Individually, these rates describe mortality experience
within respective categories of people. Collectively, they represent a
mortality pattern of the population in‘question. When a collective measure
of mortality of an entire population is required, specific rates provide
the fundamental components. One of the central tasks in statistical
analysis of mortality data is making comparisons of experiences of various
communities or countries; summarization of specific rates in a single
number is extremely important. Since age-sex distribution varies from one
community to another, and from one country to another, adjustment for such
variation will have to be made in summarizing specific rates. The resulting
single figure is called the adjusted rate. Adjustment can be made with
respect to age, sex, occupation and possibly others. For simplicity, we
shall consider only age-adjusted rates. Adjusted rates for other variables,
such as sex-adjusted rates, age-sex-adjusted rates, etc., can be computed
similarly. Various methods of adjustment have been proposed; some of these
are listed in Table 5. It is the purpose of this section to review them.
But first, let us introduce some notations.

In the adjustment of rates, two populations are usually involved:

A community, u, during a calendar year (the population of interest) and a
standard population, s. For each age interval (xi,xi+1) in the community, u,
let Dui be the number of deaths; Pui’ the midyear population; Mui’ its specific
death rate; and let mo= X TR be the length of the interval.

The sum

D ., =D (3.1)
i ul u

is the total number of deaths occuring in the community during the




calendar year. The sum

P =P
. ul u
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(3.2)

is the total midyear population. For the standard population, the symbols

D.,P .,M_ ,D and P are defined similarly.
s si s s

si i

These symbols are similar

to those used in Section 1 except for the addition of the subscripts u and s.

Table 5. Age-adjusted death rates and mortality indices

Title

Formula

Reference

Crude death rate (C.D.R.)

Direct method of adjustment (D.M.D.R.)

Comparative mortality rate (C.M.R.)

Indirect method of adjustment (I.H.D.R.)

Life table death rate (L.T.D.R.)

Equivalent average death rate (E.A.D.R.)

Relative mortality index (R.M.1.)

Mortality index ( M.I.)

Standardized mortality ratio (S.M.R.)

L PuiMui

("s s)(uP

I
Pui“si

L
LiMui___

ZPuiM'ui

ip M

ul si

/®,

Linder, F. E. and
Grove, R. D. (1943)

"The Registrar General's
Statistical Revies of
England & Wales for the
Year 1934"

Ibid

"The Registrar Ganeral's
Decennial Supplement,
England and Wales, 1921,
Part III."

Brownlee, J. (1913) (1§22)

Yule, G. U. (1934)

Linder, F.E. and
Grove, R. D. (1943)

Yerushalmy, J. (1951)

"The Registrar General's
Statistical Review of
England and Wales, 1958
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3.1. Crude death rate. As was mentioned in Section 1, the crude

death rate is the ratio of the total number of deaths occurring in a

community during a calendar year to the community's total midyear population:

C.D.R. =D /P . (3.3)
u u

The crude death rate, which is the most commonly used and conveniently

computed single value, bears a close relationship to age-

specific death rates. The numerator in (3.3) is the sum of the number

of deaths occurring in all age categories:

D =2XD . . (3.4)
u . ui
i
By definition, the age-specific death rate for age interval (Xi’xi+1) is
given by
M.=D_/P ., (3.5)
ui ui’ “ui

so that the number of deaths (Dui) is the product of the age-specific

death rate (Mui) and the corresponding midyear population (Pui):
D.=P M. . (3.6)
ui ui ui

Therefore, the total number of deaths in (3.4) may be rewritten as

u . ul ui
i

Substituting (3.7) in (3.3) yields

where the summation is taken over the entire life span. Thus the C.D.R.

is a weighted mean of age-specific death rates with the actual population
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proportions Pui/Pu experiencing the mortality used as weights. From this
viewpoint, the C.D.R. is the most meaningful single figure summarizing the
mortality experience of a given population.

The C.D.R., however, is not without deficiencies. The quantity on
the right-hand side of (3.8) is a function of both the age-specific death
rates and the age-specific population proportions. As a weighted mean of
age-specific death rates, the C.D.R. is affected by the population
composition of the community in question. This disadvantage becomes
apparent when the C.D.R. is used as a common measure to compare the mortality
experience of several communities. The example in Table 6 illustrates
this point.

Table 6. Age-specific death rates and crude death rates for
communities A and B.

Community A Community B
Rate Rate
Popu- per Popu- per
lation Deaths 1000 lation Deaths 1000
Children 10,000 80 8.0 25,000 250 10.0
Adults 15,000 165 11.0 15,000 180 12.0

Senior

citizens 25,000 375 15.0 10,000 160 16.0
Total 50,000 620 12.4 50,000 590 11.8

Although the age-specific death rate for each age group in Community A
is lower than that for the corresponding age group in Community B, the

crude death rate for Community A, (12,4), is higher than that for Community B
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(11.8). This inconsistency is explained by differences in the population
composition of the two communities. Community A consists of a larger
percentage of older people, who are subject to a high mortality and
contribute more deaths. As a result, Community A's overall crude death
rate is higher than that of the more youthful Community B.

3.2. Direct Method Death Rate (D.M.D.R.). One way of adjusting for

peculiarities of population composition is to introduce a standard population
common to all the communities. When the age-specific death rates of a community
are applied to such a standard population, we obtain a death rate adjusted

by the direct method:

D.M.D.R. = § Sty . (.9)

The D.M.D.R. is thus a weighted mean of the age-specific death rates M , of a
ui

community with standard population proportions, Psi/Ps’ applied as weights.

If formula (3.9) is rewritten as

I P M,
i S1 ul
D.M.D.R. = —v— |, (3.10)

P
s

the numerator becomes the number of deaths that would occur in the standard
population if it were subject to the age-specific rates of the community.
The ratio of the total "expected deaths" to the entire standard population
yields the D.M.D.R. However, the D.M.D.R., as well as other age adjusted
rates which follow, is not designed to measure the mortality experience of
a community. It is simply a means for evaluating mortality experience of
one communitv relative to another. An age-adjusted rate should be
considered with this understanding.

Computation of the D.M.D.R. based on the example in Table 6 is

given in Table 7. 1In this illustrafion, the combined population of the two
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communities is used as the standard population shown in column (1) in
Table 7. The age-specific rates in the two communities are recorded in
columns (2) and (3), respectively. Each of the specific rates is then
applied to the standard population in the same age group to obtain the
number of deaths expected in the standard population shown in columns (4)
and (5). Summing these expected numbers of deaths over all age groups
yields the total number of deaths, 1,135 and 1,270, respectively. When
the total number of deaths is divided by the total standard population, we
obtain the D.M.D.R.

Table 7. Direct method age-adjusted rates for Communities

A and B
Standard Age Specific Rates Expected No. of Deaths
Population Community A |Community B|Community A|Community B
(1) (2) (3) (4) (5)
35,000 8.0 10.0 280 350
30,000 11.0 12.0 330 360
35,000 15.0 16.0 525 560
100,000 1,135 1,270

Adjusted Rate: Community A = 11.35/1,000
: Community B = 12.70/1,000

Using a single standard population, the direct method of adjustment
eliminates the effect of differences in age-composition of the communities
under study; the result nevertheless depends upon the composition of the
population selected as a standard. When communities with very different
mortality patterns are compared, different standard populations may even
produce contradictory results. In computing the age-adjusted rate for the

1940 white male population of Louisiana and New Mexico, Yerushalmy (1951)
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found that the age-adjusted rate for Louisiana (13.06 per 1,000) was
slightly higher than the rate for New Mexico (13.05 per 1,000) when the
1940 U.S. population was used as the standard; but the rate for Louisiana
(10.14 per 1,000) was lower than the rate for New Mexico (11.68 per 1,000)
when the 1901 population of England and Wales was used as the standard.
This kind of dilemma has led to the development of other methods of
adjustment.

3.3. Comparative Mortality Rate (C.M.R.). In this method of

adjustment, both the age composition of the community and that of the

standard population are taken into account. The formula is
C.M.R. = % % 7 + ——| M . (3.11)

Easy computations show that the first sum is the crude death rate of the

community,
Pui Dui Du
; P Mui = ? P =P ’
i u i u u

while the second sum is the direct method death rate. Thus the C.M.R.
is simply the mean of the C.D.R. and D.M.D.R. Using the previous example

once again, we find

%(12.4 + 11.35)

[l

C.M.R. (community A) 11.87

il
]

C.M.R. (community B) %(11.8 + 12.70) 12.25
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3.4, Indirect Method Death Rate (I.M.D.R.). In the age-adjusted rate

by the indirect method, the crude death rate of the community is multiplied
by the ratio of the crude death rate of a standard population to the death
rate that would be expected in the standard population if it had the same
composition as the given community%/ The formula for the I.M.D.R. is

D /P D
S S u

TP M /P P
., Ul s1 u u

I.M.D.R. (3.12)
The denominator of the first factor in (3.12)
P M,
g .ui si

P
u

is in effect a D.M.D.R. when the position of a community and a standard
population is interchanged: the age~specific death rates of a standard
population (Msi) are applied to a community population (Pui).

When the population composition of a community and a standard

population are the same, so that

for every interval (xi,x ), then the first factor in (3.12) becomes unity,

i+1
P
D /P . siMsi/Ps
s’ s _ i
P M ./P P M /P
Jouiosi’u ; ulsi’u

=1 ,

and the I.M.D.R. is equal to the C.D.R. of the community. If a community
should have a higher proportion of old people than the standard population,

then for the old age group

1/

— A method suggested by Herald Westergaard is also used in the study of
death rates. Westergaard's formula, however, can be derived from the
indirect method and vice versa.
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and the crude death rate of the community will be greater than the I.M.D.R.

Formula (3.12) can be written also as

I.M.D.R. = o D

M
ui ui

(3.13)

l
. (M
£

where

_ s
17 @P M_ )P P - (3.14)
i

A\
uisi

Here the weights W do not add to unity unless the community and the
standard population have the same composition. Therefore, generally
the I.M.D.R. is not an average of the specific death rates, and is not
directly comparable with the C.D.R. or the D.M.D.R.

One advantage of the indirect method of adjustment may be noted.
Since only the total number of deaths in a community (Du) is in the formula,
this method of adjustment requires less information from a community than
the direct method.

3.5. Life Table Death Rate (L.T.D.R.). Most of the methods of

adjustment rely on a standard population or its rates. One exception is the

L.T.D.R. which is defined as
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L. T.D.R. = 5 =— M |, . (3.15)
. T ui

where Li is the number of years spent in (Xi’xi+1) by a life table population and
To = g t+ L+ ... (3.16)

A full appreciation of this method of adjustment requires the kuowledge of

the life table discussed in Chapter 5; a brief discussion of formula

(3.15) follows. Given 20 people alive at age 0 who are subject to the age=-

specific death rates of the community, Li/T is the proportion of their

0

life time spent in the age interval (Xi’ ). In other words, the L.T.D.R.

%341
shown in formula (3.15) is a weighted mean of the age specific death

rates (Mui) with the proportion of life time spent in (xi’xi+l) being used

as weights. Since the weights Li/TO depend solely on the age-specific

death rates, the L.T.D.R. is independent of the population composition either
of a community or a standard population.

As we will see in Chapter 5, ihe age specific death rate Mui is equal

to the ratio d./L,,
i’ 71

M . =4d,/L, .
ui i'i
hence
7
LM, =d, G-17)
i ui i
where di is the life table deaths in age interval (xi’xi+l)' The sum,
d0 + dl + ... = QO s (3.18)

is‘equal to the total number of individuals QO at age 0. Substituting

(3.17) in (3.15) and recognizing (3.18), we have
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L. T.D.R. = ?di/T = QO/TO . (3.19)

The inverse

H
~
=
1
m >
~~
w
]
o
N’

. L

is known as the (observed) expectation of life at age 0; therefore

IH

L.T.D.R. = (3.21)

>

o

3.6. Equivalent Average Death Rate (E.A.D.R.). 1In this method of

adjustment each age-specific rate is weighted with the corresponding
interval length rather than the number of people for which the rate is

computed. In formula, it is:

n,
E.A.D.R. = I 5 M, : (3.22)
. n, ul
i ., 1
i
where n, =Xy 07Xy The last age interval is an open interval, such as

60 and over, and the corresponding death rate is usually high. An upper
limit must”be set for the last interval in order to prevent the high death
rate of the elderly from’asserting an undue effect on the resulting adjusted
rate. G. U. fﬁle, the original author of the index, suggested that the
limit of the last age interval be set at 65 years. It may be observed

that since there are fewer people in the old age group, the E.A.D.R.

places more emphasis on old ages than the C.R.D. or the D.M.D.R.
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3.7. Relative Mortality Index (R.M.I.). The basic quantities used

in the relative mortality index are the ratios of specific rates of a
community to the corresponding rates of a standard population. The index
is a weighted mean of these ratios, obtained by using the community age-specific

population proportions as weights. The formula for the R.M.I. is

.M,
R.M.I. = T F‘—li ut ., (3.23)

The R.M.I. strongly reflects the mortality pattern of young age groups where
small changes in the specific rates may produce large differences in the value
of the index.

When (3.23) is rewritten as

D .
ui

M . ’
si

_ 1
R.M.I. = P ;
u 1

we see that the R.M.I. may be computed without knowledge of the community's

population by age.

3.8, Mortality Index (M.I.). This index is also a weighted average
of the ratios of commuﬁity age-specific death rates to the corresponding rates
of a standard population. It differs from the relative mortality index
in that the weights used here are the lengths of age intervals. The formula for

the index is

M.
M.I. = ——31 (3.24)

Generally, the M.I. is affected more by the death rates in old age groups
than is the R.M.I. A main feature of this method is that, for intervals of
the same length, a constant change of the ratio Mui/Msi has an equal effect

on the value of the index.
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3.9. Standardized Mortality Ratio (S.M.R.). The General Register

Office of Great Britain has used the S.M.R. in the Statistical Review of

England and Wales since 1958. 1t ic a ratio of the number of deaths

occurring in a community to the expected number of deaths in the community
if it were subject to the age-specific rates of a standard population. In

formula,

o __ui ui (3.25)
M M
ui si ui si

Since the numerator is the total deaths in the commur.ity, (3.25) can be

rewritten as

D .
S.M.R. = = UF—' , (3.26)
D ul si
1
or
DU/PU
N 1 B e
S.M.R. FP N /P (3.27)
i ul s1 u

Thus, the S.x.R. is the crude death rate cof a community divided by the
direct method death rate when standard population age—specific death rates

are arplied to 2 community population.
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CHAPTER 3

STANDARD ERROR OF MORTALITY RATES

l. Introduction

An age-specific death rate is a measure of the mortality experience of
a defined population group over a given period of time. An age-adjusted .
death rate,as a function of age-specific rates, is designed to summarize
the mortality experience of an entire population for the purpose of couparing
it with that of other populations. As with any observable statistical quantity,
both the specific rate and the adjusted rate are subject to random variation
(random error) and any expression of the rates must take this variation into
account. A measure of the variation is the standard deviation, or the standard
error, of a rate. We need the standard deviation in order to use the rates in
estimation, for testing hypotheses, or for making other statistical inferences
concerning the mortality of a population. With the standard deviation one can
assess the degrce of confidence that may be placed in the findings and conclusions
reached on the basls of these rates.‘ With the standard deviation one can also

measure the quality of the vital statistics and, in fact, evaluate the reliability

of the rates themselves.

Since a death rate is often determined from the mortality experience
of an entire population rather than frowm a sample, it is sometimes argued
that there is no sampling error; and therefore the standard deviation, if it
exists, can be disregarded. This'point of view, however, is static.
Statistically speaking, human life is a random experiment and its outcowme,
survival or death, is subject to chance. If two people were subjected to the
same risk of dying (force of mortality) during a calendaf year, one might die

during the year and the other survive. 1If a person was allowed to relive the year
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he survived the first time, he might not survive the second time.
Sirilarly, if a population were allowed to live the same year aover again,
the total number of deaths occuring during the second time would assume a
different value and so, of course, would the corresponding death rate. It
is in this sense that a death rate is subject to random variation even
though it is based on the total number of deaths and the entire population.

From a theoretical viewpoint, a death rate is an estimate of certain
functions of the force of mortality acting upon each individual,and may
assume different values with correspondingly different probabilities, even
if the force of mortality remains constant, Thefefore, it is natural and
meaningful to study the standard deviation of a rate.

Ace-specific death rates, when they are determined from a sample, are subfject
to snmplinﬁ‘varlation in addition to random variation. The standard deviation of
a death rate assumes different forms, depending upon the sampling unit and sampling
procedure used. But generally it consists of two components: one due to sampling,
And. the other due to experimentation (the chance of surviving the vear), The
standard deviation of a death rate based on a sample will be discussed in Section 4.

At present, we will discuss the standard deviation of death rates subject to random

veriation only.

REMARK. The térms "standard deviation'" (of a death rate) and
"standard error" (of a death rate) have the same meaning. They are
the square rcot of the variance (of a death rate), and both are commonly
used in statistics and in mortality analysis. To acquaint the reader with
both terms, we shall use "standard deviation" and "standard error"

alternately in this manual.
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2. The Binomial Distribution

The basic concept used in application of statistical inference to death
rates is the binomial distribution and the central limit theorem. Consider
a sequence of independent trials, each trial having either of two possible

outcomes, i.e., '"success'" or "failure,"

with the corresponding probabilities
remaining the same for all trials. Such trials are called Bernoulli trials.
Tossing a coin is a familiar example: each toss of a coin constitutes a trial
(a random experiment) with either of two possible outcomes, heads or tails.

A person's life over a year is another example with the corresponding outcomes
of survival or death during the year. The binomial random variable is the

"successes" in a number of independent and identical trials, each

number of
trial can result either in a "success' or a '"failure' and the probability of
a "success'" is the same for all trials. Thus a binomial random variable is
the number of '"successes" in a number of Bernoulli trials. The number of
heads shown in a number of tosses of a coin is a binomial random variable.
I1f Ni people alive at exact age X, are subject to the same probability qi

of dying in the age interval (xi’xi+l)’ the number of people D, dying in

the interval is also a binomial random variable. The expected number of

deaths, denoted by E(Di) is

E(Di) = Niqi (2.1)
and the variance of Di is
o2 = N.gq,(1-q,) (2.2)
D, 1914794/ .
i
The proportion of deaths, or the binomial proportion,
Di -
—— = 2.3
N, i (2.3)

-




is an unbiased estimate of the probability q; in the sense that its expected

value is equal to qy

D
~ _ i 1 = 1 -

~

The variance of a0 which may be derived from (2.2), is given by

2 1
oqi -5 qi(l-qi). (2.5)

i

~

When the probability 9y is unknown, its estimate q, is substituted in (2.5)

to give the "sample" variance of qys

1~ -
Sa. TN, qi(l-qi) . (2.6)
1 1

Both the variance in (2.5) and the sample variance in (2.6) are measures

of variation associated with the proportion ai and play an important role
in making inferences concerning the unknown probability qi- The fundamental
theorem needed in this situation is the central limit theorem. According

to the theorem, when Ny is sufficiently large, the standardized form of the

A
random variable qi’

~

q.-q.
7 = i i (2.7)

'qi(l_iEB/Ni

nhas the standard normal distribu.tion with a mean of zer» and a variance of

one.
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Formula (2.7) expresses the deviation of the random variable 944 from its
expected value qi in units of the standard deviation OA'. Using formula
(2.7), one can test a hypothesis concerning the przbability q; or
estimate 4 by means of a confidence interval.

Suppose a study of infant mortality in a community suggests a
decline in infant deaths. A hypothesis concerning the probability of death

in the first year of life, = .028 (or, 28 per 1,000), is to be tested

9o
against an alternative hypothesis q. < .208. The statistic used to test
the hypothesis is the quantity in (2.7) with the substitution of 99 = .028,

or

50 - .028
Z = (2.8)
/(-028) (1-.028) /N ‘

~

where N the number of newborns in the study and 4y = DO/NO, the proportion

0’
of infant deaths, can be determined from the data observed, and the quantity
in (2.8) can be computed. Rejection or acceptance of the hypothesis 99 = .028
is based on the computed value of (2.8). At the 5% level of significance,
for example, the hypothesis is rejected if the computed value of Z is less
than -1.645, the fifth percentile in the standard normal distribution.

One may also use (2.7) and the normal distribution percentiles to
determine confidence intervals for the probability q - For a .95

confidence coefficient, for example, we use the 2.5 percentile of -1.96 and

the 97.5 percentile of +1.96., This means that
95794

/qi(l—qi)/Ni

Pr{-1.96 < < 1.96} = .95 (2.9)

The inequalities inside the braces are approximately equivalent to

3 -— . . < o + . A 2.10
4 1.96 Sqi 44 < 9 1.96 Sqi , ( )
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where the sample standard deviationm, Sa , 1s the square root of the variance
i
in (2.6). The inequalities in (2.10) provide the fundamental formula for the

95% confidence interval for the probability q -

3. Probability of Death and the Age-specific Death Rate
The probability of death and the age-specific death rate are two
measures of the risk of mortality acting on individuals in the population.
While the probability of death is an established concept in the field of

statistics, analytic meaning of the age-specific death rate is not fully
appreciated. The age-specific death rate either is regarded as an ill-defined

statistical quantity, or else it is treated as if it were another name for the
probability of death. These misconceptions need be corrected. The age-specific
death rate is just as meaningful analytically as the probability. The exact
meaning of the age-specific death rate and its relationship with the probability
of death have been given in Chapter 2 and will be discussed in more detail in
Chapter 5. For easy reference, we state again the estimate of the probability and
the age-specific death rate below.

Let N be the number of individuals alive at the exact age X,, among them

i

a number D, dying during the interval (xi, X,,,). Then the estimate of the

i
probability of dying in (xi, X

i+1
) is given by (cf. equation (2.3)),

i+l
D

A 1

U4 "N, . (3.1)

On the other hand, the age-specific death rate, Mi’ is the ratio of the number of

deaths, Di’ to the total number of years lived in the interval (xi, xi+1) by the
Ni people. In formula
M, = 1 . (3.2)
i ni(Ni-Di) + ainiDi

A
Solving equations (3.1) and (3.2) yields the basic relationship between 9y and Mi
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n M
- 14 (3.3)
1+ (l_ai)niMi

)

Here n, = x

{ - X, and a

1+1 { is the average fraction of the age interval (xi, b 4

lived by individuals dying at any age included in the interval. The fraction a

i+1

i

has been computed for a number of countries whose population and mortality data

are available; the values of a, are given in Appendix V.

i

For a current population, the age-specific death rates are determined

from the vital and population statistics,

Di
M, = (3.4)
i P
i
where Di is the number of deaths occurring in age group (xi, xi+l) during a

calendar year and P, 1s the corresponding mid-year population. The probability

i
of death Qi is computed from formula (3.3).

To determine the variance of ai’ we start with formula (2.6)

2 1 ~ .4\

Since equation (3.1) implies that

1.1
Ni Di i

we have the desired formula for the sample variance of ai:

2 1 4\2 )

The exact formula for the variance of the age-specific death rate is

difficult to derive. However, since the population size P, in (3.4) usually

i
is large, we use Taylor's expansion to establish the following relationship

between the variance of Mi and the variance of Di:
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SD , (3.6)

where the sample variance of Di is

S, = Na,(1-9) =D,(A-q) . (3.7

2
Di
Substituting formula (3.7) in (3.6) yields the required formula for the sample

variance of the age-specific death rate

S = —— M (1-q

M P, 1

i) . ,(3'8)

When ﬁi is very small so that l—ﬁi is close to one, formulas (3.5)

and (3.8) may be approximated by

5% —Il)-ai (3.9)
9 i
and
M
2
sy = Pi , (3.10)
1 i

regpectively.
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4. The Death Rate Determined from a Sample

It should be emphasized that although N, and Pi in the above discussion
i
both refer to the numbers of people in a population, the formulas of sample
variances of qi and Mi in (3.5) and (3.8) hold also when Ni and Pi are the

numbers of people in a sample. To verify this, suppose a random sample of

N people is taken from an entire population. In the sample there are Ni

*
people of age Xy Di of whom die during the year, and —

= (4.1)

is an estimate of the probability q; . We are interested in the sample variance
of ai' In formula (4.1) both the numerator and the denominator are random
variables; Ni is subject to sampling variation in the sense that the number
of people of age}%_included in the sample varies from one sample to another,
while Di is subject to sampling variation and random variation (survival
or death during the year). The formula for the variance of the ratio in
(4.1) thus can be expressed in terms of the variance of Ni and of Di'
However, the variance of Di consists of two components: the random component
and the sampling component. The derivation of the variance of &i through
the variance of Dy is lengthy. To save space, we use the following simpler
approach to derive the variance of ai directly.

It is easy to verify that given N; the conditional expectation and

‘s . A .
conditional variance of q; are, respectively,

E(q;|Ny) = q4 (4.2)
and
2 -1 -
Oa.IN. = N, qi(l qi). (4.3)
it i

*/ For simplicity in demonstrating our reasoning, but at the expense of a

certain degree of reality, we assume N1 people of exact age xi.
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~

On the other hand, because of (4.2), the variance of 9y is equal to the

A

expected value of the conditional variance of 9y given Ni’

2 2
% = E(o5 [N.). 4.4
FIRECLR (4-4)

Substituting (4.3) in (4.4) gives

2 1
cai = E(ﬁ;)qi(l_qi)‘ (4.5)

~

Using the sample information, we obtain the sample variance of qj

1 a2 A
—_ 1-q.) , (4.6)
i i Di qi( q1

wn

>

I

e Z J
~~

T
ol
N’

]

since N1 is given in (4.1). This shows that although ai in (4.1) is

computed from a sample, its sample variance has the same expression as the
variance of ai based on a total population. It is easy to justify now that
the variance of the age-specific death rate in (3.8) holds true also when

the death rate is computed on the basis of a sample.
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5. Age-Adjusted Death Rates and Mortality Indices

In Chapter 2 several methods of adjustment of age-specific death
rates were presented. Although each method was developed on the basis of
a specific philosophic argument and designed to serve a definite purpose,
they all assume a general form of a weighted mean of the age-specific
death rates. These methods of adjustment are reproduced in Table 1 for
easy reference.

With the exception of the indirect method of adjustment, the weights
add to unity. The sum of the weights in the indirect method can be greater
or less than unity, depending upon the difference between community and
standard populations in age composition. For this reason, the indirect
method is not strictly comparable with any other adjusted rate, and neither
is its standard error.

The inclusion of the crude death rate in the list of adjusted rates
is of significance. Since it is usually expressed as the ratio of all
deaths to the total midyear population, the crude death rate is occasionally
treated as a binomial proportion, which leads to an incorrect formula for
the standard deviation. Individuals differing in age and sex obviously
do not have the same probability of dying, and the notion of an average
probability is incomprehensible; therefore, a direct application of the
binomial theory is inappropriate. If, however, it is visualized as the
weighted mean of specific death rates, with the actual population size
employed as weights, then the crude death rate is perhaps the most meaningful
measure of mortality for a single community. This way of viewing the
crude rate is also essential in the derivation of its standard deviation.

In all the adjusted rates, the choice of weights applied to specific

rates is based on: (1) the proportion of those in a specific age group
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to the total population, i.e., population proportion, and (2) the relative

interval length of a specific age group. For the crude rate, the weights

used are the community population proportions in spécific age groups

(Pui/Pu); for the direct method of adjustment, the standard population

proportions in specific age groups (Psi/PS); for the comparative mortality

rate, the average of the two population proportions; for the life table

death rate, the life table population proportions for specific age groups

(Li/TO); and for the equivalent average death rate, the relative interval

lengths of the age groups (ni/Zni). The weights used in the indirect method

of adjustment are functions of the age-specific rate for the standard

population, community population proportions, and standard population proportions.
The methods of adjustment listed in Table 1 also include two indices,

the relative mortality index, the mortality index, and the standardized mortality ratio.

As seen from the second panel of Table 1, the two indices are weighted means of the

ratios of a community's specific death rates to the corresponding specific rates for

the standard population. The difference is that the relative mortality

index uses the population proportions of the community for specific age

groups as weights, while the mortality index uses the relative lengths of the

age intervals. In the derivation of their standard deviations, however,

we shall consider them as linear functions of age-specific death rates of

a community with coefficients as listed in the weight column.
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Table Formulas and weights used to compute the crude death
rate, age-adjusted rates and mortality indices
Title Formula
Weight (wi)
Ip M P
ui
Crude death rate (C.D.R.) u; ui r
P "
lp M P
Direct method of adjustment (D.M.D.R.) 81 uf 81
p P
.8 s
P P P
Comparative mortality rate (C.M.R.) AL ui + 81 3 _ui st
p tp M p TP
ui p
u 8 u 8
Indirect Method of adjustment (I.M.D,R.) (Da/PB)(Du/PU) D /P p
M ul
PuiM i /P ui g1
IL M L
Life table death rate (L.T.D.R.) 1 ui .
IL L
1 i
EniM.i ni
Equivalent aVerage death rate (E.A.D.R.) u
In zni
1
LP Mui
uf — P
si ui
Relative mortality index (R.M.I.) P M ‘
u us
In Mui
i YO n,
Mortality index (.M.I.) si
In (zni)Msi
i
Standardized mortality ratio (S.M.R.) P, Pt
z
Ip_ M ul PutMat
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6. Sample Variance of the Age~Adjusted Death Rate

To derive the formula for the sample variance of an adjusted death rate,
it is first essential to identify the random variables involved. Clearly,
Mui’ the age-specific death rates for a community, are random variables while

n, the interval length for an age group, is a constant. Community and standard
population proportions for specific\age groups will not be treated as random
variables for the reason that the random event under study is death, not popu-
lation. The age-specific death rates of the standard population are randbm
variables, just as are the-community age-specific death rates. However, since
adjusted death rates are derived for the purpose of testing hypotheses con-
cerning the mortality experience of communities, only that part of the random
variation associated with the communities in question should be taken into
consideration. In other words, random variations attributable to the age-
specific rates for the standard population should not be included in the
variance of the adjusted rates. Life table pcpulation proportions, on the
other hand, are derived from the age-specific death rates for a community;
therefore, they should be treated as random variables. To summarize, we
shall consider only the community age-specific death rates and the life
table population proportions for specific age groups as random variables
in the derivation of the sample variance.

With this understanding, and making an exception of the life table death
rate, we shall write adjusted rates and mortality indices as linear functions

of the basic random variables, the age-specific death rates of a community.

The general formula for an adjusted death rate or mortality index R takes

the form

R = tw M (6.1)
i i ui

with the coefficient w, as given in Table 1. The general rules for the
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variance of a linear function of random variables may now be applied and the
variance of the adjusted rate, R, may be expressed as follows:
S- = X w +2Xrww.S s (6.2)

2 S2
R i 1 Mui i£] 13 Mui’Muj

where 52 is the sample variance of the age-specific death rate for age
ui

group (Xi’xi+l)in the community u, and S is the sample covariance

Mui’Muj
between the age-specific death rates, Mui and Muj'
The age-specific death rate, Mui’ is a function of the corresponding
estimated probability of death, 31; and the covariance between death rates
is also a function of the covariance between the two corresponding estimated
probabilities. It has been proved [cf. Section 5, Appendix II] that the
estimated probabilities for two nonoverlapping age intervals have a zero
covariance. Thus, two death rates will also have a zero covariance. It

follows that all the covariances in formula (6.2) will vanish, and the formula

for the sample variance of R becomes

2

2.2
SR = ? wiSM . (6.3)
i ul
Using ( 3.8) for the variance of Mui’ we have
M
2 _ 2 "ul L 7
s2=rwi F2 (g (6.4)
i ul
or using the approximate formula, (3.10), we have
M
2 _ 2 "ui
SR = 2 vy T . (6.5)
i ul
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7. Computation of the Sample Variance of the Direct Method Age-Adjusted
Death Rate

The computation of the sample variance of the age-~specific death
rate is the common essential part to all the methods of adjustment except
for the life table death rate. Therefore, it is sufficient to use only
the direct method of adjustment (D.M.D.R.) as an example. The formula for
the sample variance of D.M.D.R. is obtained from (6.4) with w, = Psi/PS:

2y

ui ~
F—f'[l—qui] (7.1)
ui

R P

P .
SZ -3 [ si
i S

For this illustration, we use the death raﬁes of the total California
population of 1970, and the United States 1970 population as the standard
population. The steps involved in the computation are shown in Table 2.

The age group 85 and over presents a problem which needs special
treatment. Because it is an open-ended group, the interval length is not

determinable. The average number of years, a lived by individuals

85"85°
may be estimated by the reciprocal of the central death rate,
_ 1

ag.n,. = .
85785 M85

(7.2)

Justification of (7.2) is given in Appendix II (cf., equation (8)) on life

table construction. Equation (7.2) implies

lragsngstgs = 05

which means that the sample variance of M 5 as given in (3.8), is equal to

8
zero. Intuitively, the zero variance can be justified as follows: Each
individual alive at age 85 has a future life time of, say, y years. The

sample variance of y is the mean-square deviation of each y from the sample

mean. If in a group of individuals alive at age 85, the only information
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available is that each y assumes an average of a years, then the

85"85

deviation of each y from the sample mean is zero. The sample variance is

also zero. This implies that the sample variance of M85 is zero. It may

be noted also that a85‘= 1 so that the variance in (3.8) is equal to zero.
For each of the remaining age groups (Xi’xi+l) we compute the sample

variance of the death rate Mui [cf., equation (3.8)]
s =g (7.3)

as shown in column (7) in Table 2 and the corresponding weight squared

(Psi/PS)2 in column (8), and find the product

P i ’ 2 Psi ’ ui ~ )
S = |_35% _ut 4 7.4
P M P p . (Imq,y) - (
s ui s ui

Adding the products in (7.4) over all age groups, we obtain the sample
variance of R in formula (7.1).

For the California 1970 population the age-adjusted death rate is

Psi
T ——= M
PS Tui

R

1,787,768.98
- L. 787, = .008
503,211,926 0087976

The computation in Table 2 shows that the sample variance is

si = 340.631 x 10 12 ‘

and the standard deviation is

2

i _ " —6
S = v/340.631 x 10°° = 18.456 x 10

R

In comparison, the standard deviation SR is much smaller than the age-adjusted
death rate. Formally, the magnitude of a standard deviation is measured by

the coefficient of variation, which is defined as the ratio
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S
Coeff. of variation of R = EB (7.5)
In this case
. _ -018456
Coeff. of variation of R = 8 7996

it

.0020979 = .21 percent

The small magnitude of the coefficient of variance is mainly due to the
large population sizes Pui'

The age-adjusted death rate of 8.7976 per 1000 for the California
1970 population may be compared with the total Uni;ed States population,
1970, death rate, 9.453 per 1000, since both are based on the same population
distribution. Because of the small standard deviation (SR = .018456

per 1000), we conclude that in 1970 the California population had a

significantly lower mortality than the United States as a whole.
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Computation of sample standard error of the age-adjusted death rate
for total population, California, 1970.

(Ad justment made by the direct method.
ponulation of the United States, enumerated as of April 1, 1970)

The standard population usced is the total

Fraction Sample

of Last Variance Square of

Age Length | Mid-year Age Probability of Age Standard
Interval of Population Interval| of Dying Specific Population
(in vears)| Interval| in Interval|Death Rate|of Life | in Interval|Death Rate| Pronortion
(Xi’xi+1) ¥21(1—a ) (U.S., 1970)

P . ul
- S - ut .. S
*q to *i41 Rt Pui Mui “ui aui 1012 S§u1 IOS(PSi/PS)
(1) (2) (3) (&) (5) (6) (N (8)

0-1 1 340483 .018309 .09 .01801 52805.15 29415.50
1-5 4 1302198 .000806 .41 .00322 616.96 4£52458.67
5-10 5 1918117 .000377 .44 .00188 196.18| 964404.79
10-15 5 1963681 .000374 .54 .00187 190.10| 1046618.41
15-20 5 1817379 .001130 .59 .00564 618.27 880681.46
20-25 5 1740966 .001552 .49 .00773 884.57 649012.63
25-30 5 1457614 .001421 .51 .00708 967.98| 4£39832.81
30-35 5 1219389 .001611 .52 .00802 1310.56 316393.25
35-40 5 1149999 .002250 .53 .01119 1934.63| 298733.21
40-45 5 1208550 .003404 .54 .01689 2769.03 347603.72
45-50 5 1245903 .005395 .53 .02664 4214,.84)  1355480.49
50-55 5 1083852 .008256 .53 .04049 7308.85 298580.84
55-60 5 933244 .012796 .52 .06207 12860.25 240855.01
60-65 5 770770 .018565 .52 .08886 21945.99 179800.97
65-70 5 620805 .027526 .51 .12893 38622.55 118374.42
70-75 5 484431 .039529 .52 .18052 66368.6C 71764.70
75-80 5 342097 .062336 .51 .27039 132947.58 35611.87
80-85 5 210953 .095419 .50 .38521 278083.97 12636.07
35+ - 142691 .157564 - 1.00000 0.00 5528.07
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8. Sample Variance of the Life Table Death Rate

The 1ife-table death rate is a special case in that the weights Lx/ ZLX s
as functions of the age-specific death rates, are themselves random variagles
and. are correlated not only with each other, but with the specific death rates
as well. Obviously, a derivation of the sample variance of the life-table
death rate based on the approach presented in the previous sections will
involve a series of complicated and difficult computationms.

The derivation can be simplified by making use of the inverse relation-
ship between R, the life-table death rate, and &

0’ the observed expectation

of life at birth:

R = - _x__0_1 (8.1)
8

3
L L T

™
™
o

Employing the general rule on the variance of the inverse of a random variable,

we have

s2 =L g2 | (8.2)
R 4 “e
éo 0

N
Here the sample variance of ey which may be found in Chapter 4, is

2 ~2 2 2
Sé - z Pox [(l_ax)nx + éx+n ] Sa ¢ (8.3)
0 x>0 X X

Substituting (8.3) in (8.2) gives the required formula

2 _ 1 ~ ~ 2 2
S, = 7 z Pox [(l-ax)nx +e . ] Sa . (8.4)
0 e0 x>0 X X
where
A2 (1§ ]
SZ - qx 9y
q, Dx

as given in Section 3 .
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CHAPTER 4

THE LIFE TABLE AND ITS CONSTRUCTINN

An llistorical Note

Long, before tune development of modern probability and.statistics, men
were concerned with the length of life and constructed tables to measure
longevity. DParticular interest has been.expressed to the longevity of famous
persons or to individuals who were reported to have died at an extreme old
age. A crude table, credited to the loman Praetorian Praefect Ulpianus,
was constructed in the middle of the third century A.D., and indicates an
expectation of life of thirtv vears. BRut since its purpose was to serve
as a basis for determining annuity srants, it is unlikely that it reflects
mortality in the general population. Nevertheless, it continued in official
use in northern Italy until the end of the eightcenth centurv. .John Graunt's

Billsof Mortality, published in 1662, and Edmund Halley's famous table for

the city of Breslau, published in 1693, mark the besinning of modern life

tables. In Bills of Mortality, Graunt introduced the proportion surviving

to various ages, while Hallev's table already contained most of the columms

in use today. Rough calculation of the average iength of life from Graunt's
data for seventeenth centurv London cives a ficure of 18.2 years, whereas
lHalley's estimate for DBreslau near the end of the century was 33.5 years.
During the next hundred years several life tables were constructed, including
the French tables of Deparcieux (1746), of Buffon (1749), of Mourgue and
buvillard (both published in the 1790's), the Worthampton table of Richard
Price (1763), and in the United States Wigglesworth's table for lassachusetts
and ilew liampshire (1793). The first official Fnglish life table was published

in 1843 during William Farr's term as Compiler of Abstracts in the General
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Records Office. Several countries in Continental Europe have established
series of life tables dating back almost two centuries. Sweden, for examnle,
began a series of life tables in 1755, Netherlands in 1816, France in 1317,
Norway in 1821, Germany in 1871 and Switzerland in 1876. TReliable mortalitvy
statistics for the construction of United States life tables did not become
available until 1%00; from there J. VW. Glover, of the Bureau of the Census,
determined that the expectation of life at birth was 46.07 years for males
and 49.42 for fenales.

1. Introduction

The life table is largely a product of actuarial science, but its aonlica-
tion is not limited to the computation of insurance premiums. Recent advances
in theoretical statistics and stochastic processes have made it possible to
study the length of life from a purely statistical point of view, malking
the life table a valuable analytical tool for demographers, cpidemiologists,
physicians, and research workers in other aréas of public health.

There are two forms of the life table in general: the cohort (or
generation) life table and the current life table. 1In its strictest form,

a cohort life table records the actual mortality experience of a particular

group of individuals (the cohort) from birth to the death of the last merber

of the group. The difficulties involved in constructing a cohort life table

for a human population are apparent., Statistics covering a period of 100

years are available for only a few populations and even those are likely to

be less reliable than current statistics. Individuals in a given cohort

may have émigrated or died unrecorded, and the life expectancy of a group of
people already dead is of little more than historical interest. However,

cohort life tables do have practical applications in studying animal populations
and have even been extended to access the durability of inanimate objects

such as engines, electric light bulbs, etc. Modified or adapted cohort tables
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have bheen useful in epidemiological, sociological, and medical and para-
medical studies with human subjects. Extensive use of life table methods

has been made in the analysis of chance and duration of patient-survival

in studies of treatment effectiveness. These will be discussed in more detail
with some examples in Chapter 9.

The current life table, as the name implies, gives a cross-section view

of the mortality and survival experience of all ages in a population during
one short period of time, for example, the California population of
1970. It 1is dependent entirely on the age-specific death rates prevailing
in the year for which it is constructed. Such tables project the life span
of each individual in a hypothetical cohort on the basis of the actual death
rates in a piven population. When we speak of the life expectancy of an
infant born in a current year, for example, we mean the l1ife expectancy
that would be obtained if he were subjected throughout his life to the

3
same age-specific mortalities prevailing in the current year. The current
life table is then a fictitious pattern reflecting the mortality experience
of a real population during a calendar year. However, it is the most effective
means of summarizing mortality and survival experience of a population,and
is a sound basis for making statistical inference about the population under
study. The reader can no doubt confirm from his own experience that the
current life table is a standard and useful tool for comparing international
mortality data, and for assessing mortality trends on the national level.

A current life table may be based on the deaths occurring over three,
instead of one, calendar years; e.g., years 1969, 1970, 1971. For each age
group the average number of deaths per year is then divided by tbe corres-
ponding population size of the middle of the three years (1970, in this
example) to obtain the age-specific death rate. Usually, the middle year

is a census year, so that population figures are available and more accurate.
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The advantage of such a table is to reduce the possible abnormalities in
mortality pattern which may exist in a single calendar ye-2r.

Data for constructing life tables are sometimes refined by graduation
or other methods for smoothing or reducing the effect of extreme values,
Techniques for refinement of 1ife table data were developed bv acuarial
scientists. While refinement of data has its merit in smoothing data, it is
difficult to make proper statistical inference of life table functions
which 1s based on such information.

This chapter will describe a reneral form of the life table with inter-
pretations of its varicus functions and present a rethod of constructing a
current life table. Theoretical aspects of life table functions will be
discussed in detail in Appendix II.

Cohort and current life tables may be either complete or abridged.

In a complete life table the functions are computed for each vear of life;

an abridged life table differs only in that it deals with age intervals

greater than one year, except possibly the first vear of the first five

yvears of life. A typical set of intervals is 0-1, 1-5, 5-10, 10-15, etc.
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2., Descrintion of the Life ?§P}e

Cohort and current life tables are identical in appearance but different
in construction. The following discussion refers to the complete current life
table. The function of each columm is defined and its relation to the other
colurms explained; conventional symbols have been modified for the sake of
simplicity. The complete current life table for the California total population
in 1970, presented in Table 2, will serve as an example.

Column 1. Age interval, (x,x+l) -- As with the cohort table, each interval
in this column is defined by the two exact ages stated except for the final
age interval, which is open-ended such as 85 and over. The starting point
for the final age interval is denoted by w.

Column 2. Proportion (of those alive at age x) dying in interval
(x,x+1), ﬁx -- Each ax 1s an estimate of the probability that an individual
alive at the exact age x will die during the interval. These proportions are
the basic quantities from which figures in other columns of the table are
computed. They are derived from the corresponding age-specific deaﬁh rates
of the current population, using formulas that will be explained in the next
section. To avoid decimals, the proportions are sometimes expressed as the
number of deaths per 1,000 population, and the column is headed, '1000 ﬁx."
Column 3. Number alive at age x, 2x -- The first number in this column,

2 , 1s an arbitrary figure called the "radix,”" while each successive figure

0’
represents the number of survivors at the exact age x. Thus the figures in
this column have meaning only in conjunction with the radix QO’ and do not
describe any observed population. The radix is usually assigned a convenient
number, such as 100,000. Table 2 shows that 22 or 98,088 of every 100,000
persons born alive will survive to the second birthday, provided they are

subject to the same mortality experience as that of the 1970 California

population.
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Column 4. Number dying in interval (x,x+1), dx -~ The figures in this
'column are the product of Qx and Qx and thus also depend upon the radix 20.
Again using the 1970 California experience, we see that out of 20 = 100,000
born alive, dO = 1801 will die in the first year of life. But the number 1801
is meaningless by itself, and is certainly not the number of infant deaths
occurring in California in 1970. For each age interval (x,x+l), dx
is merely the number of life table deaths.

The figures in the columns lx and dx are computed from the values of

QO, 61,...,ﬁw and the radix %, by using the relations

d =24, x=0,1,...,W, 2.1)

and

£x+1 = Qx—dx, x=0,1,...,w-1 . (2.2)

Starting with the first age interval, we use equation (2.1) for x=0 to obtain
the number dO dying in the interval (0,1) and equation (2.2) for x=0 to obtain
the number 21 who survive to the end of the interval. With Rl persons alive
_at the gxact age 1, we again use the relations (2.1) and (2.2) for x=1 to
obtain the corresponding figures for the second interval. By repeated
applications of (2.1) and (2.2) we compute all the figures in columns 3 and 4.
Column 5. Fraction of last year of life for age x, a; -- Each of the dx
rpeeple who die during the interval (x,x+l) has lived x complete years plus
gome fraction of the year (x,x+l). The average of these fractions, denoted
by a; » plays an important role in the construction of life tables, and in
the theoretical studies of life table functions as presented in Appendix II.

This will be explained more fully in the next sectionm.
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Column 6. Number of years lived by the total cohort in interval (x,x+1),
L —-- Each member of the cohort who survives the vear (x,x+l) contributes one

X

year to LY, while each member vho dies during the vear (x,x+l) contributes, on

the average, a fraction a of a year, so that
pd

L= (2 ~-d)+a'd x=0,1,...,w-1, (2.3)
X X x X x

<

where the first term on the right side is the number of years lived in the

interval (x,x+1) by the (Qx—dx) survivors, and the last term is the number of

vears lived in (x,x+1) by the dX persons who died during the interval. hen
!

a is assumed to be 1/2 (which is usually the case for apes greater than 5),

then

L=2—%d . (2.4)

The similarity of LX to the concept of '"person years' may be recognized by
the reader.

Column 7. Total number of years lived beyond age x, TX ~- This total
is essential for computation of the life expectancv. It is equal to the sum

of the number of years lived in each age interval beginning with age x, or

ToSL oL ot + L, x=0,1,...,w , (2.5)

with an obvious relationship

= + . 2.6

Tx Lx Tx+l ( )
Column 8. Expectation of life at age x, éx ~- This is number of years,

on the average, yet to be lived by a person now aged x. Since the total number

of years of life remaining to the RX individuals is Tx’

T

|

>
n

x=0,1,...,w. 2.7)
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Each éx summarizes the mortalityv experience of persons bevond ace x in the
current population under consideration, making thié columm the most important
in the life table. Further, this is the onlv columm in the table other than
ﬁx and ax' that is meaningful without reference to the radix QO. As a rule,
the expection of life éx decreases as the age x increases, with the sinrle
exception of the first year of life where the reverse is true due to the high
mortality during the first year. 1In the 1970 California population,

for example, the expectation of life at birth is é. = 71.90 vears whereas

0
at age one él = 72.22 The symbol éx’ denoting the observed expectation
of 1ife, 1s computed from the actual mortality data and is an estimate of ex,
the true unknown expectation of life at are x.l

Remark 1: Useful quantities which are not listed in the conventional

life table are

5. =1-4§ , (2.8)

the proportion of survivors over the age interval (x,x+l), and
L

= A A A =_l 9
Pry = PxPxa1°° Py Qx ’ 2.9

A

the proportion of those living at age x who will survive to age v. Vhen
x=0, 60y becomes the proportion of the total born alive who survive to age
y; clearly

poy = Ry/lo .
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3. Construction of the Complete Current Life Table

In the construction of current life tables, we are mainly concerned
with the computations of ax’ the proportion dying in the age interval
(x,x+1), and Lx’ the number of years lived by the radix 10 in the interval
(x,x+1).

An important element in complete life table construction as described

in this section is the fraction of the last year of life lived hy those who

die at each age; for example, a man who dies at age 30 has lived 30 complete
years plus a fraction of the 31st year. Thé average value of this fraction

is denoted by a; where x refers to the age at the last birthday. It might
reasonably be expected that the average value of this fraction is equal to

one half on the assumption that there are as many deaths at 30 years plus

one month as at 30 years plus two months, and at each month thereafter through
the 11th; or, in other words, on the assumption that deaths occur uniformly
throughout each year of age. Extensive studies of the fraction have been

made using the 1960 California mortality data (Chiang, et al [1961]) collected hy

the State of California Department of Public Health and the 1963 U.S. data colle:t !

by the MNational Vital Statistics Division of the National Center

for Health Statistics, respectively. The results obtained so far show that
from age 5 on the fractions a; are invariant with respect to race, sex, and
age, and that the assumed value of .5 is then valid. But a much smaller

value has been observed for the first year because of the large proportion

of infant deaths occurring in the first weeks of life. A brief description of

the analysis regarding a; using the California data is given in Section 5.
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To return to the computation of ax’ readers familiar with vital statistics
terminology will recognize the resemblance between ax and Mx’ the age specific
death rate. The essential step in constructing a complete life table for a
current population is to establish a relationship between ax and Mx so that
the probability of dying q, can be computed from the death rate Mx for each
age x. These two quantities can both be expressed in terms of the number of
observed deaths of age x (Dx) that occur during the calendar year and the
corresponding midyear (calendar year) population (Px). Let Nx be the number
of people alive at the exact age x, among whom Dx deaths occur in (x,x+1).

Then, by definition, the proportion died is given by

(3.1)

Zl’CJ
be]

be]

The age specific death rate, Mx’ is the ratio of the number of deaths (Dx)
to the total number of years lived by the Nx people during the interval (x,x+1).
This total number is composed of (Nx-Dx) years lived by the survivors and
the number of years by those dying during the year. Let a; be the fraction
of the year (x,x+1) lived by a person who dies during the year; then Dx
people as a group will live a)'(DX years., Hence the total number of years

. . . L
lived in (x,x+1) is (Nx-Dx) + axDx and the formula

D
X

Mx = (N-D) + a'D
X X X x

(3.2)

When the denominator is estimated with the corresponding mid-year population

P,
X

(Nx-Dx)*a);Dx =P, (3.3)
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we have the familiar formula

o

X

Y =

Plx P : (3.4)
X

Now, Nx, which was introduced to establish a relationship between ax and Mx,
is nevertheless an unknown quantity. By eliminating Nx from (3.1) and (3.2)
and using (3.4), we obtain the desired relationship. Formally, we derive
Nx from (3.3):

N, =P +D - a'n. , (3.5)

X X

or

A
[}

— \i
P+ (1 al )b,
and substituting (3.5) in (3.1) to obtain

D

X
= Al
X Px + (1 ax)DX

(3.6)

L0
1

Since the age-specific death rate is usually available, we may divide both

the numerator and denominator of (3.6) by Px to obtain the basic formula

M

~ X
WU~ T+ (1-a' )M ) (3.7)
x 7 x

As it was noted earlier, the fraction a; is subject to little variation,

= .09, ai = .43,

S. Formula (3.7) is fundamental

The California data suggest values: aé
>

a, = .45, a! = .47, a) = .49, a' = .50 for x
2 3 X
in the construction of complete life tables by the present method and was
suggested in Chiang [1960b], [1961].

To illustrate, let us consider the 1970 California population as

shown in Table 1. For the first year of life we have PO = 340,483 in

Column 2 and D0 = 6,234 in Column 3. Thus, the age-specific rate for x=0 is
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_ Do _ 6,23 018309 8
0 Po 3357353 =, 3 or 18.309 per 1000.

M

The average fraction of the year lived by an infant who dies in his first
year of life is a; = .09, Therefore, the estimate of the probability of

dying is computed from (3.1):

~ .018309

% " 1T+ @-.09 .018309 - -01801 .

When all the values of ﬁx,have been computed and 20 has been selected,
dx and lx for successive values of x are determined from equations (2.1)
and (2.2) as shown in Table 2. For the 1970 California population we determine

first the number of life table infant deaths with 20 = 100,000,

d0 = loﬁo = 100,000 x .01801 = 1801 ,

and the life table survivors at age one,

L. = 20 -d

1 = 100,000 - 1801 = 98199

0

The formula for the number Lx of years lived in the age interval (x,x+l)
is derived also with the aid of a; , the fraction of the last year of life

as given in Section 2:

L = (lx - dx) + a;‘dx . x=0,1,... . 2.3)

To take again the example of the first year of life, 86 = .09 and

L0 = 98199 + .09 x 1801 = 98361 .

Remark 3: The ratio dx/Lx is shown as the life-table death rate for age
X. Since a life table 1is entirely based on the age-specific death rates of
a current population, the death rates computed from the life table shouid be

identical to the corresponding rates of the current population; symbolically
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o -

d
X X
L bf P_ X‘O,l,... . (3.8)

X
X X

To prove equation (3.8), we substitute (2.3) in the left side of (3.8) and

divide the resulting expression by Lx to obtain

d_ 4
= - x 3.9)
x 1 - (1-ax')a , .

X

~

Substituting (3.6) for 9 in (3.9) and simplifying the resulting expression
give Dx/Px, proving the assertion (3.8).

The final age interval in a life table is a half-open interval, such as
age 85 and over. The values of Dw’ Pw, Hw’ lw’ dw’ and Tw all refer to the
open interval age w and over, and aw = 1 (since there can be no survivors).
The length of the interval is infinite and the necessary information for
determining the average number of years lived by an individual beyond age w
is unavailable. We must therefore use an approach other than equation (2.3)

to determine Lw' Writing the first equation in (3.9 for x=w, we have

(3. 10)

Since each one of the lw people alive at w will eventually die, lw - dw’

and from (3.10) we have the required formula
ZW 11)
L=y (3.
w
wvhere lw, survivors to age w, is computed from the preceding interval and M.w

N
is the mortality rate for age interval w and over. The quantities Tw and e,

can be computed as follows:

A TW Lw 1 ( 2)
= % ——e g == I e . 3- 1
Tw Lw and €u lw dw Mw

In the 1970 California life table w = 85, and 285 = 23274, The death rate

for age 85 and over is MBS = ,157564; therefore
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L

_ 785 2327
Lgs = f__ = T1575es - 147711
85
and
T = 147711 and e._ = 6.35

- 85 ~ 85
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Figures 1 to 4 show graphically the probability of dying (ax), the
number of survivors (QX), the number of deaths (dx), and the expectation
of life (;x)’ for each age x for the total California population, 1970.
Figures 5 to 8 show the corresponding four sets of quantities for the total
United States population, 1970. As we see from Figure 1 that the probability
of dying is extremely high for the first year of life. It decreases
sharply after the first year and reaches.a minimum at the age of 10 years.
From there, the probability rises gradually and reaches the same magnitude
of 9 around age 65 and it continues to increase monotonically and later
drastically. The pattern of ax is also reflected in the Qx’ dx and ;x.
Since the life tables for the California population and for the United
States population end at age 85, the graphics also stop at thét age.

In this manual we have introduced two sets of terms, one for the
theoretical quantities and the other for the estimates of the theoretical
quantities. The theoretical quantities include the probability of dying
9 the expectation of life e for each age x, and many others; the
corresponding estimates are ax and ;x° For simplicity of reading and
when there would be no confusion, we shall drop the words "estimate of"

and refer to q  as the probability of dying and e as the expectation of

life, etc.
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Table 1.

Construction of Complete Life Table for Total California Population, USA, 1970

Midyear Number Fraction Probability
Age population of deaths Death rate of last of dying
interval in interval in interval in interval year in interval
(in years) (x,x+1) (x,x+1) (x,x+1) of life (x,x+1)
x to x+1 P D M a' q
X X X X X
(1) (2) (3) (4) (5) (6)
0-1 340483 6234 .018309 .09 .01801
1- 2 326154 368 .001128 .43 .00113
2- 3 313699 269 .000858 .45 .00086
3- 4 323441 237 .000733 ' 47 .00073
4- 5 338904 175 .000516 .49 .00052
5- 6 362161 179 .000494 .50 .00049
6- 7 379642 171 .000450 .50 .00045
7- 8 386980 131 .000339 .50 .00034
8- 9 391610 121 .000309 .50 .00031
9-19 397724 121 .000304 .50 .00030
10-11 406118 126 .000310 .50 .00031
11-12 388927 127 .000327 .50 .00033
12-13 395025 138 .000349 .50 .00035
13-14 388526 158 .000407 .50 .00041
14-15 385085 186 .000483 .50 .00048
15-16 377127 235 .000623 .50 .00062
16-17 368156 344 .000934 .50 .00093
17-18 366198 385 .001051 .50 .00105
18-19 354932 506 .001426 .50 .00142
19-20 350966 584 .001664 .50 .00166
20-21 359833 583 .001620 .50 .00162
21-22 349557 562 .001608 .50 .00161
22-23 365839 572 .001564 .50 .00156
23-24 370548 564 .001522 .50 .00152
24-25 295189 421 .001426 .50 .00143
25-26 304013 416 .001368 .50 .00137
26-27 305558 391 .001280 .50 .00128
27-28 310554 461 .001484 .50 .00148
28-29 275897 411 .001490 .50 .00149

29-30 261592 392 .001499 .50 .00150
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Table 1. (continued)

Construction of Complete Life Table for Total California Population, USA, 1970

X to x+1 P D M a' q

X X X X X
(1) (2) (3) (4) (5) (6)
30-31 264083 399 .001511 .50 .00151
31-32 247777 378 .001526 .50 .00152
32-33 241726 388 .001605 .50 .00160
33-34 232025 365 .001573 .50 .00157
34-35 233778 434 .001856 .50 .00185
35-36 234338 439 .001873 .50 .00187
36-37 224302 475 .002118 .50 .00212
37-38 228652 519 .002270 .50 .00227
38-39 226727 549 .002421 .50 .00242
39-40 235980 606 .002568 .50 .00256
40-41 249027 665 .002670 .50 .00267
41-42 232893 719 .003087 .50 .00308
42-43 239747 863 .003600 .50 .00359
43-44 238783 874 .003660 .50 .00365
44-45 248100 993 .004002 .50 .00399
45-46 253828 1140 .104491 .50 .00448
46-47 249857 1268 .005075 .50 .00506
47-48 247955 1362 .005493 .50 . 00548
48-49 252137 1422 .005640 .50 .00562
49-50 242126 1530 .006319 .50 .00630
50-51 243799 1594 .006538 .50 .00652
51-52 220599 1710 .007752 .50 .00772
52-53 213448 1793 .008400 .50 .00837
53-54 203618 1870 .009184 .50 .00914
54-55 202388 1981 .009788 .50 .00974
55-56 201750 2217 .010989 .50 .01093
56-57 193828 2333 .012036 .50 .01196
57-58 187257 2483 .013260 .50 .01317
58-59 178602 2392 .013393 .50 .01330
- 59-60 171807 2517 .014650 .50 .01l454
60-61 174613 2733 .015652 .50 .01553
61-62 157734 2743 .017390 .50 .01724
62-63 . 154174 2911 .018881 .50 .01870
63-64 144149 2968 .020590 .50 .02038
64-65 140100 2954 .021085 .50 .02086
65-66 135857 3391 .024960 .50 .02465
66-67 129386 3278 .025335 .50 .02502
67-68 123925 3352 .027049 . .50 .02669
68-69 112574 3331 .029589 .50 .02916

69-70 119063 3736 .031378 .50 .03089
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Table 1. (continued)

Construction of Complete Life Table for Total California Population, USA, 1970

: ~
X to x+1 P, Dx Mx al q.
(1) (2) (3) (4) (5) (6)
70-71 114066 3846 .033717 .50 .03316
71-72 100781 3704 .036753 .50 .03609
72-73 93031 3706 .039836 . 50 .03906
73-74 89992 3830 .042559 .50 .04167
74-75 86561 4063 .046938 .50 . 04586
75-76 81003 4275 .052776 .50 .05142
76-77 73552 4383 .059590 .50 .05787
77-78 70516 4259 .060398 .50 .05863
78-79 60616 4181 .068975 .50 .06668
79-80 56410 4227 .074934 .50 .07223
80-81 57646 4424 .076744 .50 .07391
81-82 48299 4288 .088780 .50 .08501
82-83 39560 3995 .100986 .50 .09613
83-84 34439 3753 .108975 . 50 .10334
84-85 31009 3669 .118320 .50 .11171

85+ 142691 22483 .157564 1.00000
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Table 2,

Complete Life Table for Total California Population, USA, 1970

Total
Number number
Probability Number Fraction of years of years Observed
Age of dying Number dying in of last lived in lived Expectation
interval in intervals living at interval vyear of interval beyond of life
(in years) (x,x+1) age x (x,x+1) life (x,x+1) age x at age x
X to x+1 3 £ d a! L T e
X X X X X X X
(1) (2) (3) (4) (5) (6) (7 (8)
0-1 .01801 100000 1801 .09 98361 7190390 71.90
1- 2 .00113 98199 111 .43 98136 7092029 72.22
2- 3 .00086 98088 84 .45 98042 6993893 71.30
3- 4 .00073 98004 72 .47 97966 6895851 70.36
4- 5 .00052 97932 51 .49 97906 6797885 69.41
5- 6 .00049 97881 48 .50 97857 6699979 68.45
6- 7 .00045 97833 44 .50 97811 6602122 67.48
7- 8 . 00034 97789 33 .50 97772 6504311 66.51
8- 9 .00031 97756 30 .50 97741 6406539 65.54
9-10 .00030 97726 29 .50 97711 6308798 64.56
10-11 .00031 97697 30 .50 97682 6211087 63.58
11-12 .00033 97667 32 .50 97651 6113405 62.59
12-13 .00035 97635 34 .50 97618 6015754 61.61
13-14 .00041 97601 40 .50 97581 5918136 60.64
14-15 .00048 97561 47 .50 97538 5820555 59.66
15-16 .00062 97514 60 .50 97484 5723017 58.69
16-17 .00093 97454 91 .50 97408 5625533 57.73
17-18 .00105 97363 102 .50 97312 5528125 56.78
18-19 .00142 97261 138 .50 97192 5430813 55.84
19-20 .00166 97123 161 .50 97043 5333621 54,92
20-21 .00162 96962 157 .50 96884 5236578 54.01
21-22 .00161 96805 156 .50 96727 5139694 53.09
22-23 .00156 96649 151 .50 96574 5042967 52.18
23-24 .00152 96498 147 .50 96424 4946393 51.26
24-25 .00143 96351 138 .50 96282 4849969 50.34
25-26 .00137 96213 132 .50 96147 4753687 49,41
26-27 .00128 96081 123 .50 96020 46 57540 48,48
27-28 .00148 95958 142 . 50 95887 4561520 47.54
28-29 .00149 95816 143 .50 95745 4465633 46,61
29-30 .00150 95673 144 .50 95601 4369888 45.68
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Table 2. (continued)

Complete Life Table for Total California Population, USA, 1970

Total
Number number
Probability Number Fraction of years of years Observed
Age of dying Number  dying in of last lived in lived Expectation
interval in interval living at interval year of interval beyond of life
(in years) (x,x+1) age x (x,x+1) life (x,x+1) age x at age x
x to x+1 q d a' L T e
X X X X X X X
(1) (2) (3) (4) (5) (6) (7) (8)
30-31 .00151 95529 144 . 50 95457 4274287 44.74
31-32 .00152 95385 145 .50 95312 4178830 43.81
32-33 .00160 95240 152 . 50 95164 408318 42.88
- 33-34 .00157 95088 149 .50 95014 3988354 41.94
34-35 .00185 94939 176 .50 94851 3893340 41.01
35-36 .00187 94763 177 .50 94674 3798489 40.08
36-37 .00212 94586 201 .50 94486 3703815 39.16
37-38 .00227 94385 214 .50 94278 3609329 38.24
38-39 .00242 94171 228 .50 94057 3515051 37.33
39-40 .00256 93943 240 .50 93823 3420994 36.42
40-41 .00267 93703 250 .50 93578 3327171 35.51
41-42 .00308 93453 288 .50 93309 3233593 34.60
42-43 .00359 93165 334 .50 92998 3140284 33.71
43-44 .00365 92831 339 .50 92661 3047286 32.83
44-45 .00399 92492 369 .50 92307 2954625 31.94
45-46 . 00448 92123 413 .50 91916 2862318 31.07
46-47 .00506 91710 464 .50 91478 2770402 30.21
47-48 .00548 91246 500 .50 90996 2678924 29.36
48-49 .00562 90746 510 .50 90491 2587928 28.52
49-50 .00630 90236 568 .50 89952 2497437 27.68
50-51 .00652 89668 585 .50 89376 2407485 26.85
51~-52 .00772 89083 688 .50 88739 2318109 26.02
52-53 .00837 88395 740 .50 88025 2229370 25,22
53-54 .00914 87655 801 .50 87255 2141345 24.43
54-55 .00974 86854 846 .50 86431 2054090 23.65
55-56 .01093 86008 940 .50 85538 1967659 22.88
56-57 .01196 85068 1017 .50 84559 1882121 22.12
57-58 .01317 84051 1107 .50 83497 1797562 21.39
58-59 .01330 82944 1103 .50 82393 1714065 20.67

59-60 .01454 81841 1190 .50 81246 1631672 19.94
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Table 2.

(continued)

Complete Life Table for Total California Population, USA, 1970

Total
Number number

Probability Number Fraction of years of years Observed

Age of dying Number dying in of last lived in 1lived Expectation

interval in interval living at interval year of interval beyond of life
(in years) (x,x+1) age x (x,x+1) life (x,x+1) age x at age x

X to x+1 q d a' L T e
X X X X X X X
(1) (2) (3) (4) (5) (6) (7) (8)

60-61 .01553 80651 1253 .50 80025 1550426 19.22
61-62 .01724 79398 1369 .50 78713 1470401 18.52
62-63 .01870 78029 1459 .50 77299 1391688 17.84
63-64 .02038 76570 1560 .50 75790 1314389 17.17
64-65 .02086 75010 1565 .50 74228 1238599 16.51
65-66 .02465 73445 1810 .50 72540 1164371 15.85
66-67 .02502 71635 1792 .50 70739 1091831 15.24
67-68 .02669 69843 1864 .50 68911 1021092 14,62
68-69 .02916 67979 1982 .50 66988 952181 14.01
69-70 .03089 65997 2039 .50 64978 885193 13.41
70-71 .03316 63958 2121 .50 62897 820215 12.82
71-72 .03609 61837 2232 .50 60721 757318 12.25
72-73 .03906 59605 2328 .50 58441 696597 11.69
73-74 .04167 57277 2387 .50 56083 638156 11.14
74-75 .04586 54890 2517 .50 53632 582073 10.60.
i 75-76 .05142 52373 2693 .50 51026 528441 10.09
I 76-77 .05787 49680 2875 .50 48243 477415 9.61
77-78 .05863 46805 2744 .50 45433 429172 9.17
‘ 78-79 .06668 44061 2938 .50 42592 383739 8.71
79-80 .07223 41123 2970 .50 39638 341147 8.30
80-81 .07391 38153 2820 .50 36743 301509 7.90
81-82 .08501 35333 3004 .50 33831 264766 7.49
82-83 .09613 32329 3108 .50 30775 230935 7.14
83-84 .10334 29221 3020 .50 27711 200160 6.85
84-85 11171 26201 2927 .50 24738 172449 6.58
85+ 1.00000 23274 23274 147711 147711 6.35
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CHAPTER 5

THE LIFE TABLE AND ITS CONSTRUCTION - ABRIDGED LIFE TABLES

1. Introduction

Clearly, the current life table furnishes information not bbtainable
from other sources. It provides the public health worker, demographers
and other research workers with tools for making international comparisons
as well as for comparing contemporary groups within a country or for
assessing trends within a given population. The life table death rate
has the advantage over other mortality indices of being independent of

A

age and sex distributions. This, of course, is also true for e,, the average

0

length of life, or for ;x’ the average remaining lifetime at any age x.
The ratio Qk/Qj gives a convenient measurement for comparing the
survival of selected age segments of two populations; for example, one
might want to know 1f Swedish women who survive to age 20 have as good a
chance of surviving to age 45 as do their Italian counterparts by comparing
the ratios 245/220.

Life table estimates have the disadvantage of any statistics based
on the population census and vital records. Individuals or entire households
may be missed by the census taker or overlooked by the informant. Cross-
checking with birth and death certificates show that young children, even
when they survive infancy, are sometimes forgotten; migratory segments
of the population (particularly young males) are subject to marked under-
enumeration. Misstatements of age are clearly discernible in bar gfaphs
of the age distribution particularly the overstatement of the ages of
young children (followed by an understatement in the middle years), of

persons approaching retirement age, and of the very old; in addition, a

heaping is found for ages in multiples of five and at even ages.
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Completeness of birth registration varies from country to country
and must occasionally be checked. Death registration can be improved by
the requifement that it be filed before a burial permit is issued. These
defects in mortality data and population census have a marked effect on
the complete life table.

There are three other disadvantages of complete life tables that are
more closely related to the tables themselves. (1) The data necessary for
intervals of one year of age is frequently not available; (2) Computations
are tedious and time-consuming when computer services are not available;
(3) A table consisting of 85 or 95 age groups does not present a concise
picture of the mortality experience of a population.

These objections can be obviated by constructing an abridged rather
than the complete life table. The computations are discussed in the following

paragraphs. 2. A Method of Life Table Construction

An abridged life table contains columns similar to those described for
the complete life table. The limits of age intervals are denoted by Xs»

i=0,1,...,w, and the length of the interval by ni so that Xi+1-xi = ni.
Thus we have

i+1) ~

Column 2. Proportion dying in interval (xi,xi+1), q-

Column 1. Age interval (xi,x

Column 3. Number alive at age X Qi.

Column 4. Number dying in interval (xi,xi+1), di'

Column 5. The average fraction of interval (Xi’xi+1) lived by an
individual dying at an age included in the interval a,.

Column 6. Total number of years lived in interval (Xi’xi+1)’ Li'

Column 7. Total number of years lived beyond age X Ti'

Column 8. Observed expectation of life age at X Ei.

The present method of construcing the abridged life table was proposed

by Chiang [1960b], [1961] and was used for the 1959-61 California
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abridged Life Tables [Norris]. The idea and procedure involved are the same
as those used in the construction of the complete life table described in
Chapter 4 with differences due only to the length of intervals. The length of
the typical interval (Xi’xi+1) in the abridged table is ni = xi+1—xi, which

is greater than one year (commonly, n, = 5 years, see Table 2). The essential
element here is the average fraction of the interval lived by each person

who dies at an age included in the interval. This fraction, called the
fraction of last age interval of life, denoted by a;» is conceptually a
logical extension of the fraction of the last year of life, a;. Determination
and discussion of a; will be presented in Section 4. We use a, as the point

of departure.

Starting with .the values of a, we can construct the abridged life

table by following the steps in Chapter 4. Because of its importance,

however, we repeat the previous argument to derive the formula for 95> the
estimate of the probability that an individual alive at age X will die in

the interval (xi,x ). Let Di be the number of deaths occurring in the age

i+l

} duriung the calendar vear under consideration, M, the

interval (x.,x, .
( i’7i+1 1

corresponding age-specific death rate. To derive a relationship bhetween qi

and Ti, wve introduce Hi, the number of individuals alive at e:nct ape xi,

such that awmong the Ji persors ), will die in the interval. Then by definition
i

the nroportion dying in (x,,x ) is given bv
i

i+l

a = e . (2.1)

The age specific death rate *, is the ratio of D, to the total number of
i i

vears lived by the Ji individuals during the interval (xj, ), or

i1

D

. [ - .. —— . 2 . ~
i G- )dn, + an. 0, (2.2)
1 1 1 L ? .

L
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The first term in the denominator of (2.2) is the number of vears lived by the (Ni_Di)
survivors, while the second term is the number of years lived by those who die in

(Xi’xi+1)' Eliminating N, from (2.1) and (2.2) yields the basic

formula in the construction of an abridged life table

;M
q., = —— (2.3)
+ (1- Y]
i 1 (1 1i)ni i
The age-specific death rate Mi may be estimated from
Di
M, o= o
i T T (2.4)

1

with Pi being the wid-year population.

All other quantities in the table are functions of ﬁi, a, and the radix

)} and the number %, of survivors
i

£,.. The number cli of deaths in (xi,x "

0 i+1

at age X0 are computed from

di = Qiﬁi, i=0,1,...,w-1, (2.5)
and

£i+l = Qi—di, i=0,1,...,w-1, (2.6)

respectively. The number of years lived in the interval (xi,xi+1) by the Qi

survivors at age Xy is

L., =n.(2,~d,) + a,n,d,, i=0,1,...,w-1 . (2.7)
i i i ii’i

The final age interval is again an open interval, and Lw is computed exactly

as in the complete life table [cf., equation (3.6) in Chapter 4]:
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L= 50, (2.8)

where Mw is again the specific death rate for people of aﬂeiaqand over.

The total number Ti of years remaining to all the people attaining age X4

X — A
is the sum of Lj for j=i,i+1,...,w. The ohserved expectation of life ei at
age x, is the ratio T./%,, or

i S §

L, + L + ... + L
A~ i 1+1 W
ei = Qi , i=0,...w . (2.9

As an example, the abridged life table for the California 1970 total
population is given in Tables ] and 2. The required data for constructing an
abridged life table is the death rate (Mi) and the fraction of last age interval of
life (ai) for each age .group. The death rate may be computed from the mid-
year population (Pi column (2) in Table 1) and the number of deaths (Di,

column (3)) of the population in question using formula (2.4). For the

California 1970 total population, for example, the death rate MO is

computed from

D
v = _0 _ 6234
.10 Po 320483 ° .018309 . @ .4a)

The fraction of the last age interval of life, ass remains relatively constant

over time for a given age interval (xi,x ). The only exception is ay»

i+l
which may be computed from the readily available published data on infant

deaths, The value of a for 1=0,1,..., have been computed for several countries

'
and are given in Appendix V. They may be revised every 10 years.

When death rate (Mi) for each age group of a population is determined,
one uses the corresponding a, and formula (2.3) to compute ai' The figures
in other columns in the life table can be obtained by using formulas (2.5)

through (2.9). The reader should use these formulas to verify the numerical

values in Tables 1 and 2.
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Table 1.

Construction of Abridged Life Table for Total California Population, USA, 1970

Number
Mid-year of Fraction Probability
Age population deaths of last of dying in
interval in interval in interval Death age interval
(in years) (Xi’ Xi+1) (Xi’ Xi+1) rate inte?val (Xi’ X
of life
X3 0 ¥in Py Dy My 24 1

(1) (2) (3) (4) (5) (6)
0-1 340483 6234 .018309 .09 .0181
1- 5 1302198 1049 .000806 .41 .00322
5-10 1918117 723 ' .000377 .44 .00188
10-15 1963681 735 .000374 . 54 .00187
15-20 1817379 2054 .001130 .59 .00564
20-25 1740966 2702 .001552 .49 .00773
25-30 1457614 2071 .001421 .51 .00708
30-35 1219389 1964 .001611 .52 .00802
35-40 1149999 2588 .002250 .53 .01119
40-45 1208550 4114 .003404 .54 .01689
45-50 1245903 6722 .005395 .53 .02664
50-55 1083852 8948 .008256 .53 .04049
55-60 933244 11942 .012796 .52 .06207
60-65 770770 14309 .018565 .52 .08886
65-70 620805 17088 .027526 .51 .12893
70-75 484431 19149 .039529 .52 .18052
75-80 342097 21325 .062336 .51 .27039
80-85 210953 20129 .095419 .50 .38521

85+ 142691 22483 . 157564 : 1.00000
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Table 2.

Abridged Life Table for Total California Population, USA, 1970

Total
Number number

Probability Number Fraction of years of years Observed

Age of dying Number dying in of last lived in 1lived Expectatior

cnterval in interval living at interval year of interval beyond of life

(in years) (xi, xi+1) age x. (xl,xi+P life (%i’xi+1) age x, at age X,

X, tox, . di ﬁi d, a; L, T, éi
(1) (2) (3) (4) (5) (6) (7 (8)

0-1 .01801 100000 1801 .09 98361 7195221 71.95
1- 5 .00322 98199 316 .41 392050 7096860 72.27
5-10 .00188 97883 184 44 488900 6704810 68.50
10-15 .00187 97699 183 .54 488074 6215910 63.62
15-20 .00564 97516 550 .59 486452 5727836 58.74
20-25 .00773 ‘ 96966 750 .49 482917 5241384 54.05
25-30 .00708 96216 681 .51 479412 4758467 49.46
30-35 .00802 95535 766 .52 475837 4279055 44,79
35-40 .01119 94769 1160 .53 471354 3803218 40.13
40-45 .01689 93709 1583 . 54 464904 3331864 35,56
45-50 .02664 92126 2454 .53 454863 2866960 31.12
50-55 .04049 89672 3631 .53 439827 2412097 26.90
55-60 .06207 86041 5341 .52 417387 1972270 22.92
60-65 .08886 80700 7171 .52 386290 1554883 19.27
65-70 .12893 73529 9480 .51 344419 1168593 15.89
70-75 .18052 64049 11562 .52 292496 824174 12.87
75-80 .27039 52487 14192 .51 227665 531678 10.13
80-85 .38521 38295 14752 .50 154595 304013 7.9

85+ 1.00000 23543 23543 149418 149418 6.35
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3. The Fraction of the Last Year of Life, a; , and the

Fraction of the Last Age Interval of Life, a;

3.1 The fraction of the last year of life, a; . The description of life

table construction in the preceding section clearly indicates that the main
ingredient in the construction of complete life tables is the fraction of

the last year of life. Computation of the fraction is quite easy when the
necessary data are available. Since we need to know only the exact number

of days lived past the final birthday, which may be obtained from the date

of birth and the date of death. In the State of California, both dates are
key punched into tabulation cards, from which a computer can make the required
subtraction to get the number of days lived during the last year of life for
each person who died, sum the number of days lived, divide by the number of
deaths to obtain the average number of days lived, and divide by 365 (or 366)
days to give the desired fraction of year lived, a; . Various statistical
tests have been performed regarding the fraction a; using 132,205 California
resident death records in 1960. Some of the results are briefly described
below,

First the hypothesis of uniform distribution of deaths was tested for each
year of age, The number of déaths by days lived during the last year of life
was tabulated for each race and sex group and for each year of age. The year
was divided into 26 intervals of 14 days each, except for the first interval
which was 15 days. A frequency distribution of the number of deaths by
intervals of days lived forveach of the selected ages is shown in Table 5,

The Chi-square method was used to test the uniform distribution of deaths.

For the 10 ages shown, Chi-square values were significant for ages 0, 1, and 59.
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The distribution of the deaths in the first year of life is highly skewed
with the first interval of 15 days accounting for almost 70 percent of the
total 8624 deaths. The second interval of 14 days contains only about 3.5
percent of the deaths, and this percentage decreases with the increase in
age. The distribution of deaths in the second year also shows a decrease in
the percentage of deaths with increasing age, although in a much smaller
degree. No definite pattern can be ascertained for the distribution of deaths
for age 59.

The t-test and the F-test were also performed for the difference between
the observed fraction (a£ ) and the hypothesized value of .5, and for the
difference between sex and race groups for each year of life. The results
show that from age 5 on, the fraction a; is invariant with respect to sex and
race and the assumed value of .5 is accepted. For the first 5 years of life,
the data suggest the values of ab = .09, ai = .43, aé = .45, a% = .47,

and a; = .49 for both sexes. These values, except

for ab, may be assumed for other countries. The value of a’

0’ however, needs to

be computed for each country. The data required for the computation of ab

are usually available in vital statistics publications.

|

o 1s shown in Table 6, where the 1970 United States

Computation of a

infant death data are used for illustration. The number of deaths in
column (3) by age at death are usually available in vital statistics
publications. The average point for each interval [Column (2)],

takes into account the distribution of deaths in each interval.

The product of the figures in columns (2) and (3), recorded in column (4),
is the number of days lived by individuals who died in each interval. The
sum of the products, appearing in the lower right hand corner (2,464,403,7

in this case) 1is the total number of days lived by the (74,667) infants who
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died during the first year of life. This total, when divided by 74,667 x
365, gives the fraction of aé, the fraction of the year lived by an infant
who dies during the first year of life. Since both the complete life table

and the abridged life table begin with the age interval (0,1), aO = aé.

3.2 The fraction of the last age interval of life, a, . This fraction is as

essential in the construction of the abridged life table as the fraction of the
last year of life in the complete table. Conceptually, it is an extension of
the latter. When a person dies at age 23, for example, he has lived a

certain fraction of the age interval (20,25). The average fraction lived in

each interval (xi, xi+1), which is called the fraction of the last age interval

of life, depends on the probability of dying and the corresponding fraction
of last year of life a; for each year of age within the interval. The
relation between a; and the probabilities q, and px(= l-qx) and a; is derived
as follows.

Consider the age interval (1, 5) and the fraction of the interval a,
that a person will live if he dies between ages one and five. For a person
alive at the exact age of one year [i.e., the beginning of the interval (1, 5)],
there is a probability q, that he will die during the year (1, 2), a probability
(l-ql)q2 = P9, that he will die in (2, 3), a probability PP,z of dying in

(3, 4), and a probability p of dying in (4, 5). The corresponding

1P2P3%
periods of time that he lives are a., (1+a§), (2+a3), and (3+a;),respectively.

For example, if he dies during the year (2, 3), he will have lived one complete

year (1, 2) and a fraction ai of the year (2, 3), therefore he will have lived

2
(1, 5) is 1 - p1p2p3p4,'and the length of the interval is 5-1 = 4 years,

a total of l+a, years. The probability of dying at any time during the interval

therefore the formula for the fraction a1 is

' * ' '
_ % P9 vy ) v pyPyag(2vag ) v pyPoPsa, (343, )

a

(3.1)
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Table 3. Frequency distribution of deaths by interval of davs lived in the
last year of life for selected ages, total population, California; 1960

Interval
(in completed
days) Age at Death (in completed years)
0 1 2 3 9 19 29 39 49 59
0-14 6,091 29 20 19 5 11 14 21 50 83
15-28 305 27 15 10 5 9 8 22 48 63
29-42 228 33 22 11 2 9 7 23 43 63
43-56 247 25 11 15 7 12 13 23 46 64
57-70 233 21 16 12 3 8 9 20 44 71
71-84 190 20 10 8 5 7 16 22 41 68
85-98 152 31 13 13 3 4 9 32 49 87
99-112 153 24 17 13 4 18 2 27 43 69
113-126 152 22 13 14 3 8 12 25 42 56
127-140 114 28 16 13 1 9 5 29 49 77
141-154 89 25 16 9 4 8 10 27 46 93
155-168 91 28 17 8 5 11 10 15 49 80
169-182 61 28 16 11 7 12 10 20 50 71
183-196 55 18 9 12 3 14 7 20 42 72
197-210 55 11 15 9 5 9 14 33 50 84
211-224 54 13 11 8 4 9 6 21 57 84
225-238 47 14 12 9 6 11 13 21 43 63
239-252 50 8 6 13 4 7 12 25 43 68
253-266 35 12 10 9 2 7 10 24 53 74
267-280 41 14 16 8 5 9 12 28 53 87
281-294 36 12 14 8 4 4 14 20 55 87
295-308 31 13 11 6 3 13 9 24 46 85
309-322 24 28 11 9 1 5 6 26 45 95
323-336 41 13 6 7 3 6 11 28 43 92
337-350 28 11 10 15 3 8 14 20 54 91
351-364 21 18 8 3 3 11 13 16 59 90
Total 8,624 526 341 272 100 239 266 612 1,243 2,017
Deaths
x2 97,299.5**68.4** 29 .4 22.9 15.8 26.6 27.4 21.0 13.2 40.9*

* Significant at the 5 percent level
** Significant at the 1 percent level
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Table 4. Computation of the fraction a
States total population, 1970

0 based on infant deaths, United

Average
point Number Number of
Age interval in interval of deaths days lived
at death (in days) in interval* (2) x (3)

(1) (2) (3) (4)
<1 hour .02 6,485 129.7
1-24 hours .5 26,425 13,212.5
1-2 days 1.5 7,944 11,916.0
2-3 days 2.5 4,761 11,902.5
3-4 3.5 2,163 7,570.5
4-5 4.5 1,346 6,057.0
5-6 5.5 984 5,412.0
6-7 6.5 713 4,634.5
7-14 10.0 2,722 27,220.0
14-21 17.0 1,461 24,837.0
21-28 24,0 1,275 30,600.0
28-60 42,0 4,662 195,804.0
2-3 mos. 73.0 3,561 259,953.0
3-4 103.0 2,586 266,358.0
4-5 134.0 1,866 250,044.0
5-6 164.0 1,379 226,156.0
6-7 195.0 1,065 207,675.0
7-8 225.0 874 196,650.0
8-9 256.0 678 173,568.0
9-10 287.0 597 171,339.0
10-11 318.0 565 179,670.0
11-12 349.0 555 193,695.0
Total 74,667 2,464,403.7

*

Source: U.S. Department of Health, Education and Welfare, Public Health
Service, National Center for Health Statistics, Vital Statistics,
of the U.S., 1970, vol. II, Part A, pp. 2-10, 11. '

. 2,466,403.7 _ o

a0  365x74,667
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Using the established values of ai', aé , a, and a'

3 4"’

we have

.43q1 + 1.45p1q2 + 2.47p1p2q3 + 3-49P1P2P3q4

a =

1 4(1 - P1P2P3P4)

(3.2)

For a given country, the given probabilities, 9, d,- 93 and q, can be

determined. Therefore, the fraction a

computed from formula (3.2). The computation of a

1

1

population, 1970, is demonstrated in Table 5.

Table 5. Computation of the fraction a,

for California

based on California mortality data, 1970

for the interval (1, 5) may be

for age interval (1, 5)

Expected length of time
lived in interval

Year Conditional Probability of Dying Length of
of in year (x, x+1) given alive time lived
Age at age 1 (1, 5 (2 x 3)
1 2 3 4
1-2 q, = .00113 .43 .000486
2-3 P4, = (.99887) (.00086) = .000859 1.45 .001246
3-4 P,P,dz = (.99887)(.99914)(.00073) = ,000729 2.47 .001800
4-5 P P,P3d, * (.99887) (.99914)(.99927) (.00052) = 3.49 .001810
.000519
Total| 1 - p;p,Psp, = .003236 .00534

.00534
31 * 4x.003236

= .41
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From age 5 to the last interval in the life table, the length of each
age interval is 5 years and the fraction of last year of life for each year
is ax' = 1/2. The formula for the fraction a; for interval (xi,xi+5) can

be simplified somewhat. For age interval (5, 10) for example, we have

.5qg + (1+.5)p5q6 + (2+.5)p5p6q7 + (3+_5)p5p6p7q8 . (4¢'S)p5p6p7p8q9

a =
_ Psflg * 2PsPgl7 * 3PsPPyg * 4PsPePoPgdy (3.3)

since
Qg * P5dg * PcPgldy * PePePslg * PoPePolgq = 1 - PePP,PgPq - (3.4)

The values of the fraction a; for the abridgedvlife table have been
computed from formulas (3.2) and (3.3) for selected countries for which the

required information is available, and are listed in Appendix V.

These values of a; can be used directly in constructing life tables for

the respective countries.

Remark 4. Formulas (3.2) and (3.3) show that a; does not depend on
the absolute values of q, Of P_ but rather on the treni of mortality
within the interval. For example, if 45 > 4 > 945 7 9 7 dg» then ag < 1/2,
regardless of the absolute values of these qx's.

Remark 5. The probabilities qX and pX are computed from the mprtality
data of a population in question, the value of a,; represents the mortality
trend in each interval prevailing in the population. Since the mortality
trend does not vary much over time (although death rates do), the a; values

may be regarded as constant and may be used for the construction of abridged

life tables of the subsequent years of the population.
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The invariant property of a; not only holds over time, but is also
true for countries with similar mortality patterns. Table 8 shows a remark-
able agreement of the five sets of a, values. For countries with a similar
mortality pattern, the same set of ai values may be used.

Remark 6: The assumption that a; = 1/2 for each year of age within
an interval (xi, xi+1) does not necessarily imply that a, = 1/2 for the
entire interval. As formula (3.3) shows, the value of the fraction a;
depends on the mortality pattern over an entire interval and not on the mor-.
tality rate for any single year. When the mortality rate increases with age
in an interval, the fraction a; > 1/2; then the reverse pattern prevails,
a, < 1/2. Consider, for example, the age intervals (5, 10) and (10, 15)
in 1970 California population. Although ai = 1/2 for each age in the
two intervals, a, = .44 for interval (5, 10) and a; = .54 for interval (10, 15)

due to the changing mortality pattern, as shown in Table 7.




- 106 —

Table 6

Fraction of last age interval of life, a;s for selected populations

Age Austria California France Finland U.S.A.

1969 1970 1969 1968 1970
0-1 12 .09 .16* .09 .09
1-5 .37 41 .38 .38 .40
5-10 .47 A .46 .49 4E
10-15 .51 .54 .54 .52 55
15-20 .58 .59 .56 .53 54
20-25 .48 .49 .51 .51 .51
25-30 .51 .51 .51 .51 .51
30-35 .53 .52 .53 .52 .52
35-40 .53 .53 .53 .54 .53
40-45 .52 .54 .53 .55 .54
45-50 .54 .53 .54 .53 .54
50-55 .52 .53 .52 .54 .53
55-60 .53 .52 .53 .53 .53
60-65 .54 .52 .53 .53 .52
65-70 .53 .51 .53 .52 .52
70-75 .52 .52 .52 .52 .51
75-80 .51 .51 .51 .51 .51
80-85 .48 .50 .49 .47 .49
85-90 45 .46
90-95 .40 .41

*A large a_ value for the France 1969 population is due to the

0
fact that infants who die before 3 davs old are not recorded.
Age at death of these infants are not included in the calculation

.of ao.
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Table 7

Computation of a; for age intervals (5, 10) and (10, 15)

based on California population, 1970

Fraction
of the
Age last year Proportion dying in Fraction of last
interval of life age interval age interval
1
X to x+l a q, a,
(1) (2) (3) (4)
5-6 .50 .00049
6-7 .50 .00045
7-8 .50 .00034 a4
8-9 .50 .00031
9-10 .50 .00030
10-11 .50 .00031
11-12 .50 .00033
12-13 .50 .00035 .54
13-14 .50 .00041
14-15 .50 .00048
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4. Significant Historical Contributions to the Construction of Abridged
Life Tables

The history of life table construction reflects increasing refinement
of the method. For instance, although the earliest tables (see lntroduction
to this chapter) were based solely on recorded deaths, Milne's table of 1815
took into account population figures as well. In 1839 the English Life Tables
were constructed using only registered births and deaths since, due to the
influence of William Farr, census figures were found to be unreliable. Other
significant contributions and refinements followed, in particular those of
Moore, Day, Wickens, Pell, King, Derksen, Grcville,\Rced—Merrell, Wiesler,
Keyfitz, and Sirken. We shall briefly discuss some of these methods below.

4.1. King's Method. This method was introduced by George King in the

construction of the Seventh English Life Table at the turn of the century and has
been usedby many English-speaking countries for fifty years or so. Using this
method, data are arranged in five-year age groups. Population figures and

the number of deaths are calculated for the central year of age (pivotal age)

of each age group by a graduation process, yielding the values of q for the
pivotal age. Using the complement of qx at pivotal ages and finite difference
formulas, the number of survivors (Qx) are obtained. T. N. E. Greville adapted

this method for the 1939-41 United States Life Tables.

4.2. Reed-Merrell Method. In the search for a relation between the probability q,
i
and the mortality rate, Mi’ Lowell J. Reed and Margaret Merrell studied extensively some
thirty-three tables in J. W. Glover's 1910 series of United States Life Tables.

Their findings were published in 1939 showing that the following equation describes
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satisfactorily the entire range of observations in Glover's tables:

>

-n ,M,-.008n Mz
ii i
qi = ]l-e )

S

Many formulas are also given to determine the Li column from the number of survivors

21 in the life table.

4.3. Greville's Method. T.N.E. Greville used a mathematical approach to derive

a relation between qy and Mi' He started with the equation

d
= = — log L.
Mi dx . & i

After integrating both sides of the equation, thus yielding Li’ and applying the
Euler-Maclaurin summation formula, Greville was able to express Ty in terms of a
series of exponential functions of My. He then used quite skilful mathematical

manipulations, and arrived at the formula:

M.
i
q, = 7 1 ~ T
i 1/ni + Mi[l/Z ni’l“(Mi logc) ]

where the constant ¢ is the constant in the Gompertz' law of mortality:
p 3
= Bce
Ux

Creville also suggested a number of formulas to compute the life table population

Li'
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4.4. Wiesler's Method. This method, proposed in "Une méthods simple pour

la construction de tables de mortalité abrégées,'" World Population Conference,

1954, Volume IV, United Nations, in essence uses age specific death rates Mi
as the probability of dying q;- For an age interval (xi,xi+ni), let Di be
the number of deaths during a calendar year and Pi be the total of 1living

people in the age group (xi,x +n.). Then Weisler suggests that

i i
~ D, ~ D
=1-— or = —
Py P, 94 T 7. ’
i i
and 21, 25, 210, etc., are computed successively from
21 = %oPg
t
_ 1-4
s = 2(py_y)
t
_ 5-9
210 = %5 (Ps5_g) sttt o
where t etc., are assumed to be the same for all mortality tables.

1-4> F5-9°

The expectation of life at Xy is computed from

o -1, ‘atl * 2a+2 T .
o 2 Qa

~

4.5. Sirken's Method. Monroe Sirken distinguishes the age specific death

rate Mi from a current population:

o

1
My =5,
1

and the rate m, defined in the life table quantities:
d,
i
m, = —

i L.
i

Using the observed death rate Mi’ one derives q from the equation
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94 T Ha M, (A)

where the constant ai is assumed to be the same as in a standard table.
Using q;> one completes the columns Qi and di' To compute Li’ Sirken
considers another equation

n.m,
1 1

9; = 1+a.m, ° (B)
ii

Substituting q; = di/ﬂi and m, = di/Li in (B) yields

oL

x
He |

n, d./L,
i i i

~ 1¥a. d./L.
1 1 1

Solving the last equation for Li one gets

where the constant ai is assumed to be the same as in a standard table

but is different from ai.

4.6. Keyfitz's Method. This is an iterative procedure using the basic relation-

ship between the probability 9y and the age-specific mortality rate m, or Mi

niMi
i 1+(n.- a.)M, (&)
ini i

where 2 is the number of years lived in the age interval (Xi’xi+ni) by an
individual who dies in the interval. In additionto a,, Keyfitz introduces a
ni :
quantity nAi’ the average number of years already lived within the interval
+n) b . . .
(xi,x1+n1) y a stationary population aged (xi,xi+ni)
Taking 3 = ni/2 on the first cycle to obtain first approximation

of a; using formula (A), then using
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_ i, i _f+l - 1;L

w1 =7 g i)
1

ni n

L= Qp+ ) +57 Wiy 4.9 ’
and

PR I e £ Wle? S
i T2 T g L

and other formulas to arrive at a second approximation of qi. After each
iteration, a life table is constructed and the age-specific mortality rate

is compared with those observed, and an adjustment made for the next iteration.
The iterative process continues until the life table age specific rates agree

with the corresponding observed rates.
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5. Cohort (Generation) Life Table

It has been pointed out in Section 1 of this chapter that a cohort life
table describes the actual mortality experience of a particular group of
individuals (the cohort) from birth to the death of the last member of the
group. The subject involved need not be human beings. Cohort life tables
for various animal populations have appeared frequently in the literature.

In fact, the cohort life table has been widely used for years in studies

of animal populations, in biological control, in ecology, and in population
dynamics. Cohort life tables have been constructed for inanimate objects
as well.

For simplicity of formulas, the length of age interval is assumed to be
constant and denoted by n. The basic variables involved in a cohort life table
are the number of survivors (Qx) at each age x, the number of deaths (dx)
within each age interval (x,x+n). The unit of x depends on the problem in

question. In any case, the numbers £ and dX satisfy the obvious relationship
X

g-9.  =d (5.1)
or

L =2 -d . (5.2)

The number of survivors at age x+n is equal to the number alive at the begin-
ning of the interval (x, x+n) minus  these who died during the interval.

The probability qy for each interval is estimated by dividing dX by QX,
d
- X
qx I; . (5.3)

A
When lx, dx’ and ﬁx are determined, the remaining part of the life table can

be completed in exactly the same way as in the current life table in Section 1 and 2.

Assuming q, = 1/2, we have
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1 _n
Lo=ng, +(1-3)nd =3 (& +2 ) (5.4)

In a cohort life table, observations are usually made throughout the life span
of subjects under study. Therefore, the values Rx, dx’ Lx and formulas
from (5.1) to (5.5) are all applicable to the last age interval (Rx are over).

The quantity Tx as before is equal to the sum of Lx’ i.e.,
T =L+ ... +1L (5.5)

where the symbol w indicates the beginning of the last age interval. Finally,

the expectation of life Rx is given by

-3

N
e =

X
b [ ’
x

x=0,1,...,w . {5.6)

An example of a life table for adult Drosophila Melanogaster is presented

in Table 10 for illustration [Miller and Thomas]. A group of 20 = 270 male
fruit flies were followed from the time they became adults. The number of
survivors at each five day period and the number of deaths occurring within
each age interval of five days are recorded in columns (2) and (3) respectively.
Dividing dX by RX for each age interval gives the probability of dying ax

in column (4). Using relations (5.4), (5.5), and (5.6), we computed the
quantities LX, Tx’ and ;X for each age, and recorded the numerical values

in columns (5), (6), and (7), respectively assuming a = .05 over all intervals.
A similar table has been constructed for female adult Drosophila. Comparison
between the two sexes with respect to the expectation of life, the survival
probability, or the probability of death, can easily be made with the aid of

the corresponding standard deviationms (c.f., Chapter 6).
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Table 8

Life Table of Adult Male Drosophila Melanogaster

Age Number Number Probability Days Days Observed
Interval living dying in of dying in lived in lived Expectation
(Days) at age Xx (x, x+n) (x, x+n) (x, x+n) beyond of life at
e . e . @gex 4seX
R % R T
(1) (2) (3) 4) Gy ) 7)
0-5 270 2 .00741 1345 11660 43.2
5-10 268 4 .01493 1330 10315 38.5
10-15 264 3 .01136 1312 8985 34.0
15-20 261 7 .02682 1288 7673 29.4
20-25 254 3 .01181 1262 6385 25.1
25-30 251 3 .01195 1248 5123 20.4
30-35 248 16 .06452 1200 3875 15.6
35-40 232 66 .28448 995 2675 11.5
40-45 166 36 .21687 740 1680 10.1
45-50 130 54 .41538 515 940 7.2
50-55 76 42 .55263 275 425 .6
55-60 34 21 .61765 118 150

60 + 13 13 1.00000 32 32
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Table 9

Life Table of Adult Female Drosophila Melanogaster

Age Number Number Probability Days Days Observed
Interval living dying in of dying in lived in lived Expectation
(Days) at age x (x, x+n) (x, x+n) (x, x+n) beyond of life at
b 4 age x
R e
(x, x+n) lx dx q, Lx Tx e
(1) (2) (3) 4) (5) (6) @)
0-5 275 4 .01455 1365 . 10303 37.5
5-10 271 7 .02583 1338 8938 33.0
10-15 264 3 .01136 1312 7600 28.8
15-20 261 7 .02682 1288 6288 24,1
20-25 254 13 .05118 1238 5000 19.7
25-30 241 22 .09129 1150 3762 15.6
30-35 219 31 .14155 1018 2612 11.9
35-40 188 68 .36170 770 1594 8.5
40-45 120 51 .42500 472 824 6.9
45-50 69 38 .55072 250 352 .1
50-55 31 26 .83871 90 102 3.3
55 + 5 5 1.00000 12 12 2.5
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Footnotes

1/

—' During the early development of the concept of expectation of life, a

curtate cxpectation of life, defined as

was first introduced. This expectation considers onlv the completed years
of life lived by survivors, whereas the complete expectation of life takes
into account also the fractional vears of life lived by those who die in any
year. Under the assumption that each person who dies durine any vear of

age lives half of the year on the averase, the complete expectation of life

is given by

Since the curtate expectation is no longer in use, in this book the symhol

e is used to denote the true expectation of life at age x,
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CHAPTER 6

STATISTICAL INFERENCE REGARDING LIFE TABLE FUNCTIONS

1. Introduction

Each figure in a 1life table as described in the preceding chapters
is an estimate of the corresponding unknown true value. Statistical inference
regarding these unknown valucs may be made on the basis of the observed
quantities. An essential element required in making statistical inference,
as indicated in Chapter 3, is the standard error of the estimate. The purpose
of this chapter is (1) to derive formulas for the sample variances (or their
square roots, standard error) of the life table functions, and (2) to demonstrate
with numerical values how to construct confidence intervals and how to test
statistical hypotheses. Specifically, inference will be made about three
categories of parameters: (i) q; - the probability of dying in an age interval

(Xl' ); (i) pij' the survival probability from age X, to xj; and (iii) €y

X,
i+1

the expectation of life at age Xy for a = 0,1,...,w.

2. The Probability of Dying 95 and the Probability gf_Survixing_pi

The probability of dying and the probability of surviving an age interval
are complementary to one another; therefore their estimates have the same

. . . 2 2 .
sample variance. Denoting the sample variances by Sa and S. , respectively,
P

i i
we have
s2 - g2 : (2.1)

In a current life table, the estimate ai is derived from the corresponding

mortality information, in terms of which the sample variance of ﬁi should be
expressed. We have found in Chapter 3, equation (3.5) that

¢ (1-q.) (2.2)
i i’

1
. D.
i i
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and the 957 confidence interval for the probability q ¢

Pr{q. - 1.96 S~ <q. <q. + 1,96 S~} = .95 . (2.3)
{ql qj 4% Y qa;

For a given problem, ai and Sai can be determined, and the two limits,

ai - 1.96 Sai and ai + 1.96 Sai, can be found. These limits are called the

confidence limits, and the interval extending from the lower limit

&i - 1.96 S~ to the upper limit ai + 1.96 S(,ii is the 95% confidence interval.
As an e;ample, consider thevprobability of dying in the first year of

life, qp- In the 1970 California experience, the estimate aO = ,01801,
the number of deaths, D0 = 6234, and hence the standard error of aO is:
/\2 N
Sa = /meEi:iQZ
q, / D0

¢/4.01801)2(1-.01801)
6234

.000226 .

Substituting these values in (2.3) yields the 95% confidence limits for the

probability d9° A

q, - 1.96 Sp = .01801 - 1.96(.000226) = .01757
9

ao + 1.96 55 = .018C1 + 1.96(.000226) = .01845 .
0

Thus we conclude with a 95% confidence that, if the California 1970
mortality experience prevails in a population, the probability that a

newborn will not survive to the first birthday is between .01757 and .01845.
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The logic of the preceding statement needs some explanation. Formula
(2.3) indicates that, before information is gathered, the chances are 95
out of 100 that the interval (ai - 1,96 SG-’ ai +1.96 56-) to be determined
will contain the unknown quantity q; - ;fter the infor;ation is gathered,
and the numerical values of the limits (.01757 and .01845) are obtained, we
certainly have confidence in the statement that the quantity q, is
between .01757 and .01845; a measure of this confidence is the value of the

probability .95. This measure of confidence (.95, in this case) is
called the confidence coefficient. The essential point to be recognized
is that a probability is a measure of likelihood of occurrence of an event
(death, for example) before the event takes place, whereas a confidence
coefficient is a measure of confidence one has in a statement about an
unknown quantity after the corresponding event has occurred.

A second use of the sample variance of the estimate ai is testing
a hypothesis concerning either the probability of dying in one
age interval or the comparison of two or more probabilities. Suppose we
want to know if the force of mortality has decreased over the past decade
so that a new born in 1970 has a better chance of surviving the first
ycar of life than that in 1960. Here we are testing the hypothesis that
q0(1970) is the same as q0(1960) against the alternative hypothesis that

qo(1970) is smaller than q0(1960). The statistics for the test is

q.(1960) - q.(1970)
94 ( ) - q, (2.6)

Z:
s.E.[aO(1960) - a0(1970)]

where the standard error of the difference is given by

| ) ) 35(1960)[1-60(1960)] 33(1970)[1-60(1970)]
S.E.[3,(1960) - §,(1970)] = 15609 . D57
(2.5)




Using California experience again, we have the required information given

in the following table
Table 1

Estimate of probability of dying in the first year of life and
the standard error, California, 1960 and 1970

1960 1970 60(1960) - §,,(1970)
99 .02378 .01801 .00577
D, 8663 6234
g2 6.3724x10" 8 5.109x10"° 11.481x10°8
S.E. 2.524x1o'4 2.260x10'4 ' 3.388x10_4

From Table 1 we compute the statistic

Z=_l£)_05__7_7_:: 17.03 ,

3.388x107
which is significantly greater than the 99th percentile in the standard
normal distribution. We conclude that a newborn in California
in 1970 has a smaller probability of dying in the first year of life
than that in 1960.
Remark 1. In a cohort (generation) life table both the number living
(Qi) at age x, and the number of deaths (di) occurring in the interval

(xi, xi+1) are directly observed. The prohahilities are estimated by

d. ) d.
q. = -1 and b, = 1 - L (2.6)
4 7T Py z. :
i i
. . . . . A A
llere we have a binomial situation, so that the variance of a3 (pi)

is given by

’ 2

— 1 '~‘ —
Sa = i;—qi(l-q.) =S5 . (2.7)
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3. The Survival Probability, piJ

The probability that a person of age X, will survive to age xj is
an important quantity in the survival analysis. It provides an
investigator with critical information that he seeks in his study.
This probability can be obtained directly from the life table. Since
the survival of a person from age X, to Xj means the survival of every
single intermediate age interval, the probability pij is given by the

equation

(3.1)

e

1]
o]
3

or

_._4
(]
I}

(l_qi)(l_q1+1) ... (1"1]_1) . (3-2)

A case of particular interest is when x, = 0. Here we have the probability

of surviving from age 0 to a specified age xj

Poj “Pp Py --- Py

(1-ag) (1-q)) ... (-q; ) . (3.3)

To obtain the estimate of the survival probability, we only need to

A
substitute the estimates of a; in the formulas (3.2) and (3.3). When the
information is taken from a life table, computations can be simplified.

For example,

Poj = Pp Py -+ Py
2 2 L. L.
el
0 1 j-1 0
similarly
= —= 3.5
pij T - (3.5)
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In the current life table the individual estimates,

~

Py = 1°ash ’ h=1i,...,j-1, (3.6)

are based on the corresponding age-specific death rates, the sample variance
of ﬁij should be expressed in terms of the sample variance of each ah'

Since the individual estimates ah are hased on mortality information of
separate age groups, they are statistically independent of one another.

Using a theorem on the variance of a product of independent random variables,

the sample variance of ﬁij may be determined from the formula:

2 ~ i-1 ~ 2
2 - pi3 5 p]2 S% (3.7)
Pij Jhei " Pn

with the sample variance of ﬁh given in (2.2).
For the 1960 United States data and for the 1970 California data, the
probability Poi and the corresponding sample variances and standard errors
have been computed. The numerical results are given in Table 3 and Table 4,
respectively. The mean steps in the computation are as follows:
(1) Record the number of deaths (Di) occurring in each age interval
in the population in Column 2, and the probability of dying in
Column 3.
(2) Use formula (2.2) to compute the sémple variance of ai and
enter it in Column 4.
(3) Use formula (3.3) to compute the probahility of surviving age
interval (O,Xi) ﬁoi’ and record it in Column 5. ;00 is 1 by definition.

(4) VUse forrula (3.7) or

2 £2 - - . =2
Ss  =7p..[p 2 P 2¢2 L. + P, 52 ]
poi 0¥ 0 po 1 pl i-1 pi-l

. » . -
to compute the variance of Poi and record it in Column 6.
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Table 2

Abridged life table for total United States population, 1960

Fraction
Proportion Number Number of Last No. Years Total No. Observed
Age Dying in Living Dying in Age Lived in Years Lived Expectation

Interval Interval at Age Interval Interval Interval Beyond of Life at

(in years) (Xi’xi+l) X, (Xi’xi+l) of Life (xi’xi+l) Agg Xi, - u,ﬂé%?mfi
Xi to Xi+1 qi 2i 'di ) ai Li Ti ei
(1) (2) (3) (4) (5) (6) (7) (8)
0-1 .02623 100,000 2,623 .10 97,639 6,965,395 69.65
1-5 .00436 97,377 425 .39 388,471 6,867,756 70.53
5-10 .00245 96,952 238 .46 484,117 6,479,285 66.83
10-15 .00219 96,714 212 .54 483,082 5,995,168 61.99
15-20 .00458 96,502 442 .57 481,560 5,512,086 57.12
20-25 .00616 96,060 592 .49 478,790 4,030,526 52.37
25-30 .00652 95,468 622 .50 475,785 4,551,736 47.68
30-35 .00800 94,846 759 .52 472,408 4,075,951 42.97
35-40 .01159 94,087 1,090 .54 467,928 3,603,543 38.30
40-45 .01840 92,997 1,711 .54 461,050 3,135,615 33.72
45-50 .02902 91,286 2,649 .54 450,337 2,674,565 29.30
50-55 .04571 88,637 4,052 .53 433,663 2,224,228 25.09
55-60 .06577 84,585 5,563 .52 409,574 1,790,565 21.17
60-65 .10257 79,022 8,105 .52 375,658 1,380,991 17.48
65-70 .14763 70,917 10, 469 .52 329,459 1,005,333 14.18
70-75 .21472 60,448 12,979 .51 270,441 675,874 11.18
75-80 .31280 47,469 14,848 .51 200,967 405,433 8.54
80-85 .46312 32,621 15,107 .48 123,827 204,466 6.27
85-90 .61437 17,514 10,760 .45 57,980 80,639 4.60
90-95 .78812 6,754 5,323 .41 18,067 22,659 3.35

95+ 1.00000 1,431 1,431 4,592 4,592 3.21
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Table 3

Computation of the standard error of survival probability.

Total United States population, 1960.

Number of Probability Probability
Deaths in of Dying in Sample of Surviving Sample Standard
Age Interval Interval Vag}aace Interval VariQpce Erro€
Interval (xi,xi+1) (xi,xi+1) of qi(pi) (O,Xi) of Poi of oi
(x,%;, ) D, ai 108xs2 ﬁo. 108xs2 10%xs.
i 1 Poi Poi
(1) (2) (3) (4) (5) (6) (7)

0- 1 110873. 0.026230 0.60426 1.000000 0.00000 0.00000
1 - 5 17682. 0.004360 0.10703 0.973770 0.60426 0.77734
5-10 9163. 0.002450 0.06534 0.969520 0.70049 0.83695
10 - 15 7374. 0.002190 0.06489 0.967140 0.75848 0.87001
15 - 20 12185. 0.004580 0.17136 0.965020 0.81586 0.90325
20 = 25 13348. 0.006160 0.28252 0.960600 0.96799 0.98386
25 - 30 14214. 0.006520 0.29712 0.954680 1.21680 1.10308
30 - 35 19200. 0.008000 0.33066 0.948460 1.47180 1.21317
35 - 40 29161. 0.011590 0.45530 0.940870 1.74580 1.32128
40 - 45 42942. 0.018400 0.77390 0.929970 2.10864 1.45211
45 ~ 50 64283. 0.029020 1.27206 0.912860 2.70107 1.64349
50 - 55 90593. 0.045710 2.20093 0.886370 3.60661 1.89910
85 - 60 116753. 0.065770 3.46131 0.845850 5.01355 2.23909
60 — 65 153444, 0.102570 6.15306 0.790220 6.85223 2.61767
65 — 70 196605. 0.147630 9.44893 0.709170 9.36099 3.05957
70 = 75 223707. 0.214720 16.18415 0.604480 11.55334 3.39902
75 - 80 219978. 0.312800 30.56591 0.474690 13.03838 3.61087
80 — 85 185231. 0.463120 62.16567 0.326210 13.04497 3.61178
85 — 90 120366. 0.614370 120.92803 0.175140 10.37583 3.22115
90 — 95 50278. 0.788120 261.75601 0.067540 5.25246 2.29182
95+ 13882. 1.000000 0.00000 0.014310 1.42976 1.19572
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Table 4

Computation of standard error of survival probability.
Total California population, 1970.

Number of  Probability Probability

Deaths in  of Dying in Sample of Surviving  Sample  Standard

Age Interval Interval VaziaRce Interval Vari%nce Erroi
Interval (xi,xi+1) (xi,xi+1) of qi(pi) (O,Xi) of Poi of Poi

A 8 .2 8 .2 4

. . 107 xS. A, 107 xS, 10 xS
(X5 2%541 % 9 4, Poi Poi Poi

(1 (2) (3) (4) (5) (6) (7)
0-1 6234. 0.018010 5.10937 1.000000 0.00000  0.00000
1- 5 1049, 0.003220 0.98522 0.981990 5.10937 2.26039
5-10 723. 0.001880 0.48793 0.978830 6.02660  2.,45491
10 - 15 735. 0.001870 0.47487 0.976990 6.47146  2.54390
15-20 2054, 0.005640 1.53993 0.975160 6.90051  2.620688
20- 25 2702. 0.007730 2.19433 0.969660 8.28727 2.87876
25-30 2071. 0.007080 2.40325 0.962160 10.22275 3.19730
30 - 35 1964. 0.008020 3.24870 0.955350 12.30338 3.50761
35-40 2588. 0.011190 4.78419 0.947690 15.07196  3.88226
40 - 45 4114. 0.616890 6.81706 0.937090 19.03349 4.36273
45 - 50 6722, 0.026640 10.27645 0.921260 24.38215 4.93782
50 - 55 8948. 0.040490 17.58000 0.896720 31.82238 5.64113
55 - 60 11942. 0.062070 30.25915 0.880410 43.43359  6.59041
60 ~ 65 14309. 0.088860 50.27921 0.807000 60.60944  7.78520
65 =70 17088. 0.128930 84.73635 0.735290 83.06080 9.11377
70 - 75 19149. 0.180520 139.45783 0.640490 108.83660 10.43247
75~ 80 21325, 0.270390 250.13991 0.524870 130.29900 11.41485
80 — 85 20129. 0.385210 453.21022 0.382950 138.27254 11.75893
85+ 22843. 1.000000 0.00000 0.235430 118.72215 10.89596
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(5) Take the square root of the variance to obtain the standard
error of SUi and record it in Column 7,

Statistical inference ahout the unknown survival probabhility
(pOi) can now be made using the standard errors in Table 3 and Table 4.
For example, the estimate of the probability of surviving from birth to age 20
is 60’20 = .96060 for the total United States population, 1960, and 30’20 =
.96811 for the total Califormia population, 1970. To test for the signifi-
cance of difference between these two probabilities, we compute the critical
ratio

(U.S.) - P (Cal.)
0,20 . (3.8)

.
_ Po,20
S.E.(diff.)

yA

The standard €eTrror of the difference is given by

D

I/,
S.E.(diff.) = / (.96799x10'8) + (8,28727x1078)

- 3.0L22x107k (3.9)

Substituting the numerical values of Py 9o 2nd (3.8) in (3.7),

. _ +96060 - 96966 _ _ -.00906
3.0L22x107% 3.0L22x10""
= -25.768 .

Based on the above findings, we conclude that a newborn who is subject

to California 1970 mortality experience has a greater probability of

surviving to age 20 than one who is subject to United States 1960 experience.
The converse is true, however, for the probability of surviving from

age 20 to age 40, Table 5 shows that Pyp 40(U.S.) > Pyg 40(Cal.) and
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P20,40("5+) = Pag 49(Cal-]  oegy1 - ogea1 4 5o
S.E.(diff.) - -4 ot
3.6487x10
Remark 2. The formula for the estimate sij in (3.5) applies

to both the current life table and the cohort life table. However, the

. A . .
formula for the variance of pij assumes different forms in the two cases.

In a cohort life table, 2j is the number of survivors at xj of 21 individuals

. . A . . .. .
living at X s with pij being the proportion of surviving the interval

(x5 xj). Therefore, ﬁij 2j/2i is a binomial proportion with a sample

variance given by

sZ

P

1 ~ ~
ij i

Formula (3.10) for the sample variance of pii is equal to (3.7) in the
cohort life table, where the sample variance of the proportion for each

age interval Py is computed from

2 1 -~ ~ 1 2h+l 2h+1
2 =L p -y =Ll Thel G.11)
P, Ay The ThT 4 4y 4

for a cohort life table, then formula (3.7) will be reduced to formula

. i i D 3. in (3.
(3.10). Substituting pij 2h+1/lh and (3.11) in (3.6), we

2 /% b =
i/ Py

have
2 . 2 :
S o] I e W S S ¥5 U P 5
Pij Ll hei M1l B A o
2 .
] Jil L |- el
L hei thel "
2. 2. 1 A A
i i i i

is required to be shown.
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Table 5

Statistical test for the significance of difference between
survival probabilities of United States population, 1960,
and California population, 1970.

Age United States California
Interval 1960 1970 » Differencq*
(x,,x.) 9 10%sa D.. 10%sA (2)-(4) 10%s.E.(diff.)
i’75 ij .. ij D. .
ij ij
(1) (2) (3 (4) (3) (6) (7)
(0, 20) .96060 .9838¢6 .96966 2 .§787¢ -.00906  3.0422
(20, 40) .96811 1.14104 .96641 3.4657 +.00170 3.6487

A
*Formula for the standard error of the difference, pij(U'S') - Sij(Cal.):

2

2
S.E.(diff.) =//’SA : + Sa
pij(U'S') pij(Cal.)
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4. Expectation of Life at Age X, €y

Expectation of 1life at a given age is the mean future lifetime
beyond this age. In the life table, there are la individuals living
at age X,- Let the lifetime beyond X, of these individuals be denoted

by Yak’ for k=l,...,2a. Their mean value

L
a

D § 4.1)

Y =
o 1 ok

1
la k
is approximately normally distributed, with an expected value of ey This

sample mean 7& is equal to the observed expectation of life ey OT

Y,=¢, - (6. 2)

We now show that equation (4.2) is indeed true.

As any continuous random variable, lifetime of an individual is not
accurately measured. In fact, the values of the la values are not
individually recorded in the life table, but grouped in the form of a frequency

distribution in which the ages Xs and X;, are the lower and upper limits

1
for the interval i, and the deaths, di’ are the corresponding frequencies
for i = a, a+l,...,w. The sum of the frequencies equals the number of

survivors at age Xy» OT

dy *+ .o+ d =2 . (4.3)

The total number of years remaining to the za survivors depends on the
exact age at which death occurs, that is, on the distribution of deaths
withiﬁ each age interval. Suppose that the distribution of death in the
interval (xi. xi+l) is such that, on the average, each of the di
individuals lives a fraction a, of the interval, or ain

i i
is the interval length). Each thus lives

years in the

i 1 ince x. ,-X, = n
interval (sinc X 017X i
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X, + a,n, years, Or X.,-X + a_.n. years after age x , and the sample mean
i il ia ii a

is given by

W
= _1 -
Ye=1 I (qyx +an)d
o i=a
1 w w .
= - 4
7 _E (xi xa) di + .E a, ny di . (4.4)
a |i=a i=a

By definition

i-1

Xj-X, S MM b ety = T ny (4.5)
J=a

hence

w w i-1

Io(xgx)dy = I | I ng| d

i=q iza |j=a

w-1 w
= ¥ n, by di . (4.6)

j=a 7 i=jel

Since the number of individuals living at age xj will all eventually die,
8. =d, +d + ... +d , 4.7

or

W 4
L.~d. =d. ., + ... +d = T d. . (4.8)
J

Therefore (4.6) may be rewritten

w-1
(x-x)) d; = % nj(zj-dj) . (4.9)

o J=a

™M E

i

Substituting (4.9) in (4.4) gives
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1 [w-1 w
Y =— | I n,(f-d.)+ % a,n, d,
@ 2 j= I ) j=q * 47
) (w-1
T ifa {n; (2;-d;) + a;n; d;} +am d | (4.10)

The quantity inside the braces, for i = a,...,w-1,

ni(li-di) +an. . d =1L, (4.11)

is the number of years lived by the li individuals in the interval (xi, xi+1).

Also we let
L =an d =an (4.12)

be the number of years lived by la beyond age x_. Using (4.11) and (4.12)

we rewrite (4.10) is

L + L

a a+1+ te w
Ya = la %.13)

which, of course, is ga’ the observed expectation of life at age xa,

proving (4.2).

4.1 Formula for the variance of the expectation of life. Once the

equality between the observed expectation of life ga and the sample mean

future lifetime ?; is established, the sample variance of éa can easily be computed.
We may visualize the age and death columns in a cohort life

table as a frequency distribution, with xi-x+aini being the

average value and di the corresponding frequency so that the

sample variance of Ya is given by
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L

2 . 1 ~ 12
SY T .Z [(xi—xa + aini) - ea] di . (4.14)
a a i=q

Consequently, we have the formula for the sample variance of 7& (or e,)

S, (4.15)

or, by substitution of (4-14),

w

2 1 ~ .2

‘~ - - 4,

Se * 12 .Z [(xi X *aini) ea] di ' (4-16)
Q a 1=Q

In formula (4.14), a,n,, éa’ di and La are all given in a life table; the
sample variance of éa can be determined.

Formula (4.14), however, is not applicable for the current life table
for a number of reasons. First of all, figures di and za are dependent upon
the choice of the radix Lo» and therefore are not meaningful quantities when
they appear without reference to 10' Secondly, basic variables in a
current life table are the a;. Therefore, the sample variance estimates
of ;a should be expressed in terms of the variance of ai'

Formula (4.10) for the observed expectation of life, with the sub-

stitution of £j+1 = lj-dj and lj—lj+1 = dj, may be rewritten as
R 1 w-1
P - 4.1
€y = 71 L {njlj,,1 + ajnj(lj Ljﬂ)} +and (4.15)
a =q _
or
PN 1 W
e =-— ang + I [(l-a, In. ., +an.] g . (4.16)
a Ly [Teata g4 j-1773-1 0 330 7
Now we let

cj = (1"j-1)"j-1 + ajn. | %.17)
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and write

c ) + ... %+ cC
6 =an + -l otl whv @ .18)
a aa 2
a
or, since g./9 = ﬁ .
] al
R w
e =an+ L c.p. . (4.19)
a aa j=a+l j Taj

Thus, the observed expectation of life Ga is a linear function of ﬁaj’

which in the current life table is computed from
y, J=atl, ..., w., %.20)

. pJ._1

o>

oj = pa a+l °°

Clearly, the derivatives of Euj with respect to %i is given by

>

A ~

i =D pi+1,j fora < i< j

(o5
ﬁ){w

=0 otherwise . (4.21)

Hence, from (4.19)

w

—3—_ ga = E Cj _:a\_ Aa'
api j=a+l ap; J
w ~ A
= L C. p.. P .
j=i+l J fai Ti+l,j
w ~
=p C. + )X C. P:.q - (4-22)
ail i+l jeie2 j Ti+l,j

Using relation (4.19), or
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w
e = 4,23
€i+1 T 2i+1tin1 * j=§+2 €5 Pie1,5 ° (8.23)
and
cjep = (1-3)my * 35 My (4.24)

we rewrite the derivative in (4.22) as follows

[(1-a)n, + €i+1] . (4.25)

Because of (4.21), the derivative (%4.25) vanishes when i = w. Now the
estimated probabilities (ﬁi) for two nonoverlappiﬂg age intervals are based
on mortality experience of two distinct groups of people, and therefore

are not correlated. Consequently, the variance of the expectation of

life may be computed from the following

2
w-1
sg = I ,2 e, 2. (4.26)
o i=a Bpi Pj

Substituting (4.25) in (4.26) yields the desired formula for the sample

variance of e _:

a
-1
2 P a2 A~ 122
Sa = I p..[(l-a)n, +e, .1° 5% (4.27)
€y  j=a ©°1 it i+l P;

where the variance of ﬁi is given in (2.2),

I\2 o)

q.(1-q.)
s o= 1 (2.2)
P D;

4,2 Computation of the variance of the expectation of life in a

cuarrent life table. Formula (4.27), which holds true for any age X, in
the life table, contains terms that appear repeatedly for different values of a.

Therefore, the variances of Ea for all ages Xy in the life table can be
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calculated by a single computation program. Using formula (4.27) and
referring to Table 6, the essential steps in the computation of the sample
variance of ga are as follows.

1. Designate age interval in Column 1.

2. Record the length of age interval n, in Column 2, and the fraction
of last age interval of life a, in Column 3.

3. Compute the sample variance of\f>i (ai) from formula (2.2) and
record it in Column 4.

4. Compute for each age interval the quantity

2

P;

2 A 2
li [(l-ai)ni + ei+1] S

and record it in Column S.

5. Sum the products in Column 5 from the bottom of the table up to
x, and enter the sum in Column 6.

6. Divide the sum in Column 6 by li to obtain the sample variance
of the observed expectation of life in Column 7.

7. Take the square root of the sample variance to obtain the sample
standard error of the observed expectation of life, as shown in Column 8.

4,3 Statistical inference about expectation of life. An observed

expectation of life, as shown earlier in this section, is a sample mean

of future lifetime. Therefore, statistical tests based on normal
distribution may be used in making inference regarding expectation of life
at a particular age, or in comparing expectation of life of two or more
populations. In Table 7 the expectations of life for the United States
1960 population are compared with those for the California 1970 population.
For each age the expectation of life and the standard errors are recorded

in Columns 2 through 5. The difference of the expectations is given in Column 6.




- 138 -

The standard error of the difference computed from

S.E. (d1ff.) -/53 (Cal.) + S2 (U.S.) (4.28)
ei ei\

i3 recorded in Column (7). The ratio of the difference to the corresponding
standard error 1is recorded in Column 8,

The critical ratio for each age far exceeds the critical value of 2.33
in the normal distribution corresponding to the one percent level of significance.
This means that a person of any age, who 1s subject to the California 1970
mortality experience, has a greater expectation of life than one who 1s subject

to the United States 1960 experience.
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Table 6

Computation of the sample variance of the observed expectation of life

Total U.S. Population, 1960

Fraction
Age Length of last Sample - Sample Sample
interval of age variance S variance [Standard
(in years) | interval | intervall of ﬁi ~ of & Error
of lifﬁ ""._4 g e 1 lofs
+ ~ [77] i
(.éH ﬂ;h o~
) ~
i ¢ 3
~~ —— M
mH ™~ <9 L
8.2 o = * 4 2
~ o~
x, to X411 n, 3 10 Sﬁi @;; VJQJ 10 Séi Séi
(1) (2) (3) (4) (5) (6) (7) (8)
0-1 1 .10 .6043 308,328.66 {1,384,473.52 1.3845 .012
1-5 4 .39 .1070 48,684.08 | 1,076,144.86 1.1349 .011
5-10 S .46 .0653 25,686.27 |1,027,460.78 1.0931 .010
10-15 5 .54 .0649 21,433.28 |1,001,774.51 1.0710 .010
15-20 5 .57 .1714 47,445.51 980,341.23 1.0527 .010
20-25 5 .49 .2825 65,770.32 932,895.,72 1.0110 .010
25-30 5 .50 .2971 55,984.55 867,125.40 .9514 .010
30-35 5 .52 .3307 49,278.91 811,140.85 .9017 .009
35-40 5 .54 .4553 52,293.09 761,861,94 .8606 .009
40-45 5 .54 .7739 66,833.91 709,568.85 .8205 .009
45-50 5 .54 1.2721 79,526.83 642,734.94 .7713 .009
50-55 5 .53 2.2009 95,654.42 563,208.11 .7169 .008
55-60 5 .52 3.4613 97,872.06 467,553.69 .6535 .008
60-65 5 .52 6.1531 105,623.14 369,681.63 .5920 .008
65-70 5 .52 9.4489 87,635.79 264,058.49 .5250 .007
70-75 5 .51 16.1842 71,425.04 176,422.70 .4828 .007
75-80 5 .51 30.5659 52,370.93 104,997.66 .4660 .007
80-85 5 .48 62.1657 34,293,139 52,626.73 .4946 .007
85-90 5 .45 [120.9280 13,802.48 18,333.34 .5977 .008
90-95 5 .41 1261.7560 4,530.86 4,530.86 .9932 .010




Table 7

Expectation of life and the standard error, total United States Population, 1960, and total
California population, 1970.

United States California Difference Critical Ratio *

Age - Ei(Cal.]-ei(U.S.)
Interval éi(Cal.)-é.(U.S.) S.E.(diff.) S.E.(diff.)
(x- » X, ) 8. SA 8. Sa 1 .

i’7iel i e; i e, (4)-(2) 6) + (I

(1) (2) 3 4) (5) (6) 7 - (8)

0-1 69.65 .012 71.95 .037 2.30 .039 - 59.0

1-5 70.53 .011 72.27 .034 1.74 .036 48.3

5-10 66.83 .010 | 68.50 .033 1.67 .035 47.7
'10-15 61.99 .010 | 63.62 .033 1.63 .035 46.6
15-20 57.12 .010 | 58.74 .033 1.62 .035 46.3
20-25 52.37 .010 | 54.05 .032 1.68 .034 49.4
25-30 47.68 .010 | 49.46 .032 1.78 .033 53.9
30-35 42,97 .009 | 44.79 .031 1.82 .033 55.2
35-40 38.30 .009 | 40.13 .030 1.83 .032 57.2
40-45 33.72 .009 35.56 .030 1.84 .031 59.4
45-50 29.30 .009 | 31.12 .030 1.82 .030 60.7
50-55 25.09 .008 26.90 .029 1.81 .029 62.4
55-60 21.17 .008 22.92 .028 1.75 .028 62.5
60-65 17.48 .008 19.27 .027 1.79 .027 66.3
65-70 14.18 .007 15.89 .026 1.71 .026 65.8
70-75 11.18 .007 12.87 .024 1.69 .024 70.4
75-80 8.54 .007 10.13 .023 1.59 .023 69.1
80-85 6.27 .007 7.94 .021 1.69 .020 84.5

*Formula for the standard error of the difference éi(Cal.) - éi(U.S.)

2 2

A~ + SA
ei(Cal.) S

S.E.(diff.) =/*'"S 8,(u.s.)

—ovl —
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CHAPTER 7

MULTIPLE DECREMENT TABLE FOR A CURRENT POPULATION

1. Introduction

The multiple decrement table is not only a useful means

of summarizing mortality experience of a defined population subject to
several risks of dying, but also a powerful analytical tool for the study
of decrement data. The concepi of multiéle decrement eriginates in the
investigation of component causes of death; however, it has applications in
many research fields. In the actuarial sciences, for example, disability
and mortality are distinct causes of claim, and the effects of exposure

to both causes and their interaction must be analyzed in a meaningful

way. Dissolution of a marriage may be because of death occurring to

either one of the partners or because of divorce. Here there are three
forces of decrement! death to the male, death to the female and divorce.
Similarly, survival of an enterprise is subject to many forces of decrement
and their interacting effects. In spite of numerous applications of this
methodology, the most important use of multiple decrement tables still

remains to be in the study of mortality.

The multiple decrement table is directly related to the theory of
competing risks presented in Appendix 1II. The theory has been developed
to evaluate the forces of mortality of competing risks under investigation,
According to the theory, there are three types of probability of death
with respect to a particular risk or risks.

1.1. Crude probahility: The probability of death from a specific

cause in the presence of competition of all other risks acting in a

pcpulation.
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1.2, Net probability: The probability of death if a specific risk

is the only risk in effect in the population or, conversely, the probability
of death if a specific risk is eliminated from the population.

1.3, Ppartial crude probability: The prohability of death from a

specific cause when another risk (or risks) is eliminated from the
population.

Detailed discussion of these probabilities is presented in Appendix
I11. Clarification should be made of the terms "risk'" and 'cause." Both
terms may refer to the same condition but are different on the time scale
relative to the occurrence of death. Prior to death the condition in
question is a risk; after death the condition is a cause (provided, of
course, this is the condition from which an individual dies). We shall
take up this point again in Appendix 11T,

An ordinary multiple decrement table contains only the crude probability
of death for selected causes covering the entire life span of a well
defined population. For easy comparison, the probability of death CH
without referring to causes is often included. Let Qid be the prohability
that an individual alive at exact age Xs will die in interval (xi,xi+1)
from cause RG in the presence of all other competing risks, for i = 0,1,...,w;

§ =1,...,r. A typical decrement table is given in Table 1 on page 5-3.

There are two types of multiple decrement tables for the analysis of
human mortality: The cohort multiple decrement table and the current
multiple decrement table. As in the case of the life table, a cohort
multiple decrement table records the mortality experience of a well-defined
cohort of people from the birth of each person to the death of the last
person of the group. When a cohort of people is subject to a number of
risks of dying, there will be deaths from each of these risks within every
age interval of life. The number of deaths from a specific cause (say RG)

in an interval (xi, xi+1) divided by the number of individuals alive at the
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Table 1

Multiple Decrement Table - The Crude Probability
of Dying (Qiﬁ) from a specific cause (Rd) in Age

Interval (xi,xi+1)

Probability -~ Causes of Death

Age of Dying
Interval in Intcrval R R R
(Xioxi0) (xox4) 1 2 T
0-1 g %1 %2 : %r

1-5 4 1 %2 " Ur
X7 X541 9y %1 %2 e Ur
X, & over q, le sz e Qwr




— 144 —

beginning of the interval is an estimate of the (crude) probability of
dying from cause RG’ denoted by 6;6' This estimate is simply the proportion
of individuals dying from a specific cause in a defined age interval. An
aggregate of these proportions for different causes of death over all age
intervals forms a cohort multiple decrement table. A detailed discussion
and theoretical aspects of the table may be found in Appendix IV of this
manual.

A current multiple decrement table, which is more useful for practical
purposes, is the onederived from the mortality experience of a population
of all ages over a short period of time, such as one year. The appearance
of this table is exactly the same as the cohort multiple decrement table,
but differs from the latter in the basic information from which the table
is constructed. Specifically, the data for the current decrement tabnie are
the number of deaths from different causes and the corresponding mid-year
population for each age group over the entire life span of a current population,
from which age-and-cause specific death rates are computed. These rates in
turn are then used to compute the estimate of the (crude) probability of

A
dying (Qis) from each cause RG' A brief description is presented below.

A
2. Computation of the Crude Probability, QiS

Let us first reintroduce the symbols used in Chapter 3. For age interval

(xi, X. .) we let ni = X,

i+17 % be the length of the interval, Pi the midyear

i+l
populdtion, Di the number of deaths occurring during the calendar year, a;
the fraction of the last age interval lived by each of the Di individuals,
and Ni the number of people alive it x; among whom Di deaths occur. The age-

specific death rate is defined by the ratio of Di to the number of years lived

by the Ni people in the interval (xi, xi+1), or

D,
i
M, = ~ (2.1)
i (Ni Dijni +a;n, Di
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When the denominator is estimated with the mid-year population, Pi,

(Ni—Di)ni *a;m, Di = Pi (2.2)
we have
Di
Ml = 'p— . (2-3)
i

The probability of dying in the interval (xi, xi+1) is estimated by
Di '
N_ > (2.4)

where N. can be derived from (2.2), or

) 1 (2.2a)
Ni n Pi[l + (l—ai)ni Mi]
Substituting (2.2a) in (2.4) gives
n.M,
A
& - ii ] (2.5)

i 1+ (l-ai)ni Mi
The Di deaths are now further divided according to cause with Di6

dying from cause R6’ §=1,...,r, and

D; = Dyp + o+ Dy (2.6)
so that
D.
_ ié
Mi(s - P. > 6 = 1,-..,1‘, (2.7)
i

are age-cause-specific death rates. The estimate of the crude probability

of dying from R. in the presence of competing risks is obviously

o o

id

i

A
Qs = (2.8)

i

Substituting (2.2a) in (2.8) gives the formula for the crude probability

is 1+(1-a,)n M, * (2.9)
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We see from (2.4) and (2.8) that Q15 can be computed also from

D
AT G (2.9a)
Qs o, 4

It is easy to show that aiG in (2.9a) and ai in (2.4) satisfy the relationship

Qq* e v Q= ai . (2.10)

~

The formula for the sample variance of the estimator Q; 5 can be

derived from
5 ) = Lo (2.11)
by substituting 616 for QiG and using (2.8):

Q) = i 6.0 = —— 0°.0-0 (2.12)

The standard deviation of 616 is the square root of the variance in (2.12).
The steps involved in constructing a multiple decrement table may he
summarized as follows:
2.1. Information needed from a current population.
(a) Number of deaths in each age interval (xi, xi+1) from

each cause RG' Di&' and the total number of deaths Di’ with

D, =D,, + ... +D,_ . (2.6)
i il ir

(b) Mid-year population for each age interval (xi, xi+1), Pi

(c) The fraction of the last age interval of life, a , as given

in Appendix V.
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2.2. Computation of rates and probabilities

(a) Age-cause-specific death rate :

M, = 28 | (2.7)

for each age and each cause; and the age-specific death rate:

|}

= 1
Mi = Pi . (2.3)

(b) ‘'The probability of dying .

n.M.
il

4 T+ (I-an, W, ° (2.3)
1 1 1

and the crude probability of dying from R& for age interval (xi, xi+l)3
D,
n i§ .
Q = D 1 (2.9a)

id i

3. Computation of the standard deviation:

[l
D

A2 ~ ‘
2 (- 2.13
i 19 4 -1

S.D.(Q, ¢) =

and

~ 1 A2 ~
- )= [— - . 2.14
D, (a;) n, a; (1-q;) (2.14)
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To illustrate the computation, let us consider as an example the competing risks
of death: cardiovascular diseases (Rl), cancer all forms (RZ)’ all accidents (R3),
infectious diseases (R4), respiratory diseases (RS),motor vehicle accidents (R6), and
all other causes (R7) in the Sweden population age group (1,5), 1967 in
Table 2. During 1967 there were a total of D1 = 250 deaths occurring in the
Sweden population between age one and five; and a mid-year ponulation of
Py = 471,119. The number of deaths, D1 = 250, is entered in column (2) to
the right of "all causes', Dividing Py by the mid-year population Pi= 471,119 gives
the age specific death rate Ml = ,000531entered in column (3) on the same
line. The fraction of last age interval of life is a, = .43 in this case

1

and the age interval is n = 4 years. With these values, we

compute the probability of dying for this age interval as before from

n.M,
A i1

i 1+(1-ai)n1Mi

A 4(.000531) _
9, * T+(1-.43)4(.000537) - 00212t

which is recorded in column (4). The number of deaths are then identified

by cause, with D11 = 4 deaths from cardiovascular diseases, etc. These numbers
are entered in column (2). Dividing each of these values by the mid-vear
population Pl’ we obtain the death rate specific for the cause in question as
shown in column (3). The crude probability of dying from a specific cause

when all other competing causes are acting may be computed from the corresponding
death rate. But it is more convenient to use the relation

Ao Disa
Q16 =5 for § = 1,2,...,T . (2.9a)
i
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Thus, for RZ: cancer all forms, for example,
A DA
, 12 46
0 = —— = 2 -
12 N ql 10 .002121 = .000390

These crude probabilities are shown in column 4.

The standard errors of these probahilities are computed from

) A A
= J— ql(]- = .0
5.D. (4, /DIi 42(1-3,) = .0001340 (2.14)
and
A /1 A2 oA
s.D.(016)=/~n-_~g 015(1—Q16) (2.13)
i
for § = 1,2,...,7. The numerical values are recorded in column (6) of
Table 2.

Such computations, which can be carried out easilv with computers, are
needed for each age group. The basic data, the mid-year population and the

number of deaths by age interval and cause, for Sweden and Australia are given

in Tables 3 and 4 respectively.
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Table 2

Computation of the crude probability of dving from a specific cause

and the corresponding standard error. Sweden population, ase interval
(1, 5), 1967

Cause of Number of Cause Crude Standard deviation3
death deathsl Specific | Probability
Death of d_vi,nq2
A
- Rate | H s,
e P18 "15 %
(1) (2) (3) (4) (s)
All causes4 250 .000531 .002121 .0001340
Rlz Cardio-
vascular
diseases 4 .000008 .000034 .0000169
Rz: Cancer
all forms 46 .000098 .000390 .0000575
th All
“ accidents 68 .000144 .000577 .0000700

R,.: Infectious
diseases 14 .N00030 .0001.19 .0000318

R.: Respiratory

diseases 37 .000079 .000314 .00005 16
RG: Motor
vehicle
accidents 19 .000040 .000161 .0000369
R7: All other 81 .000172 .000687 .0000763
causes
, 1) D,
yoa Ml T S L Y
1 1+(1l-a,)n.M, 1 i .
1 11

4/

1 250

D
A
g, = 0.002121

3/
- S.D. =¢//3—-815(13315)
Dis )



Table 3

Mid-year population and deaths by age and cause
Sweden, 1967

Cause of Death

All

Age Population Total Fraction CvD Cancer All Infect. Respirat. Motor veh. Other

Deaths of last age Accidents Diseases Diseases Accidents Causes
. z?tiizzl Rl RZ R3 R4 RS R6 R7
Serty) 1 ! P P2 Py P ’is U16 P17
0-1 120905 1560 0.08 7 12 26 14 54 4 1447
1-5 471119 250 0.43 4 46 68 14 37 19 81
510 522261 171 0.45 5 31 80 3 7 39 45
10-15 534756 148 0.52 8 29 57 2 7 38 45
15-20 589158 318 0.56 22 21 187 8 11 135 69
20-25 656338 508 .050 23 53 226 6 10 136 190
25+ 30 510785 476 0.52 27 65 146 4 7 61 227
30-35 445412 517 0.53 47 89 128 6 8 52 239
35-40 462977 683 0.53 95 143 149 13 16 54 267
48~-45 506480 1157 0.53 228 313 143 22 27 42 424
£5-50 543670 1853 0.54 482 559 197 25 57 62 533
50-55 516154 2724 0.54 912 828 229 32 78 68 645
55-60 511489 4266 0.53 1742 1305 220 59 119 85 821
60-65 446800 6189 0.53 2905 1809 235 54 201 98 985
65-70 373773 8770 0.54 4625 2236 210 72 376 84 1251
70-75 286391 11339 0.53 6501 2463 198 75 646 71 1456
75-80 196498 13715 0.52 8225 2376 272 74 1019 70 1749
€C--85 113212 12766 0.50 8042 1669 278 73 1197 28 1507
&5+ 59753 12373 8086 1036 351 48 1375 10 1477

—Is1—



Table 4

Mid-year population and deaths by age and cause - Australia, 1967

T “ Cause of Death

All
Age Population Total Fraction CVD Cancer All Infect. Respirat. Motor veh. Other

Deaths of last agdg Accidents Diseases Diseases Accidents Causes

vl S S N S S

(xpoxytn,) Py by 3y i1 Pie. Py Py Bis Pie  Pi7
0-1 225600 4187 0.12 18 17 140 56 401 18 3555
1-5 925500 845 0.49 10 75 292 46 115 116 307
5--10 1198500 457 0.41 10 94 194 13 33 117 113
10-15 1110100 364 0.48 20 57 171 7 8 91 101
1520 1051500 962 0.42 33 80 641 10 23 501 175
20-25 930500 1081 0.43 51 78 655 7 22 504 268
25-30 773000 871 0.47 90 84 379 8 24 256 286
30-35 705800 903 0.35 140 140 278 6 23 156 316
DLl 754200 1393 0.48 334 257 322 13 L4 168 423
40~45 778300 2461 0.53 811 511 404 26 90 195 619
£5-50 701300 3543 0.56 1570 753 357 24 125 183 714
5057 648300 5184 0.52 2501 1271 359 36 186 186 831
55-60 560300 7239 0.54 3881 1622 378 59 333 176 966
60-65 446400 9086 0.54 5170 2011 321 56 486 157 1042
65-70 361400 11368 0.54 6753 2270 294 74 703 149 1274
70-75 277700 13495 0.54 8472 2295 315 96 902 122 1415
75-80 200700 15116 0.53 9843 2176 357 59 1119 134 1562
80-85 105300 12585 0.54 8556 1450 345 29 1010 74 1195
85+ 55800 1154 7949 928 398 26 1153 31 1090

—csl—
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3. Multiple Decrement Tables for Sweden and Australia Populations

Two multiple decrement tables have been computed for the Australian
population, 1967, and the Swedish population, 1967 [Tables 5 and 6]. The
selected causes are cardiovascular diseases (Rl)’ cancer all forms (RZ)’ all
accidents (R3), infectious diseases (RA)’ respiratory diséases (RS)’ motor
vehicle accidents (R6) and all other causes (R7). The crude probability of
dying from each specific cause has been computed for every age interval.

In addition, the probability of dying ai without reference to cause of dgath
is included in the tables so that the magnitude of the probability 616

for each risk Ré relative to the total probability ai can be determined.

For example, the ratio aié/ai will give the proportionate mortality due

to a specific risk Rd'

It may be noted that if aid is computed for every risk, then the sum
of the probabilities ai& overall possible risks R6 will be equal to ai

A
P

lc.f., equation (2.10)]. The sum of 0., over only selected risks is less

(Y]
than a{
For the purpose of testing for significance between the probabilities
or making other statistical inferences, the standard deviations of the

probabilities are also included in the tables.
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Table 5

Multiple Decrement Table for Selected Causes of Death and the Standard Error
of the Crude Probability of Dying

Sweden population., 1967

Crude Probability of Dying
in Interval (Xi’ X, . .)

Probability i+l
Age of dying in Cardiovascular Cancer All
Interval interval Diseases All Forms Accidents
Eln yeari) (Xi’xi+l) R1 R2 R3
*10%i41
A A A A
q, SA Q. sA Q. sA Q. sh
+ i il Q4 i2 Q9 i3 Qi3
(1) (2) (3) (4) (5) (6) @) (8) (9

o- 1 e01275 ¢300321 ¢0001 6000022 L0001 0000028 L0002 000042

1- 5 e00212 ¢000134 ¢0000 4000017 «0004 000058 L0005 «CO0CTO
3-10 400164 ¢000125 ¢0000 ¢000021 ¢0003 ,L,000053 L0008 000086
10-15 e00138 «0C0114 +0001 4000025 0003 000050 ,0005 000071
135-20 e0027C -000151 «¢0002 +4000040 0002 4000039 L0016 «00011€
20~25 400386 ¢ 000171 «0002 4000036 0004 000055 L0917 000114
25-30 eOC4€ES ¢000213 0003 000051 «0006 4000079 0014 000118
30-35 «e0CS79 ¢000254 ¢ 0005 4000077 0010 000106 L0014 000127
35-40 200735 ¢ 000280 «CO10 000105 0015 4000129 0016 000131
40=45  40113€ ¢000332 ¢0022 ¢000148 +0031 000173 L0014 000117
45-50 e01691 ¢000389 «0044 , 000200 0051 4000215 L0018 000128
50-95 402607 «000493 ¢ 0087 ,000288 0079 000274 L0022 000145
55-60 «04090 « 000613 s0167 ¢000397 +0125 +000344 ,0021 000142
60=-65 eNETCH ¢J00824 ¢ 0315 4000575 0196 000456 L0025 000166
¢5=-70 e11131 ¢0C1120 ¢0587 000837 40284 000592 L0027 000184
70-75 a18111 «001539 «1038 4001219 <0393 4000777 L0032 000224
75-80 e29871 «002137 «?793 ,001791 « 0518 L001034 L0059 000358
BO=-t5 e43G82 ¢ 002913 2771 4002627 +0575 4001366 L0096 000572
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Table 5 (con't)

Multiple Decrement Table for Selected Causes of Death and the Standard Error
of the Crude Probability of Dving

Sweden population, 1967

Crude Probability of Dying in Interval (xi, xi+1)

Age Infectious Reépiratory MOFOr | All
Interval Diseases Diseases Vehicle Other
(in years) R v o Accédents Cagses
(x4 X401 4 5 6 7

a. eA a gA ({? SA 6\ SA
14 4 15 s 16 s 17 Q7

(D (10) (11) (12) (13) (14) - (15) (16) (17)
0-1 20001 « 000031 «0004 c000CHO #0000 000016 #0113 «000309

1- 5 « 00Ol ¢ 000032 2,003 C0NCCS2 0002 000037 #0007 «000076
5-16 0000 4000017 40001  200CC25 0004 000060 0004 ¢D00J5a
10-15 « 0000 «070013 0091 eCN0 028 0004 000053 0004 000053
15-20 L0001 4000024  +0001  «020028 e00l1 000093 0006 000270
20-2% «C000 0000019 $0001 W0N0024 0010 000083 0014 000105
25=130 «0000 4000020 C00UL 2000026 #0006 000076 0022 000147
30-35 «C001 .000027  «0GO1  +C00C32 0006 000031 0027 000173
$5=40 L0001  .000039 0002  +0000s3 0006 000079 0023 J00L7S
40-4% ¢ 0002 « 000046 #0003 .00C0&] 0004 0000564 0042 «JV02032
45-50 ¢ 0002 ¢ 000046 \0005  +000CAI +0006 000072 #0049 200210
50=55 0003 e 000054 «00C7 L 0000R4a 0007 000079 eOUB2z 000242
55=-60 «0005 .000074& <0011 000105 0008 000088 0079 000274
60=€3 «0005 « 000080 0022 \000153 0011 000107 0107 000333
£5=70 10007  +000108  +)043 4000245 0011 000116 0159 000343
70-75 e 0012 1000138 2103  +00040a 0011 000135 20233 «N00302
75-130 00015 «000187 W22  e0U(ERR 0015 000182 »0331 000394
80-65 e« 0023 «000294 0412 001167 0010 000182 <0519 001302
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Table 6

Multiple Decrement Table for Selected Causes of Death and the Standard Error of
the Crude Probability of Dying

Australia Population,

1967

Crude Probability of Dying

probability in Interval (Xi’ Xi+l)
Age of dying in Cardiovascular Cancer All
Interval interval Diseases All Forms Accidents
(n years) (i Hapy) ®) K ®
i’7i+1
G. Sa 6. cA 6. sSA 8. SA
i 9y il Qil i2 2 i3 Qi3
(1) (2) (3) (4) (3) (6) (7) (8) (9
0- 1 001826 000280 0001 «000013 0001 ¢000018 L2706 020052
- 5 e 00365 4000125 0000 e 000014 ¢0003 000037 L0013 320074
S-10 eN0190 L000089 0000 e 000013 ¢0004 ¢0UUN4AC L0008 00005%
10-158 «eC0O164 LCOCOHG #0001 e 000020 ¢« 0003 «¢00OUV034 L0008 000056
15-20 « 00456 ,000147 00002 e000027 «00U04 ¢000042 L0030 ¢000120
20-25 e 00579 000176 0003 000033 ¢0004 ¢000047 ,0035 000137
25=-30 e 00562 4000190 20006 e 000061 0005 ¢0000359 ,0024 000125
30-35 e00637 +4000211 0010 «000083 ¢0010 ¢000083 ,0020 000118
35-40 e 0091S L,000245 40022 0000120 «0017 «¢000105 L0021 000118
40=-45 e 01569 4700314 #0052 e000181 «¢0033 ¢00C144 ,0026 000123
45-59 e (02498 4000414« 0111 000273 40053 «¢000193 ,0025 000133
50-5% 003923 4000539 eClB9 2003735 ¢0066 ¢000268 ,0027 o09%2v143
55-60 006274 L0C0714 0335 000531 0141 V00347 ,0033 ,000168
60-65 e09722 o00C96S 0553 000748 0215 «000475 ,0034 ,002191
65-70 0146667 L001271 #0871 e 001013 00293 ¢000€ED6 L0038 «000221
70-75% e 21855 4001063 1372 001385 40372 ¢000761 L0051 «000287
75-80 e31995 4002146 e2083 0001358 0461 0000364 ,0075 900398
80-85 04073 4003045 3187 002844 «054C ¢001379 (0129 000687
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Table 6 (con't)

Multiple Decrement Table for Selected Causes of Death and the Standard Error
of the Crude Probability of Dying

Australia Population,

10(\7

Crude Probability of Dying in Interval (Xi’ Xi+1)
Age Infectious Respiatory MoFor All
Interval Diseases Diseases’ Vehicle Other
(in years) Accidents Causes
(0 %y K 8 Re R
8. sA 8, SA 8_ gA a_ gA
i4 Q14 *i5 QiS ~i6 Qi6 i7 Qi7
(1) (10) (11) (12) (13) (14) (15) (16) (17)
0- 1 0002 +000033 L0017 «000087 +00CL +00001% 0153 000258
1- 5 0002 0000029 ,0005 «000046 ¢0005S +000045 0013 000070
5-10 e0001 030015 L0001 o000Q024 0005 4000045 0005 «0N0D44
10-15 0000 ,000012 L0000 000013 <0004 +000043 0005 000035
15=-2C «0000 4000015 .0031 «00C023 40024 000106 #0008 «000063
20-25 e 0000 4000014 ,0001 000025 0027 000120 0014 eN00N8 8
25-30 ¢00D01 LUUO018 L0002 ¢000032 40017 4000103 00138 «000109
30-35 0000 4000017 L0602 000034 L0011 000088 0022 000125
35-40 ¢0UO01 +000024 L0003 «0000%4 L0011 000085 02028 ¢200136
30-45 «0002 000033 ,0006 +000060 0012 UC0087 0039 000153
45-50 e0002 000035 L0009 +000079 L0013 000095 0050 «000 188
50-55 ¢0003 ,000045 ,0014 ¢000103 40014 000103 0063 «000217
55-60 2D005 4000067 L0029 «000158 20015 4000115 0084 + 000268
"60=-65 eCO05 ,L000080 ,0(52 000235 60017 000134 0111 «000343
65-70 eUU1D 4000111 L0091 0003481 40019 000157 0164 000437
70-7% e0016 4000159 ,0146 000483 0020 «00C179 0229 000602
75-80 e0012 +000162 ,0237 000700 ,0028 40002345 0331 000823
80-8% e0011 4000200 ,0376 001161 o0023 000320 0445 4001259




— 158 —

4, Internretation of a *ultiple Decrement Tahle

A multiple decrement table, such as those pregented . ir Tahles 5 and 6,
can serve many useful purposes. Significant points include the followina:

) A
1. Each probability Qi represents a measure of risk of dving from a

§
specific cause to which a person is subject in a real population where
other competing risks are also acting. For example, in Tabhle 5, Column (4),
age interval (60,65), we found 660,1 = ,0315. This figure suggests that
if the forces of mortality overating in the Swedish nopulation, 1967,
prevail, the »nrobability is over three percent that a person of 60 years of age
will die from cardiovascular disense within five years.

2. The entire array of probabilities Gid over all the age groups gives
a profile of risk of dying from a specific cause during a person’s life
time. Thus the risk of dying from cardiovascular disease is negligible
among young people, but increnses with advancement of age. According to
the Swedish, 1967, experiences, these diseases are the most serious cause
of death for persons beyond age 50, and the chance is bhetter than one in
four (.2771) that a person of age 80 will die from cardiovascular disease
in the following five years despite competition from other causes. Below
age 40, however, cardiovascular disease is negligihle as a cause of death,
and between ages 1 and 10, the risk of death from these diseases is
almost nonexistent. Alternatively, the risk of death from cancer all forms
is more evenly spread over the age intervals but is less evenly spread than
the risk of death from all accidents.

3. When viewed across several causes of death, the multiple decrement
table shows relative risk of death either for a specific age group or for
the entire life span. 1t is evident from these tables that among the leading
causes of death, cardiovascular disease is a dominate cause, cancer all forms runs

a poor second, while all accidents is a distant third. However, in age 40-50
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cancer all forms is the most menacing disease in Sweden in 1967 and is
a significant cause of death even helow age 40. Within the latter age
hracket, however, all accidents assumes the leading role as cause of
death.

4. Fach probabhility Sié’ when expressed in terms of the probhahility
of dyin. ai’ gives the pronortionate mortality for each cause, This in
turn provides the information as to what proportion of mortality in each
age group may he attributed to specific causes.

5. A comprehensive comparison of cause specific mortality exnerience
may be made among different countries, or of a country over time. Between
Sweden and Australia, for examnle, the general mortality pattern is similar,
but details vary. According to 1967 experience, the Australian population
is subject to higher risls of deat® thar the Swedish population in almost
every age group and for each cause considered in this example. The only
exceptions occur in the very old ace hrackets for a few causes. Beyond
age 70 cancer all forms is a more eminent cause in Sweden than in
Australia. A similar statement can he made for respiratory disease
beyond age 80, and infectious diseases beyond age 75, although the
magnitude of the probabilities for the latter case is quite small. It
may also be noted that, while in Sweden, 1967, cardiovascular disease was
the most serious cause of death from age 50 on, in Australia thesec
diseases assume this role beginning in the early 30's.

6. Statistical inference about these rates can he readily made with
the aid of the standard deviations listed. For example, hypotheses can be
tested regarding the probability of dying from a specific cause between
Sweden and Australia. 1s the probability of dying from cardiovascular
disease for age group (45,50) greater in Australia than Sweden? To answer

this question, we compute the critical ratio (cf., Chapter 4).
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8 A) 8 (s)
7 - 45,1 45,1 (4.1)

2 2
/ s @ T s (o

which has a normal distribution with a mean zero and a variance one, if

in fact Q45 l(A) = Q45 l(S). The numerical value is

7 = L0111 - .0044

4

v ( .000278)2 + (.onozoo)2

= 19.6

which is highly significant, as the corresponding probahility is less than
1 in 10,000. In other words, if the probability of dying from cardiovascular
diseases in Australia was equal to that in Sweden for a person of age 45-50,
then the chances are less than 1 in 10,000 that a difference as great or
greater than the one observed would occur. Based on the above findings
we conclude that cardiovascular diseases werea more serious cause of death
in Australia than it was in Sweden for the age group under consideration.

7.  Caution should be observed in comparing the crude probabilities
of dying from different causes in the same population and the same age
group. In a particular age group, various causes are competing with one
another for the life of an individual and the estimated probabilities are
statistically dependent. Between any two probabilities (say, 811 and aiz)
there is a co-variance, which must be taken into account in making inference
about these probabilities. The co-variance between ail and 612, for examnle,
is given by

A 1 A2/\

AA 1 A
=z - — s - n ’
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A similar formula holds for any two probabilities. How the covariance can
be incorporated in statistical inference is demonstrated below. Sunpose we

want to compare two causes R cardiovascular diseases and R,: cancer all
“

1 :

forms for peonle of age 55-60 in the Sweden population, 1967. From column (4)

A
and (6), we found 655’1 = ,0167 and Q55’2 = .0125, with a difference

A

o
- = 4.
Q55’1 Q55’2 .0042 . (4.3)

Is this difference sicnificantly preater than zero or can it be exnlained by

=Q against the alterna-

chance? liere we are testine the hypothesis that Q

55,1 55,2

tive hypothesis that Q55 1 > Q55 9" To test the hypothesis, we express the
A A ’ ’ I I3 . .
difference Q55 1° Q55 2 in terms of its standard deviation, which 1is given by
A A /2 2 A A
S.D.(0.,-0 =/S S -2 (4.4)
$.D.(0;1-0;,) =/ 8., "8, Cov(Q;1,055)

where the covariance can be computed as follows:

c N N 1 /\2 /}
ov(Qi;,Q9) = - bf]Qil 042
] K N
a 3 anno
Cov(Qg 1% o) = --000000002

which is a very small number. Now the standard deviation can be computed

//(.000397)2 + (.000344)2 + 2(.000000002)

A A
$.D.(Q55 17Q55 5)

= 0.00053
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The statistic used to test the hynothesis is acain the normal deviate

A A
Q -Q
7 o Sss,tn 55,2 (4.5)
D Qg 17055 )

and compare the numerical value of Z with the standard normal distribution.

In this case we have

0167 - 0125 _ 7.9

.00053

which is highly significant. Thus according to Sweden 1967 experience, the
probability of dying from cardiovascular disecase 1is ereater than cancer all
forms for age interval (55,60).

In conclusion, the multiple decrement table presents a mortality
profile over ages and causes of death for a population under study. It shows
the relative, as well as the absolute, importance of various diseases and their
variation over age and sex. With the information provided in the table,
one can easily detect and determine the area of concern, the degree of
seriousness of various diseases, and the type and amount of medical care and

health services needed by persons in different age and sex categories.
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CHAPTER 8

THE LIFE TABLE WHEN A PARTICULAR CAUSE IS ELIMINATED

1. Introduction

InAppendix ITT on competing risks, several types of probabilities
of dying with respect to a particular cause have been discussed. Corres-
ponding to each of these probabilities, a life table may be constructed
to serve a specific purpose using the probability in question in place
of ai' The procedure of construction is exactly the same as that of an
ordinary life table described in Chapter 4, though the columns have

different meanings. A life table derived from ai the probability

1
of dying when a cause R1 (e.g., cardiovascular-renal disease) is eliminated

as a cause of death, for example, may be used to evaluate the effect of

the cardiovascular-renal diseases onthe longevity of a human population

in terms of the expectation of life or chance of survival. Generally,

the event involved need not be survival or death and the subject is not
limited to human beings. In a study of the effect of divorce on the longevity
of marriage, for example, the event is the dissolution of marriage. If
divorce (Rl) had been removed as a cause, how long is a marriage expected

to last before death occurred to either one of the spouses? Application to
other problems is possible wherever the concept of competing risks applies.
We shall in this chapter describe two tables: (1) the life table when a
specific cause is eliminated, and (2) the life table when a specific risk

is the only risk operating. Empirical data will be used for illustration.

2. Computation of the Net Probability, a; 1

The life table in this chapter is derived from 9 1> the net probability of dying

when a particular cause R1 is eliminated. This is one of the most important
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applications of the competing risks theory. Such a table may be constructed
either for a cohort population or for a current population. In either

case, the basic formula is (cf., Equation (2.29) in Appendix IIT)
q ;= (@;-Q ) + Q1) (2.1)
i.l i i1 2 'l :

where q; is the probability of dying in interval (xi, xi+1) and Qil is
the crude probability of dying from R1 during the same interval in the
presence of other competing risks. To avoid repetition, only the life

table derived from mortality data of a current population will be discussed.

Let us consider, as an example, cardiovascular-renal diseases and the effect
of their presence on the probability of dying and the expectation of life.

. . _ . . - x. =n. . . 1
For a typical age interval (xl, xi+1), with X: 41 x; = ng being the interva

length, let Di be the number of deaths occurring in age interval (xi, xi+1)

during a calendar year, among them Dil dying from R Let Pi be the

1
corresponding mid-year population, and a; the fraction of last age interval

of life. The age-specific death rate is computed as before from

o

= 1
Mi =7 (2.2)
i
and death rate specific for cause Rl’ (CVR diseases) is computed from
D.
il
Mil F;_ . (2.3)

Using the results in preceding chapters, we have the estimate of the probability

[cf., Equation (4.3), Chapter 3]

n, M,
i 1

(2.4)

£>

i 1+ (l-ai) n. Mi
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and of the crude probability [cf., equation (2.9), Chapter 7]

A n; My

UG " Tv ey M (2.5)
1 b § 1

Substituting (2.4) and (2.5) in (2.1) yields the required estimate of the
probability 4

A 1A

%G " (@ - QA+ 3, - (2.6)

With reference to formulas (2.1) through (2.6) above, computation of 5}_1
is summarized in Table 1. For each age interval (xi, xi+1), the data
required are midyear population Pi (Column 2), number of deaths from all
causes Di (Column 3), and number of deaths from the cause under study
(in this case, cardiovascular-renal diseases) Dil (Column 4). These figures,
which are available in population and vital statistics publications, are
used to compute death rate Mi (Column 5) and cause-specific death rate
Mil (Column 6). The fraction of last age interval of life, as, in Column
(7) is given in Appendix V. Using formulas (2.4), (2.5) and (2.6)
the probabilities ai’ ail’ and finally ai.l’ are computed and recorded in
Columns (8), (9), and (10), respectively.

For age interval (0, 1), for example, we have the midyear population
P. = 1,794,784, the number of deaths D

0

diseases D

0= 48,063, deaths from cardiovascular

01 = 228, and a, = .10. With these values, we compute the death

rate from all causes using formula (2):

D
0 _ 48,063 _
MO = 55- = Tj7§ﬁj7§Z'- .026779
or 26.78 per 1,000, . (2.2a)

and the death rate from cardiovascular-renal diseases using formula (2.3):
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o1 228

01 - P, 1,794,784 °

M

.000127 or .13 per 1,000 . (2.3a)

The probability of dying, GO’ is computed from formula (2.4) which is the

same as in the ordinary life table in Chapter 3, namely

A Mo
QB = 1T+ (l-ao) M

0

- .026779
1 + (1-.10) ,026779

.02615 (2.4a)

and the crude probability of dying from cardiovascular-renal diseases is

computed from

N )
Q01 1+ (l-ao) M

0

. .000127
1+ (1-.10) .026779

= ,000124 (2.5a)

and finally, the net probability 9 1

A o~ .
8,1 = (dp-Qp) (1 + %’ Q1)

= (.02615 - .000124) (1 + %-.000124)

= 026028 . (2.6a)
For age interval (1, 5), n, = 5-1 = 4, the rates and probabilities are

successively computed as follows:

D
1 7,409

My = P, " 7,063,044

= ,001049 or 1.049 per 1,000 (2.2a)



Table 1.

Computation of the net probability of dying, 94 1» when cardiovascular-renal

(CVR) diseases (R]) are eliminated as a cause of death, white males,
United States, 1960.

Age Mid-year Deaths Deaths Death Death Fraction Probability Crude Net
Interval Populations from all from rate rate of last od dying Probability Probability
(in years) (a) causes Cardio from all from CVR Age of dying of dying
" (b) Vascular causes Interval - from CVR when CVR is
X3 0 % Py D, renal M, M, of Life 9 q, eliminated
i . :
diseases /() W/ %1 441
(c,d)
Dil
v (2) (3 (4) (5) (6) N (8) (9) (10)
0-1 1794784 48063 228 .026779 .000127 .10 .02615 .000124 .02603
1- 5 7063044 7409 153 .001049 .000022 .39 .00419 .000088 .00410
5-10 8191158 4408 177 .000538 .000024 .46 .00269 .000108 .00258
10-15 7488562 3847 208 .000514 . 000028 . 54 .00257 .000139 .00243
15-20 5893946 7308 355 .001240 . 000060 .57 .00618 .000300 .00588
20-25 4657470 7755 481 .001665 .000103 .49 .00829 .000514 .00778
25-30 4725480 7182 768 .001520 .000163 .50 .00757 .000810 .00676
30-35 5216424 9039 1808 .001733 .000347 .52 .00863 .001726 .00691
35-40 5461528 13803 4444 .002527 .000814 .54 .01256 .004045 .00854
40-45 5094821 21336 9125 .004188 .001791 .54 .02074 .008870 .01192
45-50 4850486 34247 16796 .007061 .003463 .54 .03474 .017037 .01785
50-55 4314976 50716 26812 .011753 .006214 .53 .05719 .030233 .02737
55-60 3774623 66 540 36907 .017628 .009778 .52 .08456 .046904 .03858
60-65 3100045 85890 49649 .027706 .016016 .52 .12989 .075085 .05702
65-70 2637044 108726 65609 .041230 .024880 .52 .18759 .113198 .07908
70-75 1972947 119269 75371 .060452 .038202 .51 .26327 .166370 .10636
75-80 1214577 109193 73057 .089902 .060150 .51 .36837 . 246465 .14106
80-85 591251 83885 58713 .141877 .099303 .48 .51822 .362716 .19679
85-90 235566 49502 36133 .210141 .153388 .45 .66589 .486055 .25627
90-95 56704 18253 13604 .321900 .239913 .41 .82555 . .615285 .35901
95+ 12333 4219 3136 .342090 .254277 1.00000 1.00000

TOTAL 78347769 8608579 4736404 .010988 . 006045

—L91 ~



a. US Census of Population 1960, US Summary, Detalled Characteristics Table 156. Bureau of the

Census, US Department of Commerce.
Vital Statistics of the US 1960, Vol. II, Part A, Table 5 - 11, National Centre for Health

b.
Statistics, US Department of Health, <ducation and Welfare.
c. Category Number 330 - 334, 400 - 468, and 592 - 594 of the 1955 Revision of the International
Classification of Diseases, Injuries, and Causes of Death, world Health Crganization, 1957. I
2
. ' |

d. Including those age not stated, 267 and 106, respectively.
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M. = D13 - 153
11~ P, 7,063,044
= .000022 or .022 per 1,000 (2.3a)
A My 4(.001049)

9 T 7% (T-a)) 4 1 + (1-.39) 4(.001049)

= ,00419 : (2.4ay

4M 11

4. = 4(.000022)
117 T+ (I-a) ™

= T+ (1-.39) 4(.001049)

1

= ,000088 (2.5a)
and
~ A 1 ~
ql.l = (ql-Qll) (1 + -Z-Qll)

(.00419 - .000088) (1 + i .000088) = .004102.

2
(2.6a)

3. Construction of the Life Table

When all the values of ai are computed, the columns in the life

1

table can be obtained following the procedure described in Chapter 3.

Beginning with a radix 20.1 = 100,000, we compute the number of deaths
in (0, 1)*,
do.1 = %0.1 %.1
= 100,000 x .02603 = 2603 (3.1)
the number living at age 1
L = % -d

1.1 0.1 0.1

100,000 - 2603 = 97397 (3.2)

*A notation .l is added in the subscript of li 1 di 1 Ti 1 and e
to indicate that R, is eliminated. * : *

1

i.l
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and the number of years lived in (0, 1),

Lo,y = (Bg.1790.1) * 39 99,3

= 97397 + .1 x 2603 = 97657 . (3.3)

Other figures in these columns for the subsequent age intervals (except
for the last interval) can be computed in exactly the same way.

The computations for the last age interval (e.g., 95 and over) have
been described in Chapter 3 [cf., Equations (3.10) to (3.12) in Chapter 3].
For easy reference, they are restated below. The number living at age
95, 29521 = 21564, is the survivors of interval (90, 95). The expectation
of life €95.1 is computed directly from the death rate from causes other
than cardiovascular-renal disease in the current population. Using the
inverse relationship between the expectation and the death rate (cf.

equation (3,7 ) in Chapter 3)

P
A - 95 - 12333
95.1 " Dgg - Dyg 4 4219 - 3136
= 11.3878 years (3.4)
Since
s Tesa
. T 3.5
95-1 = T, (3.5)
we have
Tos.1 = %95.1 ®95.1

21564 x 11,3878

245567 .
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The remaining quantities in the last age interval may be derived from the

obvious relationships, thus

Log.y = Tgs.q = 245,567 (3.6)

d95-1 = 295.1 = 21,564 (3.7
and

A95.1 = 1.00000 . (3.8)
With L95-1 and all other Li~1 determined, we proceed to compute Ti.l
from

T, 2L % *Lloggy - (3.9

For convenience, Ti p are computed successively from the highest age.

group, beginning with T = 245,567. For age 90, T9 1 is computed

95.1 0

from

and T85.1 f;om

Tgs.1 = Lgs.1 * Teo.1

and so on, In general,

T. = L + T

i.l i.l i+l.1 (3.10)

The expectation of life (except for e ) is then obtained from

95.1

A Tia

I ¥ (3.11)
i1 T

for each i. For example,



Table 2.

Abridged Life Table when Cardiovascular Renal Diseases are eliminated as a
cause of death for white males, United States, 1960.

Age Probability Number Number Fraction Number Total Expectation
Interval of dying living at dying of last age of years number of of life at
(in years) in interval age x, in interval interval of lived in years lived age x,
(xi, xi+1) (xi,xi+1) life zzte;val) beyozd age
i’7i+1 i
~ y '

X3 P %Xn 941 1.1 41 2 Lia i1 ®i.1
(D (2) _ (3) (4) (5) (6) (7) (8)
0-1 .02603 100000 2603 .10 97657 7894729 78.95
1- 5 .00410 97397 399 .39 388614 7797072 80.05
5-10 .00258 96998 250 .46 484315 7408458 76.38

10-15 .00243 96748 235 .54 483199 6924143 71.57
15-20 .00588 96513 567 .57 481346 6440944 66.74
20-25 .00778 95946 746 .49 477828 5959598 62.11
25-30 .00676 95200 644 .50 474390 5481770 57.58
30-35 .00691 94556 653 .52 471213 5007380 52.96
35-40 .00854 93903 802 .54 467670 4536167 48.31
40-45 .01192 93101 1110 .54 462952 4068497 43.70
45-50 .01785 91991 1643 .54 456178 3605545 39.19
50-55 .02737 90349 2473 .53 445933 3149367 34.86
55-60 .03858 87876 3390 .52 431244 2703434 30.76
60-65 .05702 84486 4817 .52 410869 2272190 26.89
65-70 .07908 79669 6300 .52 383225 1861321 ’ 23.36
70-75 .10636 73369 7804 .51 347725 1478096 20.15
75-80 .14106 65565 9249 .51 305165 1130371 17.24
80-85 .19679 56316 11082 .48 252767 825206 14.65
85-90 .25627 45234 11592 .45 194292 572439 12.66
90-95 .35901 33642 12078 .41 132580 378147 11.24

95+ 1.00000 21564 21564 245567 245567 11.39

—CLl —




TABLR 3.

Abridged Life Table when Cardiovascular Renal Diseases are Fliminated as a
causs of death for white females, United States, 1960.

Age Probability Number Number Fraction Number Total Zxpectation of
Interval of dying in living at dying of last age of years number of life at age x4
(in years) interval age Xxj in interval interval of lived in years lived
(X1, X441 (Xg{, X141) life interval beyond age
Xi
X{ 50 Xi+] i1 I d a, 1 Dy gi.l
S S U 3) (4) (5) (6) m (8)
c- 1 .01959 10007C 1959 .10 98237 8676848 86.77
l- 5 L0033 98041 327 .39 391366 8578611 87.5%
5 - 10 L0184 Q7714 180 .46 488084 8187245 &%, 70
10 - 15 .0C140 Q7534 137 .54 487355 7699161 78.94
15 - 20 .0C227 97397 221 .57 486510 7211806 745
2C - 25 . 00259 7176 252 .49 485237 6725296 5a,21
25 - 30 00295 o692k 286 .50 483905 6240059 64, 28
30 - 35 00395 96638 382 .52 482273 5756154 52.56
35 - 40 00583 96256 561 .54 479990 5273881 54,70
4o - U5 .00881 95695 843 .54 476536 4793891 53,10
45 - 50 .01282 94852 1216 .54 , 471463 4317355 45 50
50 - 55 .01775 927636 1662 .53 464274 3845892 b1 .07
55 - 60 . 02287 G1974 2103 .52 454823 3381618 36,77
6n - 65 .0%241 8aP71 2913 .52 442364 2926795 20,87
65 _'70 L0416 86958 3840 .52 425574 2484431 28,57
™ - 75 .06179 8311¢ 5136 .51 403007 2058857 2477
75 - &0 . 08920 77962 6956 .51 372868 1655850 21.2
80 - 85 .13490 71026 9583 .48 330214 1282982 18.76
85 - 90 .19040 61ulz 11699 .45 275043 952768 15.51
9 - 95 .29170 4974y 14510 241 205915 677725 17.62

95 + 1.00000 35234 35234 471810 471810 13.39

— €Ll —
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T

90.1
90.1 290.1

o>
H

378,147
33,642

11.24

This completes the procedure of constructing life tables.

We have used the 1960 1S white male population as an example to
illustrate the high force of mortality from cardiovascular-renal disease.
For purposes of comparison, a table for the US white female 1960 population

has also been constructed and is reproduced here.

4. Interpretation of Findings

Cardiovascular-renal (CVR) diseases have caused more deaths in the
human population than any other disease. As a group, they are responsible
for over 55 percent of all deaths in the United States in recent years.
Equally impressive figures, but to a somewhat lesser extent, have been
reported in the European countries. To evaluate the impact of these
diseases on human longevity, we can compare the mortality and survival
experience of the current population with the hypothetical experience of
the same population under the condition that would exist if CVR diseases
were removed as causes of death. The life table and the theory of competing
risks provide the most convenient methods for the analysis of such a problem.
In Tables 4 to 6, the probability of dying, the survival probability, and
the expectation of life are given with and without the presence of CVR,
each reflecting in a different way the effeci these diseases have on the
mortality of the population in question. A brief discussion on these

findings follows.



Table 4.

Probability of dying and the effect of eliminating CVR diseases as a
cause of death in each age interval, white males and females, U.S.,1960

Age White males White females
interval CVR CVR Difference CVR CVR Difference
(in years) present eliminated present eliminated
~ ~ A A ~ ~ ~ A A
X3 T %A 94 941 -9 4 ;-9 4 94 4.1 93791 9579,
qi qi
(1) (2) (3) (4) (5) (6) (7) (8) (9)
0-1 .02615 .02603 .00012 0.5% .01967 .01959 .00008 0.47%
1- 5 .00419 .00410 . 00009 2.1 .00341 .00334 .00007 2.1
5-10 .00269 .00258 . 00011 4,1 .00191 .00184 .00007 3.7
10-35 .00257 .00243 .00014 5.4 .00154 .00140 .00014 9.1
15-20 .00618 .00588 .00030 4.9 .00251 .00227 .00024 9.6
20-25 .00829 .00778 .00051 6.2 ,00302 .00259 .00043 14.2
25-30 .00757 .00676 . 00081 10.7 .00357 .00295 .00062 17.4
30-35 .00863 .00691 .00172 19.9 .00484 .00395 .00089 18.4
35-40 .01256 .00854 . 00402 32.0 .00733 .00583 .00150 20.5
40-45 .02074 .01192 .00882 42.5 .01185 .00881 .00304 25,7
45-50 .03474 .01785 .01689 48.6 .0l1816 .01282 .00534 29.4
50-55 .05719 .02737 .02982 52.1 .02732 .01775 .00957 35.0
55-60 .08456 .03858 .04598 54.4 .03978 .02287 .01691 42.5
60-65 .12989 .05702 .07287 56.1 .06613 .03241 .03372 51.0
65-70 .18759 .07908 .10851 57.8 .10321 .04416 .05905 57.2
70-75 .26327 .10636 .15691 59.6 .16682 .06179 .10503 63.0
75-80 .36837 .14106 .22731 61.7 .26990 .08920 .18070 67.0
80-85 .51822 .19679 .32143 62.0 .42950 . 13492 . 29458 68.6
85-90 .66589 .25627 . 40962 61.5 . 59498 .19040 .40458 68.0
90-95 .82555 .35901 . 46654 56.5 .78586 .29170 .49416 62.9
95+ 1.00000 1,00000 0 0 1.00000 1.00000 0 0

= SLY -



Table 5

Probability of survival and the effect of eliminating CVR diseases as a
cause of death, white males and females, U.S., 1960

Age White males White females
interval CVR CVR Difference CVR CVR Difference
(in years) present eliminated ' present  eliminated
. - 2 A _A A A ~ ~ A A A A
i S FS ] Poi Poi.1  Ppi.17Poi Poi.17Poi Pos Poi.1 Poi.17Poi Ppi.17Poi
| Pos Po1
(1) (2) (3) (L) (5) (6) (7 (8) (9)
0-1 1.00000 1.00000 .00000 0:0 % 1.00000 1.00000 1.00000 0.0 %
1 - 5 .97385 . W97397 .00012 0.0 .98033 .980L1 .C0008 0.0
5-10 .96977 .96998 .00021 0.0 . 97699 .9771hL .00015 0.0
10 - 15 .96716 .967.8 .00032 0.0 .97512 .9753L .00022 0.0
15 - 20 .96L67 .96513 .000L6 0.0 .97362 .97397 .00035 0.0
20 - 25 .95871 .959L6 .00075 0.1l .97118 97176 .00058 0.1
25 - 30 .95076 .95200 .0012l 0.1 .96325 .9692) .00099 0.1
30 - 35 .9l356 .9Li556 .00200 0.2 .96L79 .96638 .00159 0.2
35 - LO .93542 .93903 .00361 0.h . 96012 .96256 .002LL 0.3
L0 - L5 92367 .93101 .0073L 0.8 95308 95695 .00387 0.k
L5 - 50 .90L51 .91991 .0154L0 1.7 .oL179 .9L852 .00673 0.7
50 - 55 .87309 .503L9 .03000 3.5 .92l69 /93636 .01167 1.3
55 - 640 .82316 .87876 .05560 6.8 .8994L3 .9197L .02031 2.3
60 -~ 65 .75355 .8LLB6 .09131 12.1 .86365 .89871 .03506 L.l
65 - 70 65567 . 79669 .1h1c2 21.5 .80651 .86958 .06304L 7.8
70 - 75 .53267 .73369 .20102 37.7 .72330 .83118 .10788 1L.9
75 - 80 .39243 .65565 .26322 67.1 .6026L .77982 .17718 29.k
80 - 85 .2L787 .56316 .31529 127.2 113999 .71026 .27027 61.4
85 - 90 11942 L5234 .33292 278.8 .25101 .61LhL3 .36342 1LL.8
S0 - 95 .03990 .33642 .29652 743.2 .10166 L97LlL .39578 389.3
95+ .00696 .2156L .20868 2998.3 02177 .35234 .33057 1518.5

—9L1 —




Table 6

Expectation of life and the effect of eliminating CVR diseases

as a cause of death, white males and females, U.S., 1960

Age White males White females
interval CVR CVR Difference CVR CVR Difference
present eliminated present = eliminated
5T e %1 i ®1017 % 8T 8 ® ®j1 ®1.17 %1 %107 %
e, .
1 1
(1) (2) (3) (L) (5) (6) (n (8) (9)
0-1 67.27 78.95 11.68 17.L ¢ 7L.01 86.77 12.76 17.2 ¢
1=5 68.08 80.05 11.97 17.6 74.50 87.50 13.00 17.L
5 -10 6L.36 76.38 12.02 18.7 70.75 83.79 13.04L 18.L
10 - 15 59.52 71.57 12.05 20.2 65.88 78.94 13.06 19.8
15 - 20 SL.67 66.74 12.07 22.1 60.97 74.05 13.08 21.5
20 - 25 19.99 62.11 12.12 2L.2 56.12 69.21 13.09 23.3
25 - 30 L5.39 57.58 12.19 26.9 51.28 6l.38 13.10 25.5
30 - 35 L0.72 52.96 12.2L 30.1 u6.1i6 59.56 13.10 28.2
35 - L0 36.05 48.31 12.26 3L.0 L1.67 5L.79 13.12 31.5
LO -~ LS 31.L47 L3.70 12.23 38.9 36.96 50.10 13.1k 35.6
LS - 50 27.08 39.19 12.11 Lbk.7 32.37 L5.52 13.15 40.6
50 - 55 22.96 3L4.86 11.90 51.8 27.92 41.07 13.15 L7.1
55 - 60 19.19 30.76 11.57 60.3 123.63 36.77 13.1hL 55.6
60 - 65 15.73 26.89 11.16 70.9 19.50 32.57 13.07 67.0
65 - 70 12.69 23.36 10.67 8L.1 15.70 28.57 12.87 82.0
70 - 75 10.01 20.15 10.14 101.3 12.20 24.77 12.57 ~103.0
75 - 80 7.68 17.24 9.56 124.5 9.13 21.23 12.10 132.5
60 - 85 5.67 14.65 8.98 158.4 6.57 18.06 11.49 17L.9
85 - 90 L.20 12.66 8.L6 201.L L.71 15.51 10.80 229.3
9% - 95 3.07 © 11.2k 8.17 266.1 3.32 13.62 10.30 310.2
95+ 2.92 11.39 8.L7 290.1 2.98 13.39 10.11 349.3

—LLT—



178 —

Table 4 gives a comparison between ai and ai 1 The difference,

A

q.

i " ai 1’ is the reduction in the probability of dying in age interval

(xi, xi¢1) if CVR diseases were eliminated as a risk of death, or, alternatively,
the excess probability of dying due to the presence of these diseases. This
difference, while not pronounced below age 30, advances with age at an
accelérated rate: from .00012 (0.5%) for the first year of life to .46654 (56.5%)
for age interval 90 to 95 in white males, U.S., 1960. If the effect of CVR diseases
were removed, the reduction in the probability of dying for white males is 32%
of the existing probability for age interval 35 to 40, over 50% for interval
50 to 55, and about 60% for interval 70 to 75. This general mortality pattern
holds also for white females. The estimated probabilities ai and ai.l’
and their difference ai - ai.l are lower for females than for males up to age 90.
The relative reduction in the probability of dying is for females about 20% for age
interval 35 to 40, 35% for interval 50 to 55, and 63% for interval 70 to
75. In fact from age 30 to age 70, the relative reduction in the probability
of dying is lower for females than for males, but the reverse is true for
other ages. Thus, relatively speaking, from age 70 on cardiovascular-
renal diseases have a larger impact on white females than white males,
although in absolute terms these diseases contribute more deaths in the
white male population than in the white female population almost throughout
life,

The impact of CVR diseases on the probability of survival is shown

in Table 5, where P,. = 21/20 is taken from the life table of the entire white

0i
population for each sex, and Poj.1 ™ L5 1/10 1 is from Tables 2 and 3.
Although the impact on the probability of survival is less pronounced than

the probability of dying in the younger ages, it is much more alarming in

the older age groups. From age 30 on for males, and from age 40 on for
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females, the relative reduction in the survival probability due to the
presence of CVR has been doubled over everv 5 vear age interval.

Table 6 shows that these diseases cause an average loss of 12 years
in the expectatinn of life for white males under age 50 and 13 vears for
females under age 65. At older ages, the loss in the expectation of 1ife
decreases slightly in absolute value but increases spectacularly relative
to the existing life expectancy. T1f CVR diseases were eliminated as a
risk of deati, a male could expect an 30% increase of length of life cver
the present life expectancy at 30 years of age, 59% at age 50 and 100%
at age 70. Comparable percentages of increased lengths of life that could
be expected at these ages (28% at ape 30, 47% at aece 50 and 103% at age
70) are found for a female.

4.1 Comparison of impact on human mortality of three major causecs

of deaths: All accidents, cancer all forms, and cardiovascular-renal
diseases

Different diseases have definite effects on human mortality and
longevity. Concerted cfforts are heing made through the World Jlealth
Organization and health programs of individual countries to reduce mortality
due to specific diseases. Relative imnortance of diseases as causes of
death play a significant role in detcrmining the priority in overall health
planning. The purpose of this scction is to show how some leading causes
of death may be compared using the lifc table and competing risk methodology,

Tables 7, 8 and 9, are the life tables of the Federal Republic of Germany
1970 population when cardiovascular-renal diseases (Rl), cancer all forms
(Rz),-and all accidents (RS) respectively, are eliminated as causes of
death. Each table shows a hypothetical pattern that would exist in the

Federal Republic of Germany if the corresponding diseases were eliminated,
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Table 7.

Life Table of the Federal Republic of Germany population, 1970
when cardiovascular diseases (Rl) are eliminated as a cause of

death.
Age Probability  Number Number Fraction Number Total Observed
Interval of dying in 1living at dying of last age of years number of Expectation
(in years) interval age x, in interval interval of lived in years lived of life
(Xi, xi+1) (xi, xi+1) life interval be}};ond age at age x,
i
*p RO ®in 1 e 4 3 Lia Tia &1
(1) (2) (3) (4) (5) (6) ) (8)
0-1 .02117 100000 2117 .10 98095 7749467 77.49
1- 5 .00374 97883 366 .39 390639 7651372 78.17
5-10 .00257 97517 251 .46 486907 7260733 74.46
10~15 .00201 97266 196 .52 485860 6773826 69.64
15~20 .00505 97070 490 .57 484296 6287966 64.78
20-25 .00573 96580 553 .52 481573 5803670 -  60.09
25-30 .00511 96027 491 .51 478932 5322097 55.42
30-35 .00633 95536 605 .52 476228 4843165 50.69
35-40 .00832 94931 790 . 54 472838 4366937 46,00
40-45 .01138 94141 1071 .53 468188 3894099 41.36
45-50 .01630 93070 1517 .51 461633 3425911 36.81
50-55 .02481 91553 2271 .58 452996 2964278 32.38
55-60 .03529 89282 3151 . 54 439163 2511282 28.13
60-65 .05576 86131 4803 .54 419608 2072119 24.06
65-70 .08802 81328 7158 .52 389461 -1652511 20.32
70-75 .12736 74170 9446 .52 348180 1263050 17.03
75-80 .18092 64724 11710 .51 294930 914870 14.13
80-85 .25626 53014 13585 .49 230428 ‘5619940 11.69
85+ 1.00000 39429 39429 389512 389512 9.88




— 181 —

Table 8.

Life Table of the Federal Republic of Germany population, 1970
when cancer all forms (R2) is eliminated as a cause of death.

Fraction

Age Probability Number Number Number Total Observed
Interval of dying in living at dying of last age of years number of Expectation
(in years) interval age x, in interval interval of 1lived in years lived of life

(xi, X1 (xi, xi+1) life interval beyggé age at age X,
xproxg 9, o 4.2 3 Li.2 Ti.2 %12

() (2) (3) (4) (5) (6) (7) (8)
0-1 .02117 100000 2117 .10 98095 7323376 73.23
1- 5 .00343 97883 336 .39 390712 7225281 73.82
5-10 .00227 97547 221 .46 487138 6834569 70.06
10-15 .00182 97326 177 .52 486205 6347431 65,22
15-20 .00481 97149 467 .57 484741 5861226 60.33
20-25 .00553 96682 535 .52 482126 5376485 55.61
25-30 .00485 96147 466 .51 479593 4894359 50.90
30-35 .00603 95681 577 .52 477020 4414766 46,14
35-40 .00808 95104 768 .54 473754 3937746 41.40
40-45 .01116 94336 1053 .53 469205 3463992 36.72
45-50 .01595 93283 1488 .51 462769 2994787 32.10
50-55 .02433 91795 2233 .58 454286 2532018 27.58
55-60 .03681 89562 3297 .54 440227 2077732 23.20
60-65 .06501 86265 5608 .54 418427 1637505 18.98
65-70 .11328 80657 9137 .52 381356 1219078 15.11
70-75 .18512 71520 13240 .52 325824 837722 11.71
75-80 .29308 58280 17081 .51 249552 511898 8.78
80-85 44942 41199 18516 .49 158779 262346 6.37
85+ 1,00000 22683 22683 103567 103567 4,57




Table 9.

Life Table of the Federal Republic of Germany population, 1970
when all accidents (R3) are eliminated as a cause of death.,

Age Probability Number Number Fraction  Number Total Observed
Interval of dying in 1living at dying of last age of years number of Expectation
(in years) interval age X, in interval interval of lived in vyears lived of life

(Xi’ Xi+1) (Xi,xi+1) life interval beyznd age  at age X,
i
P X 943 21,3 9.3 4 Li3 Tis gi.3

(1) (2) (3) (4) (5) (6) (7 (8)
0-1 .02054 100000 2554 .10 98151 7195696 71.96

1- 5 .00253 97946 248 .39 391179 7097545 72.46

5-10 .00123 97698 120 .46 488166 6706366 68.64
10-15 .00112 97578 109 .52 487628 6218200 63.73
15-20 .00203 97469 198 .57 486919 5730572 58.79
20-25 .00271 97271 264 .52 485721 5243653 53.91
25-30 .00334 97007 324 .51 484241 4757932 49.05
30-35 .00505 96683 488 .52 482244 4273691 44,20
35-40 .00790 96195 760 . 54 479227 3791447 39.41
40-45 .01287 95435 1228 .53 474289 3312220 34.71
45-50 .02048 94207 . 1929 .51 466309 2837931 30.12
50-55 .03297 92278 3042 .58 455002 2371622 25.70
55-60 .05051 89236 4507 .54 435814 1916620 21.48
60-65 .08632 84729 7314 .54 406823 1480806 . 17.48
65-70 .14551 77415 11265 .52 360039 1073983 13.87
70-75 . 22526 66150 14901 .52 294988 713944 . 10.79
75-80 .33585 51249 17212 .51 214076 418956 8.17
80-85 48554 34037 16526 .49 128044 204880 6.02

85+ 1.00000 17511 17511 76836 76836 4.39
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For comparison, Tables 1Ca and 10b areproduced from the life tables
A k A A A

to show the differences a. - 4. ., Q. - Q. 5, and q. - q. ,, for each age
i il i i.2 i i.3

group. These differences represent the increase in probability of dving
due to the presence of the corresponding disease. Table 10b shows that the
contribution of accidents to the probability of dving is quite uniform
over most of the lite span with the exception of very old arces where some
increase has taken place. in the other hand, the differences in probability
of dying for cancer all forms and cardiovascular-renal diseases are not
significant for ages less than 30 years, but they
increase rapidly with the alvancement of are. The differences are hicher
for cancer than cardiovascular-renal diseases for age groups helow 55,
but the reverse is true for older ases. For age group 80 to 85, the
diftference for cardiovascular-renal diseases is more than four times as
large as that for all cancers, Since the probability of dving in old
age groups is much hischer than in vounger ave orouns, cardiovascular-
renal diseases have a prester offect on himan longevity than does  tger,

The relative impact of these three causes of death on human loneevity
hecomes quitce clear in Table 11, In this Table, the expectation of life

~

ey at each ape when all risks arc operating is being comnared with the

~ - ~
expectation of life (Ci x Ci 5, and cj 3) when one of the causes is
eliminated. We scc that cardiovascular diseases are hy far the most

important causes of death., Cancer all forms runs a distant secoud, and

. . v e A o~ - .
all accidents a poor third. The difference e, | - ¢ is quite constant

throughout the life span, The fignres show that the presence nf cardio-
rascular-renal discases has, on the average, cost the people in the
Federal Republic of Germanv about 7 vears loss of life. The corresponding

difference for cancer decreases as ape increases, with the largest

differcnce of 2.58 vears at acge 1-5 and the smallest of .39 years




Probability of dying when cardiovascular diseases (Rl),

cancer all forms (Rz), or all accidents (R3) are eliminated

as a cause of death.
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Table 10a.

(The Federal Republic of Germany, 1970)

Probability Probability of Dying When A Cause
Age of dying is Eliminated
Interval in interval Cancer 511
(in years) (Xi’ Xi+1) Card%;viscular A}; forms Atﬁlgents
1 2 3
0 *i4n) 4 4 1 4 5 4.3
(1) (2) (3) (4) (5)
0-1 .02123 .02117 .02117 02054
1-5 .00379 .00374 .00343 .00253
' 5-10 .00260 .00257 .00227 .00123
10-15 .00208 .00201 .00182 .00112
15-20 .00516 .00505 .00481 .00203
20-25 .00598 .00573 .00553 .00271
25-30 .00548 .00511 .00485 .00334
30-35 .00707 .00633 .00603 .00505
35-40 .00991 .00832 .00808 .00790
40-45 .01471 .01138 .01116 .01287
45-50 .02224 .01630 .01595 .02048
50-55 .03499 .02481 .02433 .03297
55-60 .05275 .03529 .03681 .05051
60-65 .08915 .05576 .06501 .08632
65-70 .14877 .08802 .11328 .14551
70-75 .23005 .12736 .18512 .+ .22526
75-80 .34382 .18092 .29308 .33585
80-85 .49841 .25626 .44942 .48554
85+ 1.00000 1.00000 1.00000 1.00000
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TABLE 10b

Probability of dying and the effect of eliminating
cardiovascular diseases (R,), cancer all forms (Rj),
or all accidents (R,) as a cause of death in each
agé interval.

(The Federal Republic of Germany, 1970).

Cardiovascular Cancer all All accidents,
Interval diseases, Rl' forms, R2. R3:
X o xin o 94794 .1 L 31231.2 o -4, 4
917941 CHY 94793, 2 9y 4-95.3 |~ 4§,
¢)) (2) (3) (4) (5) (6) (7)
0- 1 .00006 0.3% .00006 0.3% .00069 3.3%
1- 5 .00005 1.3% .00036 9.5% .00126 33.2%
5 - 10 .00003 1.2% .00033 12.7% .00137 52.7%
10 - 15 .00005 2.4% , .00024 11.7% .00094 45.6%
15 - 20 .00011 2.1% .00035 6.8% .00313 60.7% -
20 - 25 .00025 4.2% .00045 7.5% .00327 54.7%
25 - 30 .00037 6.8% .00063 11.5% .00214 39.1%
30 - 35 .00074 10.5% .00104 14.7% .00202 28.6%
35 - 40 .00159 16.0% .00183 18.5% .00201 20.3%
40 - 45 .00333 22.6% .00355 24.1% .00184 12.5%
45 - 50 .00594 26.7% .00629 28. 3% .00176 7.9%
50 - 55 .01018 29.1% .01066 30.5% .00202 5.8%
55 - 60 .01746 33.1% .01594 30.2% .00224 4.2%
60 - 65 .03339 37.5% .02414 27.1% .00283 3.2%
65 - 70 .06075 40. 8% .03549 23.9% .00326 2.2%
70 - 75 .10269 44.67% .04493 19.5% .00479 2.1%
75 - 80 .16290 47.4% - .05074 14.8% .00797 2.3%
80 - 85 .24215 48.6% .04899 9.8% .01287 2.6%
85 + - - ! -
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Table 11.

cardiovascular diseases (R,), Cancer all forms (R.), or
all accidents (R3) as a cause of death in each age interval.

(The Federal Republic of Germany, 1970).

Age Observed Expectation of life with elimination as canse of death
Interval Expec- :
(x, to tation Cardiovascular Cancer all forms All accidents
Xl ) of life Diseases 1. 2. 3.
i+1 — y = ~ ~ ~ Py
CH &1 fa4 .2 807 €i.3 %1.37%
(1) (2) (3) (4) (5) (6) (7 (8)
0-1 70.71 77.49 6.78 73.23 2.52 71.96 1.25
1- 5 71.24 78.17 6.93 73.82 2.58 72.46 1.22
5-10 67.51 74,46 6.95 70.06 2.55 68.64 1.13
10-15 62.68 69.64 6.96 65.22 2.54 63.73 1.05
15-20 57.80 64.78 6.98 60.33 2.53 58.79 0.99
20-25 53.09 60.09 7.00 55.61 2.52 53.91 0.82
25-30 48.39 55.42 7.03 50.90 2.51 49.05 0.66
30-35 43.64 50.69 7.05 46.14 2.50 44.20 C.56
35-40 38.94 46,00 7.06 41.40 2.46 39.41 0.47
40-45 34.30 41.36 7.06 | 36.72 2.42 34.71 0.41
45-50 29.77 36.81 7.04 % 32.10 2.33 30.12 0.35
50-55 25.39 32.38 6.99 27.58 2.19 25.70 0.31
55-60 21.21 28.13 6.92 23.20 1.99 21.48  0.27
60-65 17.24 24,06 6.82 18.98 1.74 17.48 0.24
65-70 13.66 20.32 6.66 15.11 1.45 13.87 0.21
70-75 10.59 17.03 6.44 11.71 1.12 10.79 0.20
75-80 7.98 14.13 6.15 8.78 0.80 8.17 0.19
80-85 5.82 11.69 5.87 6.37 0.55 6.02 0.20
85+ 4.18 9.88 5.70 4,57 0.39 4,39 0.21

1. Cardiovascular diseases (A80-A88)
2. Cancer all forms
3. All accidents

(AE138-AE146)

(A45-A60)
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Table 12.

cause of death

(Canada 1968 and France 1969)

effect of eliminating cancer all forms (RZ)

Canada France
fale Female Male Female
"\'E:e. ~ _/\ . ~ ~ ~ A A
Interval 979 .2 9379 2 947% .2 9;7% .2
" . A~ _/\ mﬁr—'—‘ ~ _,\ ——— ~ _/\ - ~ _A e
(in years) 47% .2 9 G % .2 Y4 47% .2 i %9 %.2 Y
Gign %)
(L) (2) (3) (4) (5) (6) N (8) (9)
1-5 .00019 4.7% .00022 6.3% .00029 7.8% .00N25 8.2%
5-17 .00033  11.1 .00019 9.6 .00037 16,2 .00034  20.5
10-15 .00015 5.8 .00013 8.4 .00062  25.8 .00033  22.9
15-20 .00048 7.5 .00034  13.6 .00126  20.8 .00058  21.3
20-25 .00030 3.3 .00042  14.9 .00097  12.1 .00017 5.2
25-30 .00077  10.3 .00058 18,2 .00123  15.3 .00050 13,7
30-135 .00106  13.2 .00058  13.6 .00141  14.4 .00057  12.4
35-40 .00171  15.5 .00244  37.6 .00313  21.3 .00182  25.1
40-45 .00206  12.0 .00422  41.6 .00520  23.2 .00378  34.2
45-50) .00506  17.8 .00703  44.0 .00867  25.3 .00662  39.1
50-55 .00849 3.6 .01037  42.1 .01534  29.0 .00913  36.5
55-60) L01614 22,0 .01432  17.8 .02429  29.8 .01405 39,1
6065 .02326  20.8 .01801  31.3 .03925  31.2 .01922  34.9
65-70 .03685  22.2 .02348  26.0 .05564  29.9 .02799  31.3
70-75 .04801  20.7 .03010  21.4 .07125  26.9 .04070  26.6
75-30 .04930  14.8 .03325  14.7 .08024  21.4 .05281  20.8
80-55 L06147  13.1 .03818  10.3 .07075  13.5 .05234  13.0
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Expectation of life and the effect of eliminating

(Canada 1968 and France 1969)

cancer all forms (RZ) as a cause of death

Canada France
Age Male Female Male Female
Interval e, & o o & &) & & &l & & o
e |t 2 e I t 12

(1) (2) (3) (4) (5) (6) ¢)) (8) (9)

0-1 69.04 2.37 | 75.69 2.75 | 67.82 3.58 | 75.38 3.12

1-5 69.66 2.47 | 76.09 2.87 | 68.11 3.66 | 75.50 3.15
. 5-10 65.93 2.47 | 72.33 2.87 | 64.36 3.65 | 71.73 3.14
10-15 61.12 2.45 | 67.47 2.86 | 59.50 3.64 | 66.84 3.12
15-20 56.27 2.45 | 62.57 2.85 | 54.64 3.61 | 61.93 3.11
20-25 51.61 2.44 | 57.72 2.84 | 49.96 3.56 | 57.09 3.08
25-30 47.07 2.45 | 52.88 2.82 | 45.34 3.54 | 52.27 3.08
30-35 42,41 2.42 | 48.04 2.80 | 40.69 3.51 | 47.45 3.07
35-40 37.73 2.40 | 43.23 2.77 | 36.06 3.49 | 42.66 3.05
40-45 33.12 2.36 | 38.50 2.68 | 31.56 3.42 | 37.95 3.00
45-50 28.65 2.33 | 33.86 2.54 | 27.23 3.32 | 33.35 2.88
50-55 24,41 2.25 | 29.37 2.34 | 23.10 3.18 | 28.88 2.69
55-60 20.45 2.14 | 25.05 2.08 | 19.24 2.96 | 24.55 2.49
60-65 16.86 1.93 | 20.92 1.80 | 15.71 2.68 | 20.37 2.22
65-70 13.65 1.71 | 17.04 1.50 | 12.60 2.28 | 16.40 1.93
70-75 10.85 1.41 | 13.46 1.22 9.88 1.83 | 12.74 1.61
75-80 8.36 1.07 | 10.24 .94 7.53 1.37 9.56 1.28
80-85 6.25 .88 7.46 .78 5.54 1.01 6.93 .99
85+ 4,61 .73 5.37 .76 4.01 .91 4,90 .93
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at age 85. The average loss of length of life due to cancer is about 2.0
years. The length of life iost due to all accidents also decreases with
the advancement of age. At age 0, the loss is 1.25, while at age 75,
.19 years. On the average the loss due to all accidents is less than one
year.
It may be noted that, in comparison with the findings in Table 6,

cardiovascular-renal diseases are a more serious cause of death in

the United States than they are in the Federal Republic of Germany.

4.2, Cancer all forms

Cancer all forms is next only to heart disease as a major cause of death.
It claimed about 17 percent of all deaths in the United States in recent
years. In spite of immeasurable amounts of scientific research effort, the
cause of the disease is still unknown, and effective treatment is yet to
be found. Concern has been expressed regarding the susceptibility to the
disease as a function of age, sex, race, socio-economic status and others.
To show how these diseases affect longevity of people of different ages,
sex, and locality, we have computed the probability of dying 3}.2 when cancer
all forms is eliminated as a risk of death and the corresponding expecta-
tion of life 21.2 for the populations of Canada and France. The findings are
recorded in Tables 12 and 13. For both the Canadian and French males (age 25-80)
the difference ai-ai.Z increases as age advances, although the effect on
French males is more pronounced. The reverse pattern holds for females
between ages 20 and 60, where the Canadian females are more affected than
the French females. In the age interval from 35 to 55 in Canada, the difference
between the two probabilities is greater for females than for males.

This may be attributable to the prevalence of breast cancer among women.
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The number of years of life lost due to cancer all forms is greater
for the French population than for the Canadian population for both
sexes and all age categories. 1In France, the males would gain more years
of life than females if cancer all forms was eliminated as a risk of
death, while in Canada females would gain more vears of life than males
up to age 53.

5. The Life Table when a Particular Cause Alone is Operating in a Population

The procedure in constructing a life table when a particular
risk is the only risk operating in a population is also the same as that
described in Section 2 of this Chapter, except for the difference in the
basic quantities. As an example, let us consider the net probability of
dving, Q319 when risk Rl is the only risk acting. Since Qi cannot bhe

estimated directly, we make use of the result in the competing risks and

estimate 44 from the formula (cf., Equation (2.21a) in Appendix III),

(5.1)
- Qil)) .

i} 1
Gy = Yy A+ 7 (g

When a life table is for a current population, q and Qil are estimated,

as in Section 2, from

LY

~ M (2.4)
G “ T+ (I-a.) n, M,

1 1 1

and
ni Mi
Yy * T+ ey n . (2.5)
1 1 1

and hence,

~ 1 A A
i1 - 4G g (-9l (5.2)

LD
[
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For the last age interval, e.g., 85 and over, 685 1~ 1. When all the ail
have been computed, we assume a radix 201 = 100,000 and proceed to con-
struct the rest of the table in the same way as before. We shall not

repeat the description.
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CHAPTER 9
MEDICAL FOLLOW-UP STUDIES

1. Introduction

Statistical studies in the general category of medical follow-up
and life testing have as their common immediate objective the
estimation of life expectancy and Survival rates for a defined
population at risk. Such studies usually must be terminated before
all survival information is complete and are therefore said to be
truncated. The nature of the problem in an investigation concerned witn
the medical follow-up of patients is the same as in the l:ife testing
of electric bulbs, although differences in sample size may require
different approaches. For illustration, we use cancer survival data
of a large sample and therefore our terminology is the same as that of
the medical follow-up study.

In a typicai follow-up study, a group of individuals with some
common morbidity experience is followed from a well-defined zero
point, such as date of hospital admission. The purpose of the study
might be to evaluate a certain therapeutic measure by comparing the
expéctation of life and survival rates of treated patients with those
of untreated patients, or by comparing the expcctétion of life of
treated and presumably cured patients &i;h that of‘the general
population. When the period of observation ends, there will usually
remain a number of individuals for whom the mortality data is incomplete.

First, some patients will still be alive at the close of the study.
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Second, some patients will have uied from causes other than those under
study, so that the chance of dyingz from the specific cause cannot be
determined directly. Finally, patients will be "lost" to the study
because of follow-up failure. These three sources of incomplete
information have created interesting statistical protlems in the
estimation of the expectation of life and survival rates. Many
contributions have been made to methods of analysis of follow-up data.
They include the studies of Greerwood [1925], Frost [1933], Berkson and
Gage [1952]), Fix and Neymar [1651], Boag [1949]), Elveback [1958]’Armitage [1959],
Kaplan and Meier [1958 ], Dorn [1350], and Littell {1952]. For the material
presented in this chapter, reference may be made to Chiang [1961a].

The purpose or this chapter is to adapt the life table methodology
and competing risk theory, presented in Appendix II and III, to the
cpecial conditions of follow-up studies. Sectien 2 is concerned with
the general type cf study which investigates mortality experience
without reference to cause of death. The maximum likelihood estimator
of the probabiiity of dving is derived,and 4 methad is suggested for
computing the ohserved cxpectation of life in such studies.

Section 3 extends the discussion to follow-up studies with the
consideration of competing risks, and presents formulas for the estimators
of the net, crude, and partial crude probabilities. The problem of lost
cases is treated in Section 4, where » vatient's zbsence is considered zs o
competing risk, A&nplicztion of the theoretical matter 1is illustrzted with

cernirical date of = [ollow-up study of cervical cancer patlents,
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2, Estimation of Probability of Survival

and Expectation of Life

Consider a follow-up program conducted over a period of y
years. A total of N0 patientsayre admitted to the program at any
time during the study period and observed until death or until
termination of the study, whichever comes first. The time of admicsion
is taken as the common point of origin for all NO patients; thus
N0 is the number of patients with which the study begins, or the
number alive at time zero. The time axis refers to the time of
follow-up since admission, and x denotes the exact number of years
of follow-up. A constant time interval of one year will be used
for simplicity 6f notation, with the typical interval denoted by
(x, x+1), for x=0,1,++-,y-1. The symbol Py will be used to
denote the probability that a patient alive at time x will survive
the interval (x, x+l), and q, the probability that he will die

during the interval, with px+qx = 1.

2.1. Basic random variables and likelihood functions. For each

interval (x, x+1) let Nx be the number of patients alive at the
beginning of the interval. Clearly, Nx is also the number of

survivors of those who entered the study at least ¥ years before
1/

the closing date. The number Nx will decrease as x 1increases
because of deaths and withdrawal of patients due -to termination of
the study. The decrease in Nx is systematically described belcw

with reference to Table 1.
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Table 1

Distribution of Nx patients according to withdrawal status

and survival status in the interval (x,x+1)

Survival status Withdrawal status in the interval
Total Number Number
number to be observed due to
of. for the withdraw during
patients entire interval* the interval**
Total N m n
_ X p 4 X
Survivors s_+w s W
X X X X
Deaths D d d’!
X X X
% Survivors among those admitted to the study more than

(x+1) years before closing date for individual patients.

%%  Survivors among those admitted to the study less than

(x+1) years but more than x years before closing date for
individual patients. '

The Nx individuals who begin the interval (x, x+1) comprise
two mutuélly exclusive groups differentiated according to their date
of entrance into the program. A group of n patients who entered
the program more than x+1 years before the closing date will be
observed for the entire interval; a second group of n patients who
entered the program less than x+1 years before its termination is
due to withdraw in the interval because the closing date precedes

their (x+1)th anniversary date. Of the n patients d_ will die
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in the interval and Sy will survive to the end of the interval and

become N 3y of the n patients d'! will die before the closing
x+1 b4 X

date and Wy will survive to the closing date of the study. - The sum

dx+d; = Dx is the total number of deaths in the interval. Thus

Sy dx’ W and d; are the basic random variableé and will be used

to estimate the probability Py that a patient alive at x will

survive the interval (x, x+1), and its complement qx.

Consider first the group of m individuals each of whom has a
constant probability Py of surviving and 9 ='l—px of dying in
the interval (x, x+1). Thus, the random variable s, has

the binomial distribution:

sx (:lx
4 P (1-Px) (2.1)

where C1 is the binomial coefficient. The expected number of surviviors

and the expected number of deaths are given by

E(sxlmx) =mp, and E(dxlmx) = mx(l-px) (22)

respectively.
The distribution of the random variables in the group of n
patients depends upon the time of withdrawal. A plausible

assumption is that the withdrawals take place at random during the
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interval (x, xt+1). Under this assumption the probability that a

patient will survive to the closing date is

~a-p)fln (2.3)

which is approximately equal to pz s OT

-QU-p)/Inp_ =p 7, (2.4)

since the probability P, of surviving the interval is almost always
large. The quantities on both sides of (2.4) have been computed for selected

values of Pys and the results shown in Table 2 justify the approximation.

Table 2

Comparison between pz and —(l—px)/ln P
X

Px Pl,f -(1-p, )/ 1n p_
.70 .837 .841
.75 .866 .869
.80 .894 .896
.85 .922 .923
.90 .949 . 949

.95 : .975 .975
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1
Consequently, p: is taken as the probability of surviving to the

closing date and (1—p§) as the probability of dying before the
time of withdrawal. Thus the probability distribution of the random

variable Vo in the group of n patients due to withdraw is also binomial:

d'
7 X 2.5)

where C2 is the binomial coefficient. The expected number of survivors

and the expected number of deaths are given by

- 3 ' = -
E(wxlnx) =np’ andr E(dx|nx) n (1-p

>, (2.6)

»®ooC

respectively.

Since the N_ individuals comprise two indepemdent groups
according to their withdrawal status, the likelihood function of
all the random variables is the product of the two probability

functions (2.1) and (2.5), or

(sx+%w ) d d’

X X L.x
L = C py (l—px) 1 px) s

x=0,1,+++,y-1. (2.7)

- where C stands for the product of the combinatorial factors in (2.1) and (2.5),
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2.2. Maximum likelihood estimators of the probabilities P, and

q,- The maximum likelihood estimators of the probability P, is a
value of P, at which the function Lx in (2.7) attains a maximum.

The estimator is given by

2
g0 1902 21
. !idx + hd S+ AN mx) (sx + l/;Mx)
P, = (2.8)
2N, - ;)
withkthe complement:
qu= -6, x=0,1,+--,y-1. (2.9)

The maximum likelihood estimator (2.14) is not unbiased, but is
consistent in the sense of Fisher. When the random variables Syr Voo
and d; are réplaced with their respective expectations as given by
(2.5) and (2.9), the resulting expression is identical with the
probability Py

The exact formula for the variance of the estimator ﬁx in (2.8) is

unknown, but an approximate formula is stated below for practical

applications.
2 . _'x% (2.10)
Py Mx

where

Mo=m + nx(1+ﬁ:)'1 et
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Formula (2.10) is quite similar to the variance of a binomial
proportion except that Mx instead of Nx is in the denominator.

However, M& is the more logical choice, since a patient who is to

be observed for a fraction of the period (x, x+l) should be weighted
less than one who is to be observed for the entire period. According

to equaticn (2.11), the experience of each of the m patients is counted
as a whole "trial," whereas the experience of each of the n patients
due to withdraw is counted as a fraction (1+p§)_1 of a "trial." The
fréction is dependent upon the probability Py of survival. The

‘smaller the probability Py> the larger will be the fraction. When

px=0, Mx = m +n_; when px=1, Mx = mx+%nx. .

2.3. Estimation of survival probability. A life table

for follow-up subjects can be readily constructed once ﬁx and dx
have been determined from (2. 8) and (2.9) for each interval of the
study. The procedure is the same as for the current life table.
Because of their practical importance, we shall consider only the
x-year survival rate and the expectation of life.

The x-year survival rate is an estimate of the probability that a
patient will survive from the time of admission to the xth anniversary ;

it 1is computed from

ﬁox = ﬁoﬁl.”ﬁx—l ’ x=1,2,---,y. (2.12)
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The sample variance of has the same form as that given in

pOx
equation (2.7 ) of Chapter 3.

2 - ~ =2 2

2.4, Estimation of the expectation of life. To avoid confusion in

notation, let us denote by o a fixed number and by éa the observed

2
expectation of life at time a computed from the following formula—ji

A A A A A A A

e ceep A eee L (2.14)

papo.+l“.py—l * PoPat1 y

In a study covering a period of y years, if no survivors remain from

the patients who entered the program in its first year, ﬁy 1 will be

zero, and éa can be computed from (2.14). However, usually there
will be wy 1 survivors who were admitted in the first year of the

program and are still living at the closing date. In such cases

(2.8) shows that ﬁ is greater than zero, and the values of

y-1

ﬁy’ py+l’... are not observed within the time limits of the study.

~

Consequently, e, cannot be obtained from equation (2. 14).

Nevertheless, éa may be computed with a certain degree of accuracy

if wy—l is small. Suppose we rewrite equation (2.14) in the form
e =44 p + ﬁ ﬁ 4 ees 4 ﬁ P A 4+ 3 A Aa
a a af o+l afatl py_l pay(Py + py y+1 + oeee ), (2.15)

where pay is written for papa+lf..ﬁy—l' The problem is to determine
py’py+l’-.. in the last term, since the preceding terms can be

computed from the data available.
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Consider a typical interval (z, z+l) beyond time y with the
survival probability of pz’ for z=y, y+l1,... If the force of mortality

is constant beyond 1y, the probability of surviving the interval (z, z+l1)

becomes independent of z, or

Pz = P, z=y, yHl,... . (2.16)

Under this assumption, we may replace the last term of (2.15) with

A AL A2 A A A
+... -
chy (p ), which converges to payp/(l p), or

B (p+%+...) = B, (2.17)

Clearly, p may be set equal to ﬁy—l if the force of mortality
is assumed to be constant beginning with time (y-1) instead of time
y. 1In order to have small sample variation, however, the estimate of
p should be based on as large a sample as possible. Suppose there
exists a time t, for t<y, such that ﬁt’ﬁt+l’... are approximately
equal, thus indicating a constant force of mortality after time t.
Then, p may be set equal to ﬁt’ and we have the formula for the

observed expectation of life,
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Although formula (2.19) holds for a=0,e--,y-1, it is apparent
that the smaller the value of «, the smaller the value of ﬁay'
When ﬁay is small, the error in assuming a constant force of

mortality beyond y and in the choice of ﬁt- will have but little

effect on the value of éa'

2.5. Sample variance of the observed expectation of life. 1In Appendix

II we prove that the estimated probabilities of surviving any
two non-overlapping intervals have a zero covariance; hence, the
sample variance of the observed expectation of life may be computed

from

2 z { ] } 2 2
SA = A é SaA . (2'20)
ea x>a apx @ px

The derivatives, taken at the observed point ﬁx’ X>a, are given

by
2 el-5 (e +14] x#t (2.21)
apx ] ax L "x+1 ’ *
where
Pox ~ PoPo+1 Py-1
and
{-—a—é}—ﬁ & +%+iy— N (2.22)
3p T Pot | e+l . ’ o= :
Pe ®J ¢ (1-5,)2

For t<a, the factors p_, P> o Pyq and Pay in (2.19) do not contain

P, hence the derivative

3 A 3 - Py ~ 1
S - 5 -5 - (2.22a)
~ o ~ o ~ 2
apt & Bpt y 1—pt y (l-pt)



— 205 —

Substituting (2.21), (2.22) and (2.22a) in (2.20) gives the sample variance of

ey
o
~ 2
s2 —-yilﬁ z[é +!5]Zsz +p Z[é +%+—~E§y——] s2, act
- -~ + ~ R B } ’
€ xeq X x+1 P, at t+l (l_pt)z P,
x#t (2.23)
and
vt 2 2 2 ﬁzu
s2 o= I 2[e,, +u] s2 +—x g2 ast. (224)
e ax x+1 P A \4 P
a - x=a x (-5 t
The value of ﬁx and the sample variance of ﬁx are obtained from
formulas (2.8) and (2.10), respectively,
When the first term in formula (2.23) or (2.24) is taken out
of the summation sign, we have a recursive equation
2 ~ 2 2 ~2 2
S = [ea+1 + %] s+ Py S . for o#t . (2.25)
e P e
Qa o a+1

Therefore, the variance of e, may be computed successively beginnine with the

largest value of o.

2.6 An example of life table construction for a follow-up population,

Application of the methods developed in this section is illustrated with
data collected by the Tumor Registry of the California State Department

‘of Public Health . The material selected consists of 5,982 white female
patients admitted to certain California hospitals and clinics between
January 1, 1942, and December 31, 1954, with a diagnosis of cervical cancer.

For the purpose of this illustration, the closing date is December 31, 1954,




- 206

and the date of entrance to follow-up for each patient is the date of
hospital admission. Each patient was observed until death or until the

closing date, whichever came first.

The first step is to construct a table similar to Table 3,
showing the survival experience of the patients grouped according to
their withdrawal status for each time period of follow-up. The
interval length selected (column 1) will depend upon the nature of the
investigation; generally a fixed length of one year is used. The

total number of patients admitted to the study is entered as NO in the

first line of column 2, which is 5,982, Among them there were m0=5,317
patients (column 3), observed for the entire interval (0,1). Of the

mo patients, s0 (4,030, column 4) survived to their first anniversary

and d0 (1,287, column 5) died during the first vear of follow-up.

In addition, there were n, (665, column 6) patients due to withdraw in
the interval (0,1), of which Yo (576, column 7) survived to the closing
date and dé (89, column 8) died before the closing date. The second

interval began with the s, = 4,030 survivors from the first interval,

0

which is entered as Nl in column 2 of line 2. The Nl patients were

again divided successively by withdrawal and survival status. Of the

Nl patients, ml (3,489, column 3) were the survivors of those admitted

prior to January 1, 1953, and hence were observed for the entire
interval (1, 2); n, (541, column 8) were the survivors of those admitted
during the year 1953 and hence were due to withdraw during the interval.

At the beginning of the final interval (12, 13) there were le = 72

survivors of the patients admitted in 1942; all were due to withdraw

during the last interval, or n ., = 72 (last line, column 8). Of the 72

12

patients, Wi = 72 (column 7) were alive at the closing date. This

means that 612 is greater than zero, and ﬁz for z > 12 cannot be observed.




Téble 3

SURVIVAL EXPERIENCE FOLLOWING DIAGNOSIS OF CANCER OF THE CERVIX UTERI

CASES INITIALLY DIAGNOSED 1942-1954
CALIFORNIA, U.S.A.

Number to be observed for entire Number due for withdrawal in
interval (x, x+l1)* interval (x, x+l)**
Number
Interval living at Number Number Number Number
since beginning surviving dying Total living . dying
diagnosis | of interval Total the in the due for at time of before
(in years) (x, x+l) number interval interval withdrawal withdrawal withdrawal
]
(x, x+1) Nx mx s, dx nx v dx
(1) 2) 3) (4) (5) (6) @) (8) 5
S
0-1 5982 5317 4030 1287 665 576 39
1-2 4030 3489 2845 644 541 501 40
2-3 2845 2367 2117 250 478 459 19
3-4 2117 1724 1573 151 393 379 14
4-5 1573 1263 1176 87 310 306 4
5-6 1176 918 861 57 258 254 4
6-~7 g6l 692 660 32 169 167 2
7-8 660 496 474 22 164 161 3
8-9 474 356 344 12 118 116 2
9-10 344 256 245 11 88 85 3
10-11 245 164 158 6 81 78 3
11-12 158 76 72 4 82 80 2
12-13 72 0 0 0 72 72 0

*Survivors of those admitted more than x+l1 years prior to closing date.
**Survivors of those admitted between x and x+l1 years prior to closing date.

Source:

California Tumor Registry, Department of Public Health, State of California
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This material has been used to construct a life table for the
cervical cancer patients. The steps involved are similar to those described
in the construction of current life tables in Chapter 3. For easy

reference, but at the expense of repetition, they are stated below:

1) sx and ax' For each interval (x, x+l), use formulas

(2.8) and (2.9) of this chapter to compute QX and ax'

A A
(2) dx and kx. Assume 2 _ = 100,000, use 9y » 9ys°°* to

0
obtain d and £ from
x x

A

dx = lqu and 2x+1 = lx - dx
for x = 0,1,--+,12.

(3) a and Lx. The fraction of last year of life is assumed

to be a = .5, which is quite appropriate for such studies.

The quantity Lx is computed from

= +
Lx 2'x+1 ax dx

or since ax = 5 and dx - lx -2x+1,

L= e ), for x = 0,1,-+,12.

4) Tx and @; beyond the observation period. Information

derived from a follow-up study is incomplete for the
construction of a life table inasmuch a8 it is limited

to the study period (13 years in this example). Therefore,
some device needs to be developed for the computation of

A A

e beyond the last year of study, that is €,

Here we make use of equation (2.19) of this chapter and

in the present case.
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write
A
P
1 t .
613 = ; +m (2.19 a)

Estimating P, with 311,

A A 1 A
P, = Pyp =43 1-.05106 = .94894
gives required value

8 a1 9489

13 1 - 94894 = 19.0848

Using this figure we compute

A
T3 = $14 €5 = 34,277 x 19.0848 = 654,170

A
(5) Tx and e The quantities tx and gx for other intervals how

can be obtained by simple computations. For example,

Ty = L., +T

12 12 13 °

In general

T =L +T
x x

o+l for x = 0,1,°**,12,

A A
and e (except for e13) is computed froméj
- T
T

x

The results of the computations are given in Table 4.

A
e for x = 0,1,°°°,12.

For comparison between survival experience of different study groups or
for making other statistical inferences, we computed the standard deviations
of the survival rate [eq. (2.13)], of probability of death [eq. (2.10)1,
and of the expectation of life [eqs. (2.23), (2.24) and (2.25)] for each x.
Numerical values of the standard errors and the main life table functions are

shown in Table 5.
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For example, at x=2, the calculations for S~ were as follows:

. . 92
2 qz(l—qx) oAk 1
§< = —te—-"— where M_ = m_+n_ (l+p )
q M v X X X
X X
~k o Ik -1
My = mbn +(14p,) = 2367 + 478(1+.89677) " = 2,612.495
q. (1-q.) )
2 a, (14, _.10303(.89697) _ e
sa =St = 61> 1ge = -00003537
2 2
S~ = .00003537 = .00595 = S
RY) 2
x-1
To calculate S. from So = ﬁé b pjz S% :
Po3 Pox a=1 Y Py
2
Sg = pr % p72 Sg
Po3 u=0 % Py
r 2 c 2 00 2]
= (.55615)2 |S;99§§22§;+ S;ﬁp626)2 + C. E?Eléw
L(.75746) (.81857) (.98697)° |
= (.30930)[.0001589] = .00004915
S = v/.00004915 = .00701
p
03
. A 2
To calculate S~ from SA2 = pj Sg + [ea+l + %] Sg
e3 €a eOL+1 ’ pu
S“z = ﬁi Sé + [84 + .5]2 %AZ
€3 4 P
2
= (1-.10303)° 5.09% + [19.31+.5]2(.00595)°
= 20.84450 + .01389 = 20.8584
Sy = V20.8584 = 4.567




Table 4

LIFE TABLE OF PATIENTS DIAGNOSED AS HAVING CANCER OF THE CERVIX UTERI

CASES INITIALLY DIAGNOSED 1942 - 1954
CALIFORNIA, U.S.A.

Observed
Interval Number Probability Number Fraction Number Number Expectation
since living of dying dying of last of years of years of
diagnosis at time in interval in interval year lived in lived beyond life at
(years) X (x, x+l) (x, x+1) of life interval (x, x+1) x X
A A
X, x+l R'x 9, dx ax Lx Tx e
1) 2) (3) 4) (5) (6) ) (8)
0-1 100,000 .24254 24,254 .5 87,873 1,289,575 12.90
1-2 75,746 .18143 13,743 .5 68,875 1,201,702 15.86
2-3 62,003 .10303 6,388 .5 58,809 1,132,827 18.27
3-4 55,615 .08576 4,770 .5 53,230 1,074,018 19.31
4-5 50,845 .06513 3,261 .5 49,215 1,020,788 20.08
5-6 47,584 .05820 2,769 .5 46,200 971,573 20.42
6-7 44,815 .04376 1,961 .5 43,835 925,373 20.65
7-8 42,854 .04320 1,851 .5 41,929 881,538 20.57
8-9 41,003 .03369 1,381 .5 40,313 839,609 20.48
9-10 39,622 .04655 1,844 .5 38,700 799,296 20.17
10-11 37,778 .04385 1,657 .5 36,950 760,596 20.13
11-12 36,121 .05106 1,844 .5 35,199 723,646 20.03
12-13 34,277 .00000 0 .5 34,277 688,447 20.08
13 34,277 654,170 19.08%

* For computation of e, and T13 see text (2.19a)



Table 5
SURVIVAL EXPERIENCE AFTER DIAGNOSIS OF CANCER OF THE CERVIX UTERI
CASES INITIALLY DIAGNOSED 1942-1954
CALIFORNIA, U.S.A.
THE MAIN LIFE TABLE FUNCTIONS AND THEIR STANDARD ERRORS

Interval
since ' Estimated probability Observe
diagnoses x-year survival rate of death in interval Expectation
(years) ﬁOx (x, x+l) ‘of life at x—
(x, xtl) 1000 Poy 1000 Sﬁox 1000 q 1000 Sa e Sax
X
(1) (2) 3) %) (5) (6) )
0-1 1000.00 0.00 242,54 5.69 12,90 2,83
1-2 757.46 5.80 181.43 6.26 15.86 3.74
2-3 620.03 6.65 103.03 5.95 18.27 4.57
3-4 556.15 7.01 85.76 6.38 19,31 5.09
4-5 508.45 7.33 64.13 6.50 20.08 5.56
5-6 475.84 7.61 58.20 7.23 20.42 5.94
6-7 448.15 7.95 43.76 7.34 20.65 6.31
7-8 428,54 8.29 43,20 8.45 20,57 6.60
8-9 410.03 8.71 33.69 8.85 20.48 6.89
9-10 396,22 9.17 46.55 12,15 20.17 7.13
10-11 377.78 9.98 43.85 14.30 20.13 7.47
11-12 361,21 10.97 51.06 20.30 20.03 7.81
12-13 342,77 12,73 00.00 00.00 20.08 7.79.
13 342.77 12,73 | e —— 19.08 7.79

Source: California Tumor Registry, Department of Public Health, State of California, U.S.A.

ali .y

I
(5]
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3. Congideration of Competing Risks

Most follow-up studies are conducted to determine the survival
rates of patients affected with a specific disease., These patients
are also exposed to other risks of death from which some of them may
eventually dié. Iﬁ a study determining the effectiveness of radiation
aé a treatment for cancer, for example, some patients may die from
heart disease. 1In such cases, the theory of competing risks is
indispensible, and the crude, net, and partial crude probabilities
all play important roles.

Let us assume, as in Appendix III, that r risks, denoted by
Rl,'

For risk R6 there is a corresponding  force of mortality u(T;é),

§=1,-++,r, and the sum

",Rr, are acting simultaneously on each patient in the study.

u(T;1) + -+ + p(Tyr) = u(1) (3.1)

is the total force of mortality. Within the time interval (x, x+1)
we assume a constant force of mortality for each risk, u(T;6) = u(x;é),

which depends only en the interval (x, x+1) and the risk R for all

6;
risks, u(T) = u(x) for x<1< x+1.

Consider a subinterval (x, x+t), and let Qxd(t) be the crude
probability that an individual alive at time x will die prior
to x+t, 0<t<l, from R6 in the presence of all other risks in the

population. It follows directly from equation (2.8) in Mathematical Appendix III

that

Qxd(t) = —Eé%igl———-]} ~ px(ti], 0<t<l; ¢6=1,°*°,r. (3.2)
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From (3.1) we see that the sum of the crude probabilities in (3.2) is

equal to the complement of px(t), or

Q. (t) + --- +Q (t) +p (t) =1, O<t<l.  (3.3)

For t=1, we abbreviate st(l) to QxG’ etc. When t =%, we have

the subinterval (x, x+3) and the corresponding crude probabilities

Us Ca) = p(x) P

X

E_Qi;g)_[l_ %] =(%(6[1+px;i]-l , 8=l,ee,r. (3.4)

Equation (3.3) implies that

1 -1 L -1 1
c%cl[l'{'px ] oo 4 c%cr[l‘l-px ] + Py ° L x=0,1,+*, y-1. (3.5)
The net and partial crude nrobahilities mav he comnuted from the
followine apnroximate relations, The corresnonding exact formulas
are 2iven in Section 2, Annendix TITT. The net nrobhabilitv of death in
interval (x,x+1) when Q& is the onlv ris’ onerating in a »nopulation

is given by

1
= 0N +1 -N + - -N 2q -0 ; .
U8 ‘x5[1 Z(qx xﬁ) 6 (qx xﬁ)("qx ‘xG)] ' (3.6
the net probahilitv of death if 3. is eliminated as a risk of death is

given bv
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, 1
U,,c = (a,=0 D01+ 10 o+ 20

_!Q(qx-"‘()x;)] A 6=l,...,r, (107)

p:¢ <

and the nartial crule probability by

D (3.3)

Our immediate problem is to estima nd .
P o te Qxé’ Py, @ qy

3.1. Basic random variables and likelihood functions. Identification

of the random variables in the present case follows directly frem the
discussion in Section 2.1, except that deaths are further divided by

cause, as shown in Table 6.
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Table 6

Distribution of Nx patients according to withdrawal status,

survival status, and cause of death in the interval (x, x+1)

Withdrawal status in the interval

Total number Number to be Number due to
of patients observed for withdraw during
the entire the interval#**
interval%*
Total N m n
X x X
Survivors s _tw s W
X X X x
Deaths, all causes D d da'
X X x
Deaths due to cause
]
Rl Dxl dxl dxl
R D d d!'
T XTr Xr Xr
* Survivors among those admitted to the study more than (x+1)

.years before closing date.

%% Survivors among those admitted to the study less than (x+1)
years but more than x years before closing date.

The m patients to be observed for the entire interval (x, x+1)
will be divided into r+l mutually exclusive groups, with Sy surviving
the interval and dxﬁ dying from cause Rd in the interval, &=1,<+-,r.

Since the sum. of the corresponding probabilities is equal to unity
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(eq. (3.3) the random variables 8 .o, dxr have a multinomial

dxl’.
distribution:

d
Cl p X x1 . Q XT , (3.10)

where s +d _ ++-+4d =m , andC. is the combinatorial factor. The
x x1 xr x 1

expected numbers are given by
- - | 11)
E(sxlmx) mp and E(dx6|mx) mQ (3.11)

respectively.
In the group of nx patients due to withdraw in interval (x, xt+l),
LA will be alive at the closing date of the study and d;d will die
from RG before the closing date. Each of the nx individuals has the
survival probability éi [ C£. eqf 2.4)]and the probability of dying from

risk RG before the closing date

+ -1
Qxdc%) =Qg (W+p) §=l,---,r. (3.12)

Since ﬁi and the probabilities in (3.12) add to unity, as shown in

(3.5), the random variables wx, ;1,---, d;r also have a multinomial
distribution:
r 1
x0
C, p o 1 o, @+pi)?t (3.13)
2 *x =1 | *x6 x ’ .

where w_ +d' + *** +d' = n, and C, is a combinatorial factor.
X x1 XxTr X , 2
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The expected numbers are

-1

E(w |n ) =n p—i- and EQ' |n ) =nQ (1+p-%) (3.14)
x! Tx X X x61"x x 'x0 x '

respectively. Because of the independence of the two groups, the
likelihood function of all the random variables in Table 6 is the product
of (3.10) and (3.13):

s Hw r d da'
_ X “x x8 4 -1] “x3
L =cp Hl Qx6 [;_)xé(lﬂ)x ) ] . (3.15)

X X s

where c stands for the product of the combinatorial factors in (3.10) and

(3.13). Equation (3.15) may be simplified to give the final form of the

likelihood function

s . (3.16)

3.2 Estimation of crude, net, and partial crude probabiities. We

again use the maximum likelihood principle to obtain the estimators
of the probabilities p ,Q ,,¢-+,Q .. The estimator of p is the same as
x’ *xl Xr X
that obtained in Section 2; namely
S G
2
-#d’ '+ -
3! +/Ed! + 40N —dm ) (s Hw) , x=0,1,--+,y-1.
2(N, ~4n )

T

] (3.17)

Therefore ﬁx (=1—ﬁx) also will have the same values as that in Section
2. The estimators of the crude probabilities are given by

~ D

Q (S= —ﬁ_a .
X Dx X

-, y-1. (3.18)




e nov use (3.17) and (3.19) in formulas (3.6) to (3.9) to ohtain

the following estimators of the net and vartial crude probabhilities:

- ~ PO S A A

Mo =0 01+ ) = a0 2q - <10
Lot [ ' i s :'_'r) e fv :{ﬂ?)(“c:{ "er)] .1

-~

r

g o009y
N

N LA 1A A A -
e = (qu—'\)‘r 3)[1 <+ ’”xﬁ + = rwv/r (qv+f?"(§)] , o= 1 r (3.20)

1
e

/ﬁ = 0 f1T + ' 4+ —n (n 40 S =2 ...,r
RS P ¥ vl v x i ’ L

2= 0,1, 0.,v-1 ., (3.21)

Thesr zre also maximu= 1ivelihood estimators ard consistent in Pisher's
scnse.  Consider for example the estimator O, in forrula (3,21)

~
of thie partial crnde nrokabilitv, ‘'c¢ have seen in Section 2 that

<

15 consistent Lo TFisher's sense. “hen the other randem variables are

19

rovlaced with the corresponding expectations, the right side of (3,21)

ay e simnli€ied to 0 civen in (3.3), nrovine the consistency.
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3.3, An Example. The survival experience of cervical cancer

patients presented in Table 3 in Section 2.6 is used once again to
illustrate the application of the theory in this section. For easy
reference, the cervical cancer patients data is reproduced in Table

7, except that the number of deaths, dx and d; are furthe: divided
according to cause. In-this example only two causes are consédered,

cancer of the cervix and other causes. Therefore, we have for each interval

(x, xt1),

- -+ ' o |} + '
dx dxl de and dx dxl de .

During the first year of follow-up, for example, there were d = 1,287

0
deaths occurring among those to be observed for the entire interval,
and d6 = B9 deaths among those due for withdrawal in the interval. These

numbers are divided py causes:

1,287 = 1,105 + 182 and 89 = 70 + 1¢ .

wWith the numerical values of the probability of survival (;;) and the
probability of dying (ax) obtained in Section 2, simple application of
formulas (3.18) and (3.19) yield the crude probability axé and

the net probability G;G . Since only two causes of death are studied,
the probability sz 1s equal to Qx-l; the probability of dying when
cancerof the cervix uteri is climinted is the same as the probability

of dying from other causes when the other causes are the only causes

act:ing. Table 8 shows the estimated probability of surviving each interval,

and the crudc and net probabilities of death from cancer of the cervix

uteri (Rl) and all other causes of death (RZ)'




Table 7

SURVIVAL EXPERIENCE FOLLOWING DIAGNOSIS OF CANCER OF
CASES INITIALLY DIAGNOSED 1942-1954
CALIFORNIA, U.S.A.

THE CERVIX UTERIL

Number to be observed during the Number due for withdrawal in
entire interval (x, x+l)* interval (x, x+1)
Number dying in Number dying before
Number the interval ) withdrawal

Interval living at Number Number

since beginning Total not surviving Cancer Total living Cancer
diagnosis of interval due for the of the Other due for at time of of the Other
(in years) (x, x+1) withdrawal interval Total cervix causes withdrawal withdrawal Total <cervix causes
(x, xH) N m 8, d a2 "x 5 4% a_ %w

) ) (3) “) (5) ® M ®) ® ) ayn a2y g

0-1 5982 5317 4030 1287 1105 182 665 576 89 70 19

1-2 4030 3489 2845 644 557 87 541 501 40 31 9

2-3 2845 2367 2117 250 206 44 478 459 19 15 4

3-4 2117 1724 1573 151 113 38 393 379 14 8 6

4-5 1573 1263 1176 87 61 26 310 306 4 2 2

5-6 1176 918 861 57 24 33 258 254 4 3 1

6-7 861 692 660 32 16 16 ) 169 167 2 2 0

7-8 660 496 474 22 11 11 164 161 3 2 1

8-9 474 356 344 12 5 7 118 116 2 1 1

9-10 344 256 245 11 7 4 88 85 3 2 1
10-11 245 164 158 6 4 2 81 78 3 1 2
11-12 158 76 72 4 1 3 82 80 2 1 1
12-13 72 0 0 0 0 0 72 72 0 0 0

* Survivors of those admitted more than x+l years prior to closing date.
** Survivors of those admitted between x and x+1 years prior to closing date.

Source:

California Tumor Registry, Department of Public Health, State of California, U.S.A.



Table 8

SURVIVAL EXPERIENCE AFTER DIAGNOSIS OF CANCER OF THE CERVIX UTERI
CASES INITIALLY DIAGNOSED 1942-~1954
CALIFORNIA, U. S, A.

ESTIMATED CRUDE AND NET PROBABILITIES OF DEATH FROM CANCER
OF THE CERVIX UTERI AND FROM OTHER CAUSES

Crude probabilities of death Net probabilities of death
in interval in interval
Interval Probability (x, xtl) from (x, xtl) when
since of surviving
diagnosis inter;al Cervix Other Cervix Cancer Cervix Cancer
(years) (x, xH) cancer causes Acting Alone Eliminated
(x, xtl) 1000 Py 1000 Qxl 1000 sz 1000 94 1000 9.,
(¢9) 2) (3) 4) (5) (6)
0-1 757 .46 207.11 35.43 211.17 39.77
1-2 818.57 155.97 25.46 158.11 27.71
2-3 896.97 84.65 18.38 85.46 19.22
3-4 914.24 62.89 22.87 63.63 23.63
4-5 935,87 44,40 19.73 44 .85 20.19
5-6 941.80 25.76 32,44 26.19 32,87
6-7 956.24 23.17 20.59 23.41 20.84
7-8 956.80 22.47 20.73 22.70 20.97
f-9 966.31 14.44 19.25 14,58 19.39
9-10 953,45 29.93 16.62 30.18 16.88
10-11 956.15 24,36 19.49 24,60 19.73
11-12 948.94 17.02 34.04 17.32 34.34
12-13 1000.00 ——— _—— _—— —_——

Source: California Tumor Registry, Department of Public Health, State of California, U.S.A,
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4. Lost Cases

Every patient in a medical follow-up is exposed not only to the
risk of dying, but also to the risk of being lost to the study because
of follow-up failure. Untraceable patients have caused difficulties
in determining survival rates, as have patients withdrawing due to
the termination of a study. However, lost cases and withdrawals
belong to éntirely different categories. In a group of Nx patients
beginning the interval (x, x+1), for example, everyone is exposed
to the risk of being lost, but only n_ patients are subject to
withdrawal in the interval. Therefore, it is incorrect to treat lost
cases and withdrawals equally in estimating probabilities of survival
or death. For the purpose of determining the probability of dying
from a specific cause, patients lost due to follow-up failure are not
different from those dying of causes unrelated to the study. Being
lost, therefore, should be considered as a competing risk, and the
survival experience of lost cases should be evaluated by using the
methods discussed in the preceding section. In this approach to the
problem all formulas in Section 3 will remain intact, the solution
requiring only a different interpretation of the symbols.

Suppose we let Rr denote the risk of being lost; for the time

element (1, T+A) in the interval ' (x, x+1) let

u(x;r)A + o(A) = Pr{a patient will be lost to the study in

(1, 1+A) due to follow-up failure}, x<T<x+l,

(4.1)
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The following are a few examples of the new interpretation:

P, = Pr{a patient alive at time x will remain alive and
under observation at time x+1}. (4.2)
]
@G = l_px

f

Pr{a patient alive at time x will either die or be lost
to the study due-to follow-up failure in interval

(x, x+1)}. (4.3)

Q. = Pr{a patient alive at time x will be lost to the study

in  (x, x+1)}. (4.4)

Q.r = Pr{a patient alive at time x will die in interval

(x, x+1) 1if the risk Rr of being lost is eliminated},

l—qX - Pr{a patient alive at x will survive to time x+1 if

the risk Rr of being lost is eliminated}. (4.6)

Q.. . = Pr{a patient alive at x will die in (x, x+1) from

risk RG if the risk Rr of being lost is eliminated}.

(4.5)

4.7)
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The probabilities in (4.5), (4.6), and (4.7) are equivalent to
Qs Py and Qxd’ respectively, if there is no risk of being lost.
The symbol dxr in Table 6 now stands for the number of lost.
cases among the m patients and d;r for the number of lost cases
among the n_  patients; the sum D _ =d__ + d’ is the total
X XTr Xr Xr
number of cases lost in the interval. The probabilities in (4.2)

through (4.7) can be estimated from formulas (3.17) through (3.21)

in Section 3. 2.
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FOOTNOTES

1/ These methods are equal'y applicable to data based either on the date

of last reporting for individual patients or on the common date.

2/ Tor simplicity, we assume for n =1 and ax=l for all x, then CX=1 in
X

the formula for éu [Chapter 4 (4.23)].

3/ To verify these computations find ;0 with t=11 using formula (2.19) of

this chapter:

0o
~ ~ NN A A -~ ~ [-‘

=1 4+ p + + oo+ +
€0 = 7 T PyTPoPy PoPy Py-1 7 Poy il_A |
{ PtJ

=% + [p,. . +p .+ +p. 1+ p Aﬁ—u \l

© T PPoTPo2” e TPoy T Poy | T |

L P

. 94894

12.8957 = 12.90

p )
This serves as a check of . = 0 _ 1l28?i§23-= 12.89575 and

0 EB ~ 100,000

thus of all 1. and 7T .
X X
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APPENDIX I

Theoretical Justification of the Method of Life Table Construction in Chapter 3

Formulas (3.7) and (4.3) in Chapter 3, ¢xpressing the relation between
the probability Qi and the corresponding death rate ., were introduced as
intuitive concepts for the purpose of application, but they can be derived
from a theoretical viewpoint. Let p(x) be the force of mortality (mortality
intensity function) at age x. It is easy to seec that the probahility Q3
that an individual alive at exact age X, will die in interval (xi,xi+ni)

is given by {cf., A\vpendix 1T, formula (2.7

n,
. i
q. = l-exp{-f u(x.+7) d£} . (n
i i
0
"oy an individoaal at X let T, he the number of deaths in [Ki’x‘+l]'
1 i
Clearlv, T. =1, if the indivi.iual dies in (Xi’xi+1) with a nrohahility
: i .
g, and T. = 0, if the individual survives the interval, with a »nrohabilitvy
l-q.. Therefore, the exnected number of deaths in (xi,xi+1\ is E[Ii] = 9.
i ,

The mortality rate m, is the ratio of the expected number of deaths 9

to the number of years an individual expects to live in the interval, or

n,
i
l-exp{-S u(x.*%5) d&}
0 i
m o= — . (2)
N i y
S oexp{-S n(x;+E) dg}dy
0 0

Let a random variable Ti be the fraction of the interval (xi,xi+ni) lived
by an.individual who dies at an age included in the interval, so that T4
assumes values between 0 and 1. The expected value of T, is the fraction
of the last age interval of life, denoted by as, i.e.,

E(t.) = a;, . (3)
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For each time t,0 <t <1, the probability density function of T is

n.t
lexp{-/ * u(x;+£)dE}] nlx;+n;t)n, dt
g(t)dt = 0 (4)
9
0it_<_1

The quantity on the right-hand side of (4) is the probability that an
individual alive at X5 will die in interval (xi+nit, xi+nit+dnit) providing
that he dies in (xi,xi+ni). According to the definition of Ty this is also
the probability that T will assume values in (t,t+dt), which is the density

function g(t)dt. The integral
n.t
i
1 ] exp{-f0 H(x,+E) dE}

fo g(t) dt = fo % u(x;+n t)ndt = 1 ; (5)

thus T is a proper random variable. The expected value of T, may be

computed as follows,

1
a; = E(Ti) = fo tg(t)dt
nit
p telf  ulxpd) dg)
_ 0
= fo o u(xi+nit)nidt . (6)

Integrating the numerator in the last expression in (6) by parts gives the expression

n, n.
i 1 y
-n.exp{-f  u(x;+£)dE} + S exp{-S u(x +E)dfldy
) 0 0 0 1
a, = . (7
1 n.q,
11

Substituting (1), (2), and (3) in the resulting formula (7) yields

1 1
a, =1- — + . (8)
* 4 MM
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Solving (8) for q;, we obtain the fundamental relationship between Q

and m,
i

n.m
94 = 1+(1-a.)n. m, (9
i’

For age interval (x,x+1) of one year (n=1), we write a)‘(,qx and m

for a:,q; and m o, respectively, and have from (9)

m
- X
%™ WTapn_ (10)
where
1 Q,
q, = l-exp{-/ u(x+£)dE} and mo= :
0 I exp{-f wu(x+E)dEl}dt
0 0
(11)
and
t
1 t exp{-f0 w(x+E)dE}
ay = fo - u(x+t)dt . (12)
1 - exp{-/ u(x+E)dE}
0

Formulas (9) and (10) are completely analogous to formulas (4.3) and

(3.7) in Chapter 3.
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APPENDIX II
STATISTICAL THEORY OF LIFE TABLE FUNCTIONS

1. Introduction

The concept of the life table originated in longevity studies of man,
where it was always presented as a subject peculiar to public health, demography,
and actuarial science. As a result, its development has not received sufficient
attention in the field of statistics. Actually, the problems of mortality
studies are similar to those of reliability theorv and life testing, and theyv
may be described in terms familiar to the statistically oriented mind. From
a statistical point of view, human life is subject to chance. The life
table systematically records the outcomes of manv such experiments for a
large number of individuals over a period of time. Thus the quantities in
the table are random wvariables. Theoretical studies of the subject from ¢
purely statistical point of view "#.+r been made; the probability distributions
of life table functions have been devised and some optimum properties of these
functions when thev are used as estimates of the corresponding unknown
quantities have been explored. The reader may refer to [Chiang, (1968), Chapter 10]
for detail. Estimation problems concerning life table functions have been
discussed by Grenander [1965]. The purpose of this Appendix is to give a brief
presentation of the theoretical aspects of the life table. A typical abridged

life table is reproduced below.
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Table 1
Life Table
Age Number Proportion Fraction of Number Number of Total Observed
interval  living dying in last dying in  years lived number expectation
(in years) at age X interval interval interval in interval of years of
(xi,xi+l) of life (Xi’xi+l) (Xi’xi+l) lived life
beyond age X at age X,
Xgtoxag 4 9 3 d Ly 4 °4
X, to x4 20 49 a, d0 L0 T0 o
xw and over 2w qw dw Lw Tw ew
The following symbols are also used in the text:
pij = Pr{an individual alive at age X will survive to age x.,} ,
i< js i, j=0,1,---, (1.1)
and
1 - Pij = Pr{an individual alive at age Xy will die before age xj} s
iij.’ i, j=0:l,"'- (1.2)
When xj =X, ve drop the second subscript and write Py for
Py 441 No particular symbol 1is introduced for the probability
?

1 - pij except when x,

j = X1 in which case we let 1 - P, = 4q;-

1
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Finally, the symbol e, is used to denote the true, unknown
expectation of life at age X estimated by the "observed expectation
of life," e, .
i
All the quantities in the life table, with the exception of

20 and a;, are treated as random variables in this chapter. The

radix , & is conventionally set equal to a convenient number, such

0

as 10 = 100,000, so that the value of Zi clearly indicates the

proportion of survivors to age x We - adopt the convention and

1
consider 20 a constant in deriving the probability distributions

of other life table functions. The distributions of the quantities in
columns Li and Ti are not discussed because of their limited
use. One remark should be made regarding the final age interval

(xW and over): In a conventional table the last interval is usually
an open interval, e.g., 95 and over ; statistically speaking,‘ X is

w

a random variable and is treated accordingly. However, discussion

of this point, which is given in [Chiang, (1968), Chapter 101, will not be
presented here. Throughout this appendix we shall assume a homogeneous
population in which all individuals are subjected to ;he same force of
mortality, and in which one individual's survival is independent of the

survival of any other individual in the group.
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The various functions of the life table are usually given for integral
ages or for other discrete intervals. In the derivation of the distribution
of survivors, however, age is more conveniently treated as a continuous
variable with formulas derived for QX, the number of individuals surviving
the age interval (0,x), for all possible values of x.

The probability distribution of kx depends on the force oif mortality,

or intensity of risk of death, p(x),defined as follows:

u(x)2 + 0o(A) = Pr{an individual alive at age x will die in interval
(x,%x+A) }. (2.1)
Let the continuous random variable X be the life span of a person so that

the distribution function
F,(x) = Pri{X<x} 2.2)
A -

is the probability that the individual will die prior to (or at) age X.
Consider now the interval (0,x+A) and the corresponding distribution function
FX(x+A) = Pr{X<x+A). For an individual to die prior to x+A he must die
prior to x or else he must survive to x and die during the interval (x,x+4).

Therefore, the corresponding probabilities have the relation

FX(x+A) = FX(X) + [1 - FX(X)][u(x)A + (A)] (2.

(9]
N

or

FX(x+A) - FX(x)
A

= [1 - F GO () +2§_A_)] , (2.4

Taking the limits of both sides of (2.4) as />0, we have the differential

equation
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LR = (1 - G0 lu) (2.5)

with the initial condition

FX(O) = 0. (2.6)
Integrating (2.5) and using (2.6) yields the solution
X
-/ u(t)de
0
1 - FX(x) = e = Ppy (2.7)

Equation (2.7) gives the probability that one individual alive at age O

will survive to age x. If there are QOvindividuals alive at age O who are

subject to the same force of mortality, the number QX of survivors at age

x 1is clearly a binomial random variable with the probability N, of survivino

to x and the probability distribution given by

QO! K 20—k
= = ——— ' - k=0,l,.--,Q/ . (2-8)
Prie = kJ KTl ! Pox I Pox) 0

For x = X, the probability that an individual will survive the age

interval (O,xi) is
— - (2.9)
pOi expl f p(t)dt}

and the probability distribution of the number of survivors, Qi’ is

[ \

Yol K, 247k, 109
= - = cee . 2.1
PI‘{Q,i = kl’Q,O} = ki pOl(l pol) ’ ki Osls 920
J
The expected value and variance of Qi given L are
| - (2.11)
E(e %) = &4Pgs
and
2 - - (2.12)
o 10y " LoPos 17Poy) s

respectively.
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In general, the probability of surviving the age interval (xi,xj) is

X,
J
P;; = expi- f u(r)drp, for i<j (2.13)
J X.
i
with the obvious relation
paj = paipij , for a<i<j. | (2.14)

If we start with Qi individuals at X5 the number of survivors £,
at xj, for i<j, is also a binomial random variable with the probability

pij and
e.! k, .-k,

(1-p,.) * 7, k=0,1,.00,0, (2.15)

Prie, = k|2, ) = T rr——7 Pis °
j i1 T k(L k! Pij ij
i3 TRASTRETP RIS ]

with the expected value and variance given by

E(zjizi) = zipij (2.16)

and

e e = zipij(l-pij). (2.17)

When j=i+1, (2.15) becomes

[ k 2.-k

i . i+l (1_pi) i

i+l
Yt Py )

Prie, . =k,  |2.}= (2.18)
i+l i+1' 71 ki+1!(gi ki+1

It is intuitively clear that given Ei people alive at age X;s the

probabili: . i tribution of the number of people alive at x,, for

x, > Xyo is independent of 20,21,...,2.

, . This means that for each k,
N i-1 3




~237 -
Pr{Qj = kj|20, Bqseees 24} = Pr{Qj = kjlzi} . (2.19)

Consequently,

E(2j|20,..., 25) = E(zjlgi),
and

2 _ 2

zj|20,..., 2

[of

In other words, for each u the sequence QO’ 21,..., Qu is a Markov process.

2.1. Mortality laws.

The survival probability in (2.7) has been knowmn to life-table students
for more than two hundred years. Unfortunately, it has not been given due
recognition by investigators in statistics. although differing forms of this
function have appeared in various areas of research. We shall mention a few

below in terms of the probability density function of X,

X

-) uft)dt
dFX(x) é
fX(X) =4 = u(x)e x>0 (2.20)

= 0 x<0.

(i) Gompertz Distribution. In a celebrated paper on the law of human

mortality, Benjamin Gompertz [1825] attributed death to two causes: chance,

or the deterioration of the power to withstand destruction. 1In deriving his
law of mortality, however, he considered only deterioration and assumed that
man's power to resist death decreases at a rate proportional to the power
itself. Since the force of mortality u(t) is a measure of man's susceptibility

to death, Gompertz used the reciprocal 1/u(t) as a measure of man's resistance

to death and thus arrived at the formula




d 1 1
— (——) = -h 2.21
dt u(t)) u(t) ° ( )
where h 1is a positive constant. Integrating (2.21) gives
In(—2—) = -ht+k (2.22)
u(t)
which when rearranged becomes the Gompertz law of mortality
t
u(t) = Be . (2.23)

The corresponding density function and distributions are given, respectively,

by

-Blc®-1]/1a ¢

f(x) = Bc'e (2.24)

and

B
Fp(x) = 1 - exp{- - (c®-1)1. (2.25)

(ii) Makeham's distribution. In 1860 W. M. Makeham suggested the modification

t

u(t) = A+ B c (2.26)
which is a restoration of the missing component, 'chance " to the Gompertz
formula. 1In this case, we have

£(x) = [A+Bc™] exp{-[Ax+B(c"-1)/1n c]} (2.27)
and
FX(X) =1 - exp{-[AX+B(cX—l)/ln cllt. (2.28)
(iii) Weibull distribution. When the force of mortality (or failure rate)
is assumed to be a power function of t, u(t) = uata—l, we have
a
F(x) = pax® le™HX (2.29)

and

—_ 1y

FX(X) = 1-n 7 (2.30)




This distribution, recommended by W. Weibull [1939] for studies of the life

span of materials, is used extensively in reliability theorv.

(iv) Exponential distribution. If p(t) = py is a constant, then

f(x) = pe ¥ (2.31)
and
Fo(x) = 1-e "% (2.32)
a formula that plays a central role in the problem of life testing (Epstein

and Sobel [1953]).
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3. Joint Probability Distribution of the Number of Survivors

Let us consider,for a given u, the joint probability distribution of

21, 22,..., Qu given 20,

Prif, = ky,een, & = k (23 (3.1)

1’

It follows from the Markovian property in (2.19) that

Prie, =k , 2,7k ..,2u=ku|20}=Pr{21=k1|QO}Pr{22=k2|k1}...Pr{2u=ku|ku_1}.

171 2"
(3.2)
Substituting (2.15) in (3.2) yields a chain of binomial distributions:
u-1 k,! k k,-k
i i+l i i+l
Pr{f =k ,8, =k ,...,8 =k |[2}= T ] : = p. (1-p,)
1 7172 ™2 u u'’'0 i=0 ki+1'(ki ki+1)' i i
ki+l = 0’1""’ki’ with k0=20. (3.3)
Formula (3.3) shows that when a cohort of people is observed at regular
points in time, the number of survivors, 21+l,to the end of the interval
(xi,xi+l) has a binomial distribution depending solely on the number of
individuals alive at the beginning of the interval li=ki.
The covariance between Qi and Qj may be obtained directly from (3.3); a
somewhat simpler approach is the following. By definition
Oy, BB BB R 1)~ CigRo;) (4gR,,) (3.4)
where
E(2,2,)=E[2, E(L, |2 )]=E[12p 1= E[Rzlp . (3.5)
i%j i3 i¥1j 17743

Since Qi is a binomial random variable,

2 2
E[Qi] = zOpOi(l-pOi) + [zopOi] . | (3.6)
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Substituting (3.5) and (3.6) successively in (3.4) and using the relation-

ship pinij=pOj’ we have the formula for the covariance

9, Qj = Qopnj(l—pni), i<j; 1,3=0,1,...,u - (3.7)

When j=i, (3.7) reduces to the variance of Qi (equation (2.12)). The

correlation coefficient Po g between Qi and Qj’ therefore, is given by
i’73

. J

°o., , (3.8)

oL, N
1773 P (mpgy )Py (I-pgy

which is always positive whatever may be o<i<j. For a given i, the correlation
coefficient decreases as xj increases. This means that the larger the number
of individuals alive at Xis the more survivors there are likely to be at

xj; but the effect of the former on the latter decreases when xj becomes

farther away from X . These results show that for a given u, 21,...,2u in

the life table form a chain of binomial distributions; the joint probability

distribution, the expected values, covariances and correlation coefficients are

given in (3.3), (2.11), (3.7), and (3.8), respectively.
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4. Joint Probability Distribution of the Numbers of Deaths

In a life table covering the entire life span of each individual in
a given population, the sum of the deaths at all ages is equal to the size

of the original cohort. Symbolically,

dO + dl + ... F dW = J-\,O, ' 4.1

where dW is the number of deaths in the age interval (xW and over). Each
individual in the original cohort has a probability Po;d; of dying in the
interval (Xi’xi+l)’ i=0,1,...,w. Since an individual dies once and only

once in the span covered by the life table,

Poodp T+ T Poudy T 1, (4.2)

where Pog = 1 and q, = 1. Thus we have the well-known results: The numbers

of deaths, dO""’dw’ in a life table have a multinomial distribution with

the joint probability distribution

L. ! § §
0’ 0 W,
’...’dw = 6w} = —‘——' .._‘._'6w! (pOOqO) e e (pOWqW) s (4,3)

Pr{d, = ¢
0 0'

0

the expectation, variance, and covariance are given, respectively, by

E(dillo) = 20Pps9; o (4.4)

[o P )

and

_f_9_r_ i#J; i’j=0;l"..’ﬂ_' (4.6)

’

°di 4, = ~24P0193P049;
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In the discussion above, age 0 was chosen only for simplicity.

For any given age, sav X.» the prohability that an individual alive

-

)} subsequent to X

at age X will die in the interval K, X
& Q ( 1’7i+1 a

is Py and the sum

I o~1%
=)
Q
(SN
Na
',.l
1]
)_d

and thus the numbers of deaths in intervals beyond X, also have

a multinomial distvibution.

(4.7)
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5. Optimum Properties of ﬁj and aj

The quantity aj (or pj) is an estimator of the probability that an

individual alive at age x  will die in (or survive) the interval (x ’Xj+1)’
h| ]
with
p. +q. =1 1=0, 1,c.. . 5.1
Pyt q > h| (5.1)

Therefore, ﬁj and qj have the same optimum properties. For convenience,

we consider ﬁj in the following discussion.

5.1. Maximum likelihood estimator of pj. The joint probability distribution

(3.3), when expressed in terms of the random variables 21,...,2u, may be rewritten
as
u~-1l 2.1 2 L.~ R
i i+1 i i+1
L= g '?2 2,1 Pi G R A (5.2)
i=0  Ti41 M’

which is known as the likelihood function of 21, e zu. When the right
hand side of (5.2) is maximized with respect to pj, we have the maximum
likelihood estimators, say ﬁj' In this case, the maximizing values ﬁj can
be derived by differentiation. Letting

u-1 u-1

log L =C+ iZO %.41 log py + ize(zi—zi+l) log(1-p,) (5.3)

setting the derivative equal to zero,

L, .
—2—-log L= - Ai i+l 0, (5.4)

& j=0,1,.. : (5.5)

su=1




— 245 -

It should be noted that if for some age X all the ¢ individuals alive
W

at X die within the interval (xw,x ), then Qi=0 for all i>w, so that

w+l
there is no contribution to the likelihood function beyond the wth factor.
Consequently, the maximum-likelihood estimator in (5.5) is defined only for
Qj > 0. With this understanding, let us compute the first two moments.

We have shown in Section 2 that, given Rj > 0, the number 2j+l has the

binomial distribution, therefore

L,

2
5.1 = g|—H] - g -
Elps] = E J E[Qj E(Ly,q 1201 = pys (5.6)

and ﬁj and hence aj are unbiased estimators of the corresponding probabilities.

Direct computation gives also

~ 2 1 2
Elp. = E[+—]| p.(1-p.) + p. (5.7
[py1 (1j) p;(-py) + py )
and the variance
62 =E i p.(1-p.) = o2 . (5.8)
D, P N h| q.
J J J

When 20 is large, (5.8) may be approximated by

2 1 _
oﬁj E(lj) pj(l pj). (5.9)

Justification of (5.9) is left to the reader.

For the covariance between ﬁj and ﬁk for j < k, we require that Lk

and hence lj and 2j+ be positive and compute the conditional expectation

1
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l ~ -~
N ‘pj - B % E(lk+l|£k)|pj' = p = E(pp)> (5.10)

w Yot

E[by [p,1=F | ==

from which it follows that

E[p;py ] = E{p,E(py |p,)] = Elp,] Elp,]

and that

g~ ~ =0, (5.11)
Pj,Pk
Observe that formula (5.11) of zero covariance holds only for proportions
in two non-overlapping age intervals. If the two intervals considered both
begin with age X, but extend to ages Xj and Ko respectively, the covariance
between the proportions ﬁaj and ﬁak is not equal to zero. £Easy computation

shows that

1
o~ A =E——9p , ({1-p .) a< j < k. (5.12)
paj’pak ‘la ak “J

When k = j, (5.12) becomes the variance of ﬁaj'

Although,ﬁj and ﬁk have zero covariance, they are not independently

distributed. For example
Pr{p; = .5|p, = 1} # Prip, = .5|p, = .81.

Thus we have shown that the quantities ﬁj and Qj in the life table are

the unbiased, maximum-likelihood estimators of the corresponding probabilities

. and q..
PJ and qJ
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6. Distribution of éa’ the Observed Expectation of Life at Age X,

The observed expectation of life summarizes the mortality experience
of a population from a given age to the end of the life span. At age L
the expectation expresses the average number of years remaining to each
individual 1iving at that age if all individuals are subjected to the
estimated probabilities of death ﬁj for j > i. This is certainly the most
useful column in the life table.

To avoi.! confusion in notation, let o denote a fixed number and x, a
particular age. We are interested in the distribution of éa’ the observed
expectation of life at age X, Consider Qa’ the number of survivors to
age Xx_, and let Ya denote the future lifetime beyond age L of a particular
individual. Clearly, Ya is a continuous random variable that can take on any
non-negative real value. Let Yy be the value that the random variable Ya
assumes, then Xa+ya is the entire life span of the individual. Let f(ya)
be the probability density function of the random variable Ya’ and let
dya be an infinitesimal time interval. Since Ya can assume values between
Yy and ya+dya if and only if the individual survives the age interval
(Xu’ Xa+ya) and dies in thi i;terval (Xu+ya’ Xa+ya+dya)’ we have

- %Y unar

X
Q

f(yu)dya = e U(Xa+ya)dya y 0. (6.1)

|v

Function f(ya) in (6.1) is a proper probability density function
since it is never negative and since the integral of the function from
Yy = 0 to Yy = is equal to unity. Clearly, f(ya) can never be negative

whatever the value of Yy To evaluate the integral
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X +y
- f o au(T)dT
X

gwf(ya)dya = gme @ u(xa+ya)dya (6.2)

we define a quantity ¢

x0.+y0. y(l

o= | w(odr = [ ulx +t)dt (6.3)
and substitute the differential
do = u(xa+ya)dya (6.4)

in the integral to give the solution

(o] (o]

é f(ya)dya = é e

240 = 1. (6.5)

The mathematical expectation of the random variable Ya is the expected
length of life beyond age X and thus is the true expectation of life at
age X . In accordance with the definition given the symbol e , we may write

a xa+ya a
- p(r)dr
‘X

o

€a T % yaf(ya)dya B j Vo8

5 p(xa+ya)dya. (6.6)

Thus the expectation ea and the variance

(>

- 2
o% = é (ya-ea) f(ya)dya (6.7)

both depend on the intensity of risk of death u(1).
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The expectation of life at age X, is conventionally defined as

fxa+ya
N u(t)dr

= I. e ¢ d
e, 6 Yo ° (6.8)

It is instructive to prove that the two alternative definitions (6.6) and

(6.8) are identical. Let u = Yy du = dya,

[xa+ya
- x_ u(t)dr
v=-e (6.9)
and
/xa+ya
-y p(t)dr
dv = e o
u(xa+ya)dya
(6.10)
Integrating (6.6) by parts gives
j’xa+ya
® -Jy u(t)dr
f. y,6 € ¢ (x +y )d
g e XYy Yo
(6.11)
fxa"’ya N xa+ya
- Jy p(t)dr - " /; u(t)dr
- a
= —ya e + f e @ dy
0 a
0




The first term on the right vanishes and the second term is the same as

(6.8), proving the identity.

«
6.1, Tii» variance 0f the exnectation of 'ife, e , The future

lifetimes of % survivors may be regarded as a sample of 2 independent and
) )

identically distributed random variables, k=1, ... , Ru’ each of which

Yak’

has the probability density function (6.1), the expectation (6.6), and the
variance (6.7). According to the central limit theorem, for large § the
a

distribution of the sample mean

ok (6.12)

0% /Ra. It has heen shown in Chapter 4, Section 3, that te sample mean

~

Y 1is equal to the observed expectation of life e.,» Or

Y =& . (6.13)

~ 2
Therefore, the variance of e is also 7, /% . Ver nractical nurnoses,
it y
o
we need to have a formula for the variance of o vhich can he estinated

~
for the cohort and t.e current lifo tahles. The fornula of e, is given hv
C

A |
e = %—' % 5 {ni(?i_di) + ﬂinidi} +aond i (h.14)




Using the relation di =4y - 8445 1m0, ...,w-l, we rewrite (6.14) as
TPET
€ =an + c, —=an_ + C, ﬁ . 6.15
¢ & i=ot+l Qa @0 i=g+1 (6.15)
i T -1t . ion p . 1 .15) 4
where cy (1 ai—l)nl—l a;n, Because the proportion P s in (6 ) is

an unbiased estimate of P> the expectation of éu as given by (6.6) is

simply

C. P . » a=0,1,+°,w. (6.16)

The observed expectation of life as given in (6.15) is a linear function
of p ., which in the current life table is computed from
paj’ p
~ . j:a—*-l,"',W.

Byj = PoPar1 °T7 Py-10 (6.17)
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Clearly, the derivatives taken at the true point (pOl

are
—L A -— f <l .
3ﬁi aj  Pai Pi+1,j ° or azi<j;
=0, for 1>j.
Hence
& )
5 € = C. P_. P, .
api a J=i+1 3 Tai Yitl,j

]
o
Q
.—I
——
o
+
'_l
+
—~
v
o
e
g
B
—

b Pj_l)

(6.18)

(6.19)

Because of (6.18), the derivative (6.19) vanishes when i = w. Since it

has been shown in Section 5 [cE. equation (5.11)] that the covariance

between proportions of survivors of two non-overlapping age intervals is

zero, the variance of the observed expectation of life may be computed from

the following

w-1 2
g2 = Z {-—3— é } o2 .
e o P

a i=a api

Substitution of (6.19) in (6.20) gives the formula

W'il

2 2 2
= p <le + (1-a,)n,}* o% ,
{=q ai” i+l i’ q

o2
e r)
i

a

(6.20)

a=0,1,°++,w-1. (6. 21)
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Thus we have

Theorem: If the distribution of deaths in the age interval (xi, xi+l)

is such that, on the average, each of the di individuals lives a,n, years

in the interval, for i = a, a+l,...,w, then as Qa approaches infinity,

the probability distribution of the observed expectation of life at age

X as given by (6.13), is asymptotically normal and has the mean and

variance as given by (6.16) and (6.21), respectively.







APPENDIX ITI

THE THEORY OF COMPETING RISKS

A Historical Note - Danicl Bernoulli's Work

The concept of competing risks is not new; it seems to have originated
in a controv;rsy over the value of vaccination. The first systematic discussion
of the problem was by Daniel Bernoulli in 1760 in his article entitled,

"Essai d'une nouvelle analyse de la mortalite causee par la petite verole

et des avantages de 1'inoculation pour la prevenir." The main objective of
the memoir was to determine the mortality caused by smallpox at various

ages.  Since his work created muech discussion in his time and opened up a

new area of study ino competing risks, it may be appropriate to review briefly
Daniel Bernoulli's approach.

Let uX denote the number who survive to age x; among them S have not
had smallpox. Assume that in a year smallpox attacks one out of n individuals
who have not had the disease, and one out of every m individuals who contract
the disease dies. Both n and m are assumed to be constant. UWithin the time
element dx, the number who die is ~dUX, and the number who die frem smallpox
is

s dx
v

S (1)

mn

and therefore the number who die from other causes is

s dx
—de -~ e »
X mn (

e
o

Now the number of those who have not had smallpox will decrease during the
time element dx through contracting smallpox (sx dx/n) and through death
(a proportion sx/flX of that in (2)). Denoting this reduction by -dsx, we

have the equation,
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s dx s s dx

-ds_ = X - X @+ =) . (3)
X n 2 X mn

°x dgx " iy dsx ‘x dx
5 =m_=-1 = (4)
s X
X
or
Lx
nd ln (Hl;;‘ - 1) = dx . ' (5)
X
Integrating both sides of (5) gives
L
(m X l)n - ex+c
s
X
or
mEX
s = —— X . (6)
x 1+e(x+c)/n
To determine the constant of integration ¢, we observe that at x=0, sg = 20
so that ec/n = (m-1), and thus
mlx
s - - | )
X 1+(m—1)ex/rl

Using formula (7) and assuming m = n = 8, Bernoulli calculated EX and sX
on the basis of Halley's table of Breslow.

Bernoulli also derived a formula for the number of survivors had there
been no smallpox. Using a similar approach, he showed that this number of

survivors, denoted by Z_s is given by
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ml ex/n

z =X , (8)
X 1+(m—1)ex/n

The right-hand side of (8) increases as either m or n decreases and approaches
the limit m nx/(m—l) as x increases indefinitely. |
After discussing the subject of the mortality from smallpox, Daniel
Bernoulli proceeded to the discussion of inoculation. He admitted that there
was some danger in inoculation against smallpox, but he found that on the whole
it was advantageous. Based on his calculations, he concludes that inoculation
would increase the average length of life by three :years.
An important assumption in Damiel Bernoulli's salution of the problem
was the constant incidence rate (1/n) and constént-case fatality rate (1/m).
D'Alembert (1717-1783), Trembly (1749-1811), and Laplace {1749-1827) all
had considered the case when n and m both are functions of age x. It was
D'Alembert who was the most critical of Bernoulli's solution. Although he
too recognized the value of inoculation, he felt that Bernoulli had over-
estimated its advantage. While he failed to provide a neat solution to

the problem, D'Alembert brought up a significant distinction between the

physical life and the real life of an individual. By the physical life, he
meant life in the ordinary sense; by the real life he meant the portion

of existence during which the individual enjoys life in'a disease-free state.
Theoretical pursuit of this aspect of the problem, however, was not in
evidence either in D'Alembert's work or in that of others. A detailed
account of the controversy may be found in Todhunter [1949]. Thus, Bernoulli,
D'Alembert, Trembley and Laplace each derived a method of determining the
change in population cdmposition that would take place if smallpox were
eliminated as a cause of death. It was Makeham [1874], however, who first

formulated a theory of decremental forces and explored its practical applicatioms.
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. 'L .
Actuarial mathematicians have applied Makeham's work to develop

multiple-decrement theory in the study of life contingencies. For a derailed
account of the theory, referencce should be made to C. W. Jordan [1952]. 1In the
last thiry years, the theory of competing risks have attracted much attention
in the field of health and statistics. Greville [1948] discussed deterministically
multiple decrement tables, Fix and Neyman [1951] studied the problem of competing
risks for cancer patients; and Chiang [1961a] approached the problem from a
stochastic viewpoint. Other interesting studies include those by Berkson and
Elveback [1960], Berman [1963], Cornfield [1957], and Kimball [1958], [19691],
David [1970], Pike [1970], Mantel and Bailar [1970]1 and Chiang [1970].
L. Intreduction

Although the basic characteristics of mortality studies are that death is
not a repetitive event and that usually death is attributed to a single cause,
in cause-specific mortality studies the various risks competing for the life of
an individual must be considered as well. For example, in an investigation of
congenital malformation as a cause of infant death, some subjects would die from
cther causes such as tuberculosis. These infants have no chance either of dying
from congenital malformation or of surviving the first year of life. What then
would be the contribution of their survival experience to such a mortality study
and what adjustment would have to be made for the competing effect of tuberculosis
in the assessment of congenital malformation as a cause of death? Competing risks
must also be taken into account in studies of the relative susceptibility of in-
dividuals in different illness states to other diseases. For instance, would
people suffering from arteriosclerotic heart disease be more likely to die from
pneumonia than those without a heart condition? Any meaningful comparison between
the two groups with respect to their susceptibility to pneumonia would have to
evaluate the effect of arteriosclerosis as a competing risk. The following three
types of probability of death from a specific cause are necessary for an under-
standing of the study of survival as well as the application of life table metho-

dology to such problems as those above.
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1. Crude probability: The probability of death from a specific cause

in the presence of all other risks acting in a population, or

Q.

id

)

= Pr{an individual alive at time X will die in the interval (Xi’ Xi+l

from cause R6 in the presence of all other risks in the population}.

2. Net probability: The probability of death if a specific risk is the only

risk in effect in the population or, conversely, the probability of death if a spe-

cific risk is eliminated from the population.

45 = Pr{an individual alive at Xg will die in the interval (Xi’ Xi+l) if R6
is the only risk acting on the population};
9.4 = Pr{an individual alive at X will die in the interval (xi, Xi+l) if Rd

is eliminated as a risk of death}.

3. Partial crude probability: The probability of death from a specific cause

when another risk (or risks) is eliminated from the population.

Qié‘l = Prian individual alive at X will die in the interval (Xi’ Xi+l) from R(5
if R, is eliminated from the population};
Qse12 = Pr{an individual alive at X will die in the interval (Xi’ Xi+l) from

R6 if Rl and R2 are eliminated from the population}.

When the cause of death is not specified, we have the probabilities

)}

ao]
]

Pr{an individual alive at xi will survive the interval (xi, xi+l

and

)1,

Nal
il

Pr{an individual alive at X will die in the interval (Xi’ X

with +q, = 1.
p,tq; =1
The use of the terms '"risk' and '"cause" needs clarification. Both terms may

refer to the same condition but are distinguished here by their position in time
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relative to the occurrence of death. Prior to death the condition referred to is
a risk; after death the same condition is the cause. For example, tuberculosis

is a risk of dying to which an individual is exposed, but tuberculosis is élso the
¢ause of death if it is the disease from which the individual eventually dies.

In the human population the net and partial crude probabilities cannot be
estimated directly, but only through their relations with the crude probability.
The study of these relations is part of the problem of '"competing risks," or
"multiple decrement." Formulas expressing relations between net and crude
probabilities have been developed by assuming either a constant intensity of
risk of death (force of mortality) or a uniform distribution of deaths. We
will review these formulas in this Appendix assuming a constant relative
intensity. Partial crude probabilities have not received due attention in view
of their often indispensable role in studies of cause-specific mortality.

Their relations with the corresponding crude probabilities will also be discussed.
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2. Relations between Crude, Net and Partial Crude Probagbilities

Suppose that r risks of death are acting simultaneously on each individual in

a population, and let these risks be denoted by R "',Rr. For each risk, R there

r s’

is a corresponding intensity function (or force of mortality) u(t;d) such that,

u(t;8)A + 0(2) = Pr{an individual alive at time t will die in interval

(2.1)
(t, t+A) from risk Ré}, §=1,"*",r,
and the sum
pu(t;l) + +++ + p(e;r) = u(e) (2.2)
is the total intensity (or the total force of mortality). Although for each risk
Ry the intensity u(t;8) is a function of time t, we assume that within the time
interval (xi, Xi+l) the ratio
n(t;d) 9
wes) Cis (2.3)
is independent of time t, but is a function of the interval (Xi’ Xi+1) and risk
Rd' Assumption (2.3), which is known as the proportionality assumption, permits
the risk-specific intensity u(t;8) to vary in absolute magnitude, but requires that
it remain a constant proportion of the total intensity in an interval.
Consider death without specification of cause. The probability that an indivi-
dual alive at x, will survive the interval (x.,, x.,.) is
i i i+l
Xi+1
—f p(t) dt
x, (2.4)
p = e , i=0’l’... 4

and the probability of his dying in the interval is q; = l-—pi (see formula (2.9)

in Appendix TI).




To derive the crude probability of dying from risk R6’ we consider a point

t within the interval (Xi’ X ). The probability that an individual alive at

i+l
X will die from Ré in interval (t, t+dt) is

t
- f u(r)dr
X, (2.5)

e 1 U (t;8)dt

where the exponential function is the probability of surviving from Xg to t when
all risks are acting, and the factor p(t;8)dt is the instantaneous death probability

from risk R<S in time interval (t, t+dt). Summing (2.5) over all possible values

of t, for X15ﬁ531+1’ gives the crude probability

t
< - fx p(t)dr
i+l i (2.6)
X,
i
Under the proportionality assumption (2.3), (2.6) may be rewritten as
t
- w()dr
Cu(e3s) JSitl =1 (2.7)
QiCS = ——E?ES-J e p(t) dat.
X,
i
Integrating gives
*i41
u(t)de (2.8)
A TG ) N *i _ ul(t;8) _
Y18 T T () ‘ vy did
hence
Q.
p(t;8) _ ~is e oo e e
wO) 1 . Xist<xi+l’ §=1, , T . {(2.9)
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Equation (2.9) is obvious, for if the ratio of the risk-specifie intensity to the
total intensity is constant fhroughout an interval, this constant should also be
equal to the ratio of the corresponding probabilities of dying over the entire
interval. Equations (2.2) and (2.9) imply a trivial equality

Qil+ e +Qir=qi’ l=0,]_’0", (2.10)

Renark 1. Fquation (2.9) sumpcsts a similarity between the intensity

N

functions u(t;") and the prorability O« Vor example, from {(2.9) we have
5

u(t;s) _ Qid
u(tse) Q. i

1¢

(2.11)

so that the relative magnitude between any two probabilities is equal to the relative
magnitude between the corresponding intensity functions. However, when several sets
of values are considered, the variation among Qid may be quite different from the

variation among u(t;8). To illustrate, let u(t;8) = u(i;8) for xigtgxi 1and

-+

6= 1,""",r; so that pu(t) = p(i). Then (2.9) implies that

. Qié
plis) = - 1n (l—qi) . (2.12)
i
Suppose we let Qil increase but keep Qiz,"',Qir unchanged. The intensity functions
u(i32), - ,u(dsr) will not remain constant, but rather they increase with the in-

creasing values of Qil (or with increasing values of 95 since q; = Qi1+-"+Qir).

In other words, the function

h(g) = - o= In (=) (2.13)
1

on the right-hand side of (2.12) is a monotonically increasing function of q;- Taking

the derivative of h(qi) with respect to q yields
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b)) = -1 [1n (mq) + 2]
4/ =7t 93’ T 17q.
q. 1
i
(2.13)
- E n-1 qn—2
nep D i
since 9 is between 0 and 1. The last expression in (2.13) is always positive for
positive values of q; - Hence the function h(qi) increases with 4y and p(i:d8) in-
creases with Qil’ as required to be shown.
A numerical example for r = 3 risks is given below. It is also easy to see
that
Ui YU Y3 (2.14)
u(i,1)  w(i,2)  uw(d,3) )
Table i . Probabilities and Intensity Functions

1 Qs Q4 94 u(izl) u(is2) u(i;3)

.01 .01 .30 .32 .0121 .0121 .3615

.05 .01 .30 .36 .0620 .0124 .3719

.10 .01 .30 41 .1287 .0129 . 3860

.25 .01 .30 .56 . 3665 .0147 .4398

.50 .01 .30 .81 1.0251 .0205 .6151

2.1. Relations between crude and net probabilities.

The net probability of death in the interval (Xi’ Xi+1) when R, is the only opera-

)

ting risk is obviously
X,
—f i+l u(t;8)de

X, , (2.15)

n
[
!
m

9
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which, in view of (2.3) can be written as

X
i+1
G R (2.16
o1 u(t) X . _ p(t;8) /u(t)
s 1 e i =1 - 12
With equation (2.9), (2.16) gives the relation between the net and the crude pro-
babilities,
»
Q. ./q;
_ _ id" i 1
s = 1 Py s § =1, s T (2.17)
Formula (2.17) may be simplified. Using the P; = l—qi, the second term
on the right-hand side is expanded in terms of Newton's binomial series,
Q679 Q794
i = (1-q.)
is %6794 K
=1+ == (q)+ ...+ Dlq) +... (2.18)
i
where the binomial coefficient is defined as follows:
Q../q,
i Q. Q. Q.
(o= =Ry (ke (2.19)
S 94
for k=0,1,2,...
Because of small values of qi, the first fgour terms of the infinite series
in (2.18) give a good approximation. As a result, we have
Q../q;
i6" *d o 1 _ 1 _ oo _
i = 1= Qs -7 Qela3m0g) T gRs(a370e) (2437044) - (2.20)
Substituting (2.20) in (2.17) yields the relationship
q.. = Q. [1 +1 (q.-Q,¢) + l-(q -Q..)(29.-Q. )1 (2.21)
ig id 2 i *i§ 6 i tid i 18
When the firstthree terms of the binomial series are taken, we have
= Qs [1+% (q,-0.0) ] 2.21
s = Qs 2 (437Q8) 1 s (2.21a)

which may be used when a is extremely small.
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The net probability of death when risk “3 is eliminated can be derived in
a similar way. When R(5 is eliminated as a cause of death, the force of mortality
is p(t) - p(t;6). In this case, the probability that an individual alive at
X, will die in (t, t+dt) is

[u(r) - u(r;d) Idr
1 [u(t) - ue;d)]lde for xj<tix

{.t
{ nE (2.22)

®
where the exponential function is the probabilitv of his surviving from X, to t

and [u(t) - p(t;8)]dt is the probability that he will die in the time element
(t, t+dt). For different values of t, the corresponding events associated

with the probability in (2.22) are mutuallv exclusive. Using the addition
theorem we have the net probability that the individual will die in the interval
(5> %54)

3 Bty = (Tes) Jdu
X Xf [1(T) (155) )¢
Q. = [ e i [u(e) - u(esd)lde | (2.23)

Since (2.9) imples that the ratio

u(t) = ult;dy 4 i0
u(te) q

is independent of time t, we write

R ( - u(r:s
(e) - p(ezs) = HE H,t§t 3
. -~ Q.
- _j;:;__LQ L(t) (2.24)

and

q. - 0.,

p(t) - p(r3d) = ———— u(r) . \ (2.25)
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Substituting (2.24) and (2.25) in (2.23) gives

~ o x -
: i+l
- -0
X1 }f{i WDt a;=Q54)/ay a,-Q; 4
a, 5 = 7 e (———)u(t)de, (2.26)
i.0 < a;

and integrating the right~hand side of (2.26) yields the relationship

(q.-0.5)/q,
i ~id i

- _ 2.27
9.8 1 Py . (2.27)

Formula (2.27) also can be simplified using Newton's binomial expression as

was formula (2.17). Again taking the first four terms of the series, we have

(a;-0; ) /94 (1-q )(qi“Qié)/qi
. 1

i

D
T
1

fl

1 L
L= (437044) = 50a-0,000; 6 = 5003703 Qa4 - (2.28)

Substituting (2.23) in (2.27) and simplifying the resulting expression gives

the desired formulal/

L L
A.s = (=Q9) L +5 0,5 %7 Qid(qi+Qi§)] . (2.29)

Z

Because of the absence of competing risks, the net probability is always greater

than the corresponding crude probability, or

2.30a)
A5 ~ Q4 (

Further, if two risks R_. and Rr are such that

S

ig’?

Qs » Y
then

s 7 e and Qi “ i - (2.30b)

Verification of (2.30a) and (2.30b) is left to the reader.
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2.2. Relation between crude and partial crude probabilities.

Suppose now that risk R, is eliminated from the population. In the presence of

1

all other risks, let Qid-l be the partial crude probability that an individual alive

at time x, will die in the interval (xi, Xi+1) from cause R, for 6=2,*"*,r. We

i $

shall express Q in terms of the probabilities Py and 4 and of the crude proba-

is-1

bilities Qil and Qid . Using the multiplication and addition theorems as in (2.22)

we have

t
- _fx [u(0)=u(T31) ]dr (2. 31)
[T e T4

Qs.1 u(t;é)de
*i

To simplify (2.31), we note from (2.9) that the ratio pw(t;8)/[u(t)-u(t;1l)] is equal

to Qié/(qi_Q‘l) and is independent of time t. The partial crude probability may then
i

be rewritten as

t
N - u(o)-u(r;1)1de
- u(E38) ikl X, o
Us.1 T WO (E;D fx e 1 [u(t)-pu(t;1)]de
i
[ *i+1 |
'fx [u(t)-u(t;1)]dt
=._c_2_i.6_ l1--e t (2.32)
4;7Q44
_ Qs
qi_Qil qi'l

Substituting (2.29) for =1 in (2.32) gives the final formul&g/

1

= i i
Qg = Qgll +5 Q0+ 6 Qv D1 s 8 =2,...,1. (2.33)
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The sum of Qi for 6=2,++*,r is equal to the net probability of death when

81

risk Rl is eliminated from the population. That is,

1 1 1 1
[1+5 Qg + T Qa4 ] = (ay=u) [1+ 50y + 504 (a;4Q,) ]

I~

Qs-1

r
Q,

$
= qi.l ’ (2.34)

as might have been anticipated.
Formula (2.33) can be easily generalized to other cases where more than one
risk is eliminated. If risks R1 and R2 are eliminated, the partial crude probability

that an individual alive at time Xy will die from cause R6 in the interval (Xi’ Xi+l)

isé/

- 1 1

In the discussion of these thre¢ types of probability, both 4 and p; are
assumed to be greater than zero but less than unity. If q, were zero (pi=1), then
Qi6 would also be zero for 6=1,°°°,r. Then the ratios Qié/qi’ Qié/(qi_Qil)’ and
(qi-Qil)/qi and formulas (2.17), (2.26), (2.33) and (2.35) would
become meaningless. In other words, if an individual were certain to survive an
interval, it would be meaningless to speak of his chance of dying from a specific
risk. On the other hand, if p; were zero (qi=l), formula (2.4) shows that the

integral

X,
f i+1 U(t) dt

X,
1

would approach infinity; this fortunately is extremely unrealistic.
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3. Competing Risks with Interaction

The theory of competing risks presented in Section 2 was based on the inde-
pendence assumption in (2.2). Under this assumption, the risks act independently
of one another and the presence or elimination of one risk has no effect on the
intensity functions (forces of mortality) of other risks. The validity of the assump-
tion depends upon the diseases under consideration. One can certainly visualize
a situation where the independence assumption does not hold. The presence of
tuberculosis (Rl)’ for example, may affect the chance of dying from pneumonia,

R Once tuberculosis is eliminated as a risk of death, how does one evaluate

9
the probability of dying from pneumonia? The problem can be resolved by creating

another risk, R the interaction between tuberculosis and pneumonia, with the

12°

intensity function u(t;1,2). When tuberculosis is eliminated as a risk of death,
the interaction vanishes also. The purpose of this section is to study the
theory of competing risks with the consideration of interactions.

For any two risks R_ and Re’ we denote by R their interaction and by

8 3

u(t;8,e) the corresponding intensity function, with
u(t;8,e) £ 0 (3.2)

When two risks have positive interaction, the intensity function p(t;d,¢) is posi-

tive and has the following probabilistic meaning:

p(e;8,e)2 + o(A) = Pr{an individual alive at time t will die
(3.3)
}

in interval (t,t+A) from R6e
If two risks have no interaction, u(t;8,¢) = 0. It is conceivable that, for two

particular risks, presence of one decreases the probability of dying from the

other, so that u(t;8,e) < 0. In such cases proper interpretation is the following




[u(t;8) + ult;e) + u(t;8,e)]A + 0(2) = Pr{an individual

alive at t will die in interval (t,t+A) from either (3.4)

R6 or RE}

For convenience of our discussion, we assume that all u(t;8,ec) are non-negative.
Under the present framework, the intensity functions satisfy the relation

r-1 r

u(t;8) + )V u(t;s,e) = u(t). (3.5)
‘ §=1 e=46+1

I~

§=1

We shall assume, as in Section 2, that the intensity functions p(t;8) satisfy con-

dition (2.3) and that the ratio

o)
U'(t’—l_Q_)_:C ,forx.<t<

u(t) i6e is i+l (3.6)

is independent of time t, but is a function of the interval (Xi’xi+l) and risks

R6 and Re' In this case the formulas for the probability pi(qi)’ the crude pro-

bability Qi6 and the net probability 95 all remain the same as those in Section

2. Namely,
X,
f i+l L (t)dt
t
X4 —fx p(r)dr »
Q16 = f e i u(t;8)dt (2.6)
X,
i
and
X t
i+l —IX‘H(T;G)dT
X

i

so that the relation,
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- Q6794
;8 = 7P s (2.17)
and
a5 = Qgll + % (4,70, )+ (q,-0, ) (24,-0Q, ) ] (2.21)
16~ V48 2 1170187 6N T80 91T s
also holds. Corresponding to the interaction R6 , there is the crude probability
€
of dying from R6€ in the presence of all risks,
ft
-/ u(r)dr
*it1 X,
Qgse =/ e n(t;6,e)dt . (3.7)
X,
i

In view of the proportionality assumption in (3.6), we may rewrite (3.7) as follows

t
—f u(t)dr
. X,
u(e36,0) i+, 1 L(t)de
UGse T L

(3.7a)

pu(t;d,e)
u(t) i

When risk Rl is removed as a cause of death, its interactions with all other

causes, R12,°°°,R1f will all vanish, and the net probability of dying in (xi’xi+l)
is given by
*i+1 T
-/ [u(e)-u(t,1)- § w(t;l,e)lde
Xy £=2
q:., =1 -¢e (3.8)

Using the proportionality assumption (2.3) and (3.6), the exponent in (3.8) may be

rewritten
T

*ia1 r X HO-u(es1) - X ou(esle)
=2

/ [u(t)-u(t;1)- ) u(t;l,e)ldt = [ u(t)dt] €

Xy e=2 X u(t)

which, because of (2.9) and (3.7a), becomes
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Xi+l q
[f p(t)dte]

X, i
i

1717001, (3.9)
- )

Substituting (3.9) in (3.8) yields a relationship between the net probability

9.1 and 9 and the crude probabilities:

(qi—Qil—ZQile)/qi

1

9541 = 1-p (3.10)

where the summation 20 in the exponent is taken over € = 2,...,r.

ile
Applying the binomial expression to the last term in (3.10) and taking the
first three terms of the infinite series as in (2.17), we have

(a3-Q47 = 2 Q49079 (1-q )(qi'Qil - Qg )/
i

Py

1
1 - (q37Q597 T Qq) - 50a37Q507 2Q470) (Qq+ 2Qy45)

1
- 5(a;7Q; 17 TQy1 ) (Qgq+ 2Qyq ) (954050 + 20y, )

3.11
4/ ( )

and the approximate formula —

T
L : 1 + r )
A5, = (@4-Q4p - 2 Q) [+ 5 (Q ZZQ115)+ 6 Qi * gQile)(qi+Qil Q1]
=2 £=
© (3.12)

The partial crude probability of dying from RG when Rl is eliminated can be

obtained in a similar manner. Corresponding to formula (2.31) we now have

t
= flu()-u(r;1)-Julr;l,e)ldr

Qs.1 = / e u(t;s)dt

t
< -f [U(T)-U(T;l)—2u(r;l,a)]dr
X

= u(t;9) f i+l e i 1)1 1.e)]d
w(®) - (63 D-Tues1,e) 7 (u(e)-u(e; D-Iu(esl, e)lde

* (3.13)




where
() B s
p(t)-p(e;)-Yule;l,e) T
] i7Q17 ) Q1
£=2
and
¢ 7

X541 =[Tu (o) -u(r;1)-)u(r;31,6) ]dr

[ e’ [ (e)-u(t;1)=Ju (r;1e) 1de

Xy
Therefore

Qs
9379, Engile

951

i1 °

In the following appendix we shall present the problem of estimation

and the multiple decrement tables without considering the interaction,

The case where the interactions are present is completelv analogous.

(3.14)

-5
Q410794

(3.15)

(3.16)
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FOOTNOTES

1/

When the first three terms of the binomial series are taken, we have

_ 1
4.6 = (137Q¢) [ + 75 Qs

2/

=" When formula (2.29a) in footnote 1 is used, we have

1
Qs.1 = Qell +75 Q1

3/

Corresponding to formula (2.33a) in footnote 2, we have

1
Qs.12 = Qeld +5(Q;+Q; )1

4/ Corresponding to formula (2.2%) in footnote 1, we have

_ T 1 r
A5, = (4370 -2 QI +5 (Qy +2Q

2 9 ile

)],

(2.29a)

(2.33a)

(2.35a)

(3.12a)
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APPENDIX IV

MULTIPLE DECREMENT TABLES

1. 1Introduction

In studies of competing risks in a given population, deaths are classi-
fied according to cause. The number of deaths from each specific cause is the
basic random variable for estimating the corresponding probability and for making
inference about the population in question. The statistical theory involves
is the multinomial distribution, which is described as follows.

Suppose that Qi individuals alive at the beginning of an age interval

(Xi’xi+l) are subject to r risks of death, Rl,"',Rr, w1th'the corresponding
probabilities Qil’l..’Qir’ respectively. Let dié be the number of deaths occul-
ring inthe interval from R6 so that the sum

dil+---+dir =d; (1.1).

is the total number of deaths, and the difference
2, = d. =2 (1.2)

'is the number of survivors at the end of the interval. This means that

By o= dgpbrehd, e (1.3)

i 1°

The corresponding probabilities have a similar relationship (cf. equation (2.10),

Appendix III)

QA = (1.4)

and the difference

1 - qi = pi (1.5)
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is the probability of survival, so that
1= Qil+.--+Qir+pi . (1.6)

Equations (1.3) and (1.6) define a multinomial distritbution, where the random

; . - L1 1
variables dil" ,dir and Qi+l have the joint probablllty( )

t
ok q dil“.Q dir . %141 w7
RIS 1 1 * » . .
dill dir'li+l' il ir i
04 ce v = Q, .
where dil+ +dir+9:,L+l 1
41 dir  Hn
In formula (1.7) the quantity Qil "'Qir 1 is the probability

that did specified individual: will die from R@’ for §=1,**',r, and the remain-

ing £i+l individuals will survive the interval (xi,xi+l). The combinational

factor

is the number of possibiliti

[
(e8]
9]

that dié pcople among Qi will gje froem Ré and

2.+1 will survive. The expected values, the variances and the covariances of the
i

distribution can be obtained from (1.7) directly. However, the following
approach is somwhat simpler.

Each dié is in effect a binomial random variables in g "trials" with the
binomial probability Qié' Therefore, the expected value and the variance of did

are given by

E(di(slsli) = 2,Q (1.8)

i6

and

Var(di6|£i) = liQia(l—Qia), 8=l, «e+,r. (1.9)

(1)

For simplicity of formulas, no symbols for the values that the random

variables Qi and d assume are introduced in this Appendix.

18
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The covariance between any two randon variables di& and di? is

oy = =20, 0

Cov(d, .,d, 2N
( i8°7ie! 1 i if ie

, S#e; S,e=1,...,r. (1.19)

Therefore the correlation coefficient hetween diS and dis is necative,
‘\

liQ'GQiE

1

1 ViQue(T-0y402,Q; (-0, 3

// QeQ, .

V(-4 (-0 ,)

(1.11)

Formula (1.11) shows that the larger the probabilities Qié and Qir’ the greater
will be the correlation coefficient in absolute value. Thus the greater the
nunber of deaths from one cause, the smaller will be the number of deaths from

another cause; and the two risks, R, and R , are indeed competing risks.
€

S

The covariance between the number of deaths from a specific cause di6 and

the number of survivors Qi+l can be obtained in a similar manner. The formula is

- -0 (1.12)
Cov(dis’21+1l21) 7%

and hence the correlation coefficient

0. = - /_NSLQ“E;_____ (1.13)
dis %41 1‘Qia)(1'pi)

which also increases in absolute value with Qié and py- This means that the
greater the number of deaths from one cause, the fewer will be the survivors.
When Zi is a given fixed number, the variance of Qi is zero. Applying

the formula of the variance of a sum of random variables to formula (1.3) we have
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r-1 T
Var(d, |2,) + Var(%, . |2,) + 2 & £ cCov(d, ,d,_|?
1 16171 1+1771 5o =841 167 ie

[ Mol

)
5 i

Cov(d
1

+
[+ ]
N n

. 15’Ri+llli) =0 . (1.14)

Substituting formulas (1.9), (1.10), (1.12) and the conditional variance

i)
of £i+1 piven £

i’

3 =0
Var(21+1,21) 0Py ‘ (1.15)

in (1.14) yields a relationship

T r-1 r
ot Qg(1-Qyq) * 2ypyay =2 2 L Fi Qs Qe
r
-2 I %, QP, =0 (1.16)
5=l 1 15 1

Verification of (1.16) is left to the reader.
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2, The Chain Multinomial Distributions

In the preceding section we were concerned with the probability

distribution of the number of deaths occurring in interval (xi, xi+l)
based on ii people alive at age X When we start at age Xq
with 20 individuals, the numbter of survivors 2], 22,... at ages Ky Kyeoe

are themselves random variables. The probability distribution of each
£i is dependent upon the number of survivors of the preceding iﬁterval,
for i=1,2... As a result, we have a chain of multinomial distributions.
In other words, for any positive integer, u, the joint probability dis~

tribution of all the random variables d 5, for i=0,1,...,u

i1*ce e dir’ i+1?

is

' .
zi' dil dir 2i+1

Q. D) (2. . (201)
! ! | P
. O d,l..o.d, . Q/.Il. il ir 1

with di6 and zi+l being non-negative integers and satisfying the restriction

+...
d +d ir+2'

11 L.

1+ 4
The expected values. and variances of the random variables dié may

be derived from those obtained in Section 1 by using the rule on conditional

expectation and conditional variance. The expectation of did is the expecta-

tion of the condition expection of di6 given Ei

E(d;) = EIE(d5[2)] = E[8; Q]

(2.2)
= E(Ri)QicS =AgopoiQ16

where

X,
i
Pyt = exp{—é p(t)de}



is the probability of surviviong from 24 to LI
The rule on the variances is a little mecre complex. When Qi is a

random variable, the conditional variance of di5 given Qi is also a

random variable and has an expectation

.
H]

E[Var(d. .| %.)]

16! EL2,0; 5070541

P30 (1m0 5) = 2p; Qg 5(1-0; ) (2.3)
On the other hand, the conditional expectation E(d15|2i), being & random

varipble, has the variance

A 2 )
Var[ﬂ(diglli)] = Var[liqié] = Qié Var\Li)

2 o
= Qg FgPo; I-Ppy) (2.4)

o the rule, the variance of d,. is given by
A0

Var(dié) = E[Var(di(S

2] + Var[E(di6|Qi)] (2.5)

Substituting (2.3) and (2.4) in (2.5) and simplifying the resulting
expression yield the formula

§=1,...,rs
i

Var (d =0,...,u. (2.6)

160 = %o Pos Qs(I7PoiQe)s
Regarding the covariance of d16 and die’ the rule is

Lov(uid,die) = E[Lov(diﬁ,di€|ii)] + Cov[E(dié[Qi), E(dislﬁi)]
and hence the formula for the covariance is

- ¢ S#e; &, e=1,...,r;
Covidigsd ) = =C0P0iQisPoiRe s i=0,...,u. (2.7)

Formulas (2.6) and (2.7) can be justified intuitively. An individual alive at

X has a probability pOiQi6 of dying from R6 in interval (xj, X,

l+l) . The
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number of individuals dying from R6 s dié » has a binomial distribution in 20
"trials" with the probability pOiQiG . It follows from the Binomial theory
that the variance of dié is given by (2.6) [Cf. formula (1.9)]. Similarly,
the random variables dié and di€ have a joint multinomial distribution with

the corresponding probabilities pOiQid and pOiQiE » respectively. Therefore,

their covariance is given by

Cov(d

) y .
15°95¢) 0”01 16" e (2.8)

and their correlation coefficient is

p = = Pps: I ,
dié’d' 01/ , (2.9)

The negative correlation coefficient again indicates the competition between

two risks, and the negative correlation is more pronounced when the corresponding
probabilities of death, Qié and Qie’ are large. Also the correlation coefficient
increascs in absolute value with Poi’ the probability of surviving the interval
(XO, xi). Since Poi decreases with Xy the competition between two risks is
more acute at young ages ©OF when the probability of dying QiG (Qie) is large.

)

For the numbers of deaths occurring in two different age intervals (xi, X411

and (x ), the corresponding covariance is obtained by using once again

37 T34l
the fact that the random variables diG and djg have a joint multinomial
distribution in 20 "trials"with the corresponding probabilities P& and

.Q, so that
Po3Y
Covld;g,dse) = = 2oP; Qs Poy Qe (2.10)

and the correlation coefficient

g = - Pos g i / Poj Ye (2.11)
18° je 1 - pOiQiGJﬁl - pOjQ

je

is again negative. Without loss of generality, we may assume that i < j and
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use the relationship pOj = Py; pij and write

--p e Qié / Qje
d..,d, 0i Pij
1677 e ]i" pOiQiaJ]" P3¢

o] (2.12)

which differsfrom the correlation coefficient in (2.9) by the factorm/B;;_,

and equals (2.9) when j=i. Thus the correlation coefficient between di6

and djE is generally ‘smaller in absolute value than the correlation coefficient
be tween diG and diE' For a fixed X, the probability pij of surviving from

X, to xj decreases as xj increases. This means that the competition between
rigks at two different ages diminishes as the two ages become more distant.

The covariance between the number dying and the number surviving can be

derived in a similar way:

Cov(dié,lj) = - (2.13)

20P01 %8P0

Covilys dyg) = 2o(1-Poy)Po; 5 > ifj-.l’i'j;éfi, (239

It is interesting to note that the covariance between Qi and dj6 in (2.14)
is the only one carrying a positive sign. The positive covariance in (2.14)
indicates that the larger the number of survivors at age X, the greater the prob-

ability that a Jlarger number of deaths from Rg will occur in a subsequent interval

(xj, Xj+l)' The covariance between Qi and Qj

a i< i, (2.15)

g.,8. = 20 Pos)Pgy o
>N |

has been given in (3.7) in Appendix II.These results show that, for each u,

the random variables’ d15 and li+l’ for i=0,1,...,u; &=1,...,r, have a chain

of multinomial distributions with the probability distribution given in (2.1)

and the expectations and covariances given in (2.2) through (2.15).
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3. Estimation of the Crude Probabilities

The estimators of the crude probabilities Qik and p; can be derived

directly from the joint probability function

'
Qi' Q dil Q dir > £i+l
1 1 1 s LRI ¥ W
0 dii' e dir' £1+l' il ir i

(3.1)

[
L]
=

by using the maximum likelihood principle.

The logarithm of the likelihood functions is

log L = k + [dil log Qil + ... +d,

jp 108 Qt & log pi] (3.2)

1+1

n™e

i=0

where k is constant and the probabilities are not all independent but

satisfy the relationship for each i
+ ...+Q _+p. =1 . _ (3.3)

”~ A
The estimators Qil’ ceey Qir’ and ﬁi are the maximizing values of log L

subject to condition (3.3). Using the Lagrange method we maximize
u r r
= + X 2 y - -
=k .z [ dis log Qs *+ %4 log Py Ai (: Qs * Py 1)}
i=0 =1 8=1

Differentiating ¢ with respect to Qil”"’Qir’ P; and setting the derivatives

equal to zero, we have the following simultaneous equations

9 id A i
T $ === -A, =0 or Q,. = §=1,...,r (3.4)
Qid Qid 1 18 Al ’ ’
L £
3 _ i+l _ A - l+l
-s-p—i' ¢ = f)\] - )\i =0 or pi = )\i > (3.5)

For each i, there are r+2 cquations in (3.3), (3.4), and (3.5) with r+2

unknowns: ail”"’air’ ﬁi and Ai’ where Xi is known as the Lagrange

coefficient., To solve these equations simultaneously we substitute (3.4)

and (3.5) in (3.3),
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d d 2
il ir i+l
Y, teeety ot =1
1 1 1
oY
Ai =dg e F d, .+ Qi+l = zi (3.6)

a _ diﬁ =l,40a,T
id Lo i=0,...,u (3.7)
and
A _ 14l .
pi = Q,i Y 1"‘0,---,1—1 . (3-8)

On the right-hand side of (3.7) and (3.8) are the proportions dying in the
interval (Xi’ Xi+1) from R6 and the proportion. surviving the interval,
respectively, Thus the maximum 1likelihood estimators derived (3.7) and (3.8)
are consistent with our intuition. Further, they are unbiased estimatcrs,
since their expected values are equal to the corresponding probabilities.

This i1s demonstrated below.
B, ) = BT = ElRGa,,[2,) 7] (3.9)
Qig! = Elg 1 = ElEU 512y 71 )
i i
where the conditionzl expectation is given in Section 1,
E(diGULi) = 2,Q5 (1.8)

so that

E[Q;4) = Q¢ (3.10)
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as required to be shown.

The variances and covariances of the estimatcrs can be computed directly.

~

For the estimator Qié’

where 2
d. '
B[Q,,71 = EI=-1 = m(r(a,[e,) 5 ] . (3.12)
L, 2. ’
i i

We recall from Section 1 that, given li, the number of deaths diS is a binomial

random variable having the variance
'(. » = 0 I S .
Var(d o |2,) = £,0,,(0-Q, ), (1.9)
and the expectation of the square

2. . 22 " e
E(dy g7 100 = 250;6(1-0;0) + £,7Q;47 (3.13)

Consequently, the expectation in (3.12) may be rewritten

E[Q16 ] = E( =) Qs (1-Qu ) + Q" - (3.14)

Substituting (3.14) in (3.11) gives the formula

§=1,... 3.15
var(Q4) = E( L, Qs(1-Q)s 30" 'k (3.15)
Using a similar approach, we obtain
Var(p,) = Var(q;) = EC@;—)piqi (3.16)
5 & L
Cov(Qi6’ QiE) = -h(ﬂ, ) Ql(S QiE (3.17)

i
and

0 35 = 2 _~1__
Cov@Qgs By = “BGT) by Qs (3.18)

i
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When the original cohort 20 is large, the expectation of the reciprocal of

li may be approximated Dy the reciprcocal of the expectation. That is

1 1 1
E( ) = = = . (3.19)
Ly E)  ZoPoy

In order to make inferences concerning the crude probabilities, it is

A
necessary to find the sample estimates of the standard errors of QiG' This

"may be done by substituting Qid’ ﬁi, and Qi for the corresponding unknown parameters

in (3.15) and (3.16) and taking the square root of the resulting formulas. Thus,

1 - ~
Sa' - /Q/, Qis(l-Qi6) ) 6—1,-.-,1‘ (3.20)
ié i
and
1 . N .
Sai = %%;' qi(l—qi) . i=l,...,u . (3.21)

The main results obtained in this Appendix may be summarized in the

following table,

Table 1. Multiple Decremental Table

Age Number Proportion| Proportions Dying in(xi’xi+l) by Causes
Interval Living at Dying in
(years) Age x, Interval
* (x.,x,. )| R R
1’74+l 1 © e T
X, - X 9, 4, Sa a S~ . e . a. Sa
i i+l i i q; i1 Qil ir Qir
X, - x 2 Cn o Sa Q. Sa Q Sa
0 1 0 0 qo 0l QOl Or QOr
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APPENDIX V

Fraction of Last Age Interval of Life ay

Table 1

Austria, 1969

Fraction of
Last Age Interval

of Life
Age 1
inf:rval Both
i Ti+l Sexes Male Female
0-1 .12 .12 .12
1-5 .37 .37 .37
5-10 .47 47 47
10-15 .51 .51 .49
15-20 .58 .58 .55
20-25 .48 .49 .48
25-30 .51 .50 .54
30-35 .53 .53 .53
35-40 , .53 .52 .53
40-45 .52 .51 .54
45-50 .54 .54 .53
50-55 .52 .53 .52
55-60 .53 .54 .53
60-65 .54 .53 .54
65-70 .53 .52 .54
70-75 .52 .50 .53
75-80 .51 .50 .51
80-85 .48 47 .49
85-90 .45 b .45

90-95 .40 40 .40
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Table 2
Fraction of Last Age Interval of Life, a;

California, 1960

Fraction of

Age Last Age Interval
Interval of Life
174 24

0-1 .10

1-5 .39

5-10 .46

10-15 .57
15-20 .57
20-25 .49
25-30 .50
30-35 .53
35-40 .54
40-45 .54
45-50 .54
50-55 .53
55-60 .51
60-65 .53
65-70 .52
70-75 .52
75-80 .51
80-85 .49
85-90 .46

90-95 .40
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Table 3

Fraction of Last Age Interval of Life, a;

Canada, 1968

Fraction of
Last Age Interval

of Life
%
Age
Interval Both
X=Xo g Sexes Male Female

0-1 .11 .11 12
1-5 41 42 .40
5-10 45 .45 A
10-15 .54 .54 .53
15-20 .57 .59 .53
20-25 .48 .47 .51
25-30 .50 .49 .53
30-35 .52 .52 .52
35-40 .53 .53 .53
40-45 .54 .54 .54
45-50 .53 .53 .53
50-55 .54 .54 .54
55-60 .54 .53 .54
60-65 .53 .53 .53
65-70 .53 .52 .53
70-75 .52 .51 .53
75-80 .52 .51 .53
80-85 .50 .49 .51

85-90 A7 .46 .48
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Table 4

Fraction of Last Age Interval of Life, a;

Costa Rica, 1963

Fraction of
Last Age Interval

of Life
4
Age
inf;rval Both

i Ti+l Sexes Male Female

0-1 .28 .27 .28

1-5 .29 .29 .28

5-10 .40 42 .38
10-15 .49 .50 .50
15~20 .55 .55 .55
20-25 .53 .53 .54
25-30 .53 .51 .55
30-35 .51 .51 .51
35-40 .49 .51 .48
40-45 .53 .54 .52
45-50 .53 .51 .55
50-55 .53 .53 .52
55-60 .54 .55 .53
60-65 .53 .55 .51
65-70 .54 .56 .52
70-75 .53 .52 .54
75-80 .51 .52 .51

80-85 .50 .50 .50
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Table 5
Fraction of Last Age Interval of Life, a;

Finland, 1968

Fraction of
Last Age Interval

of Life
Age !
infzrval Both
i i+l Sexes Male Female
0-1 .09 .08 .09
1-5 .38 .41 .34
5-10 .49 .48 .49
10-15 .52 .53 .50
15-20 .53 .53 .54
20-25 .51 .52 .51
25-30 .51 .52 .48
30-35 .52 .51 .52
35-40 .54 .54 .53
40-45 .55 .54 .55
45-50 .53 .52 .54
50-55 .54 .54 .53
55-60 .53 .53 .54
60-65 .53 .53 .54
65-70 .52 .51 .53
70-75 .52 .51 .53
75-80 .51 .49 .52

80-85 | 47 4T .48
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Table 6
Fraction of Last Age Interval of Life, a;

France, 1969

Fraction of
Last Age Interval

of Life
a,
Age =
infirval Both

i Ti+l Sexes Male Female

0-1 .16 .15 .17

1-5 .38 .39 .36

5-10 46 .47 .45
10-15 .54 .55 .52
15-20 .56 .56 .55
20-25 .51 .50 .51
25-30 .51 .51 .52
30-35 .53 .53 .54
35-40 .53 .53 .52
40-45 .53 .53 .53
45-50 .54 .54 .54
50-55 .52 .52 .52
55-60 .53 .53 .53
60-65 .53 .52 .53
65-70 .53 .52 .54
70-75 .52 .51 .53
75-80 ‘ .51 .50 .52
80-85 .49 .48 .50
85-90 .46 .45 .47

90-95 .41 .39 .42




—295 —

Table 7

Fraction of Last Age Interval of Life, a;

East Germany, 1967

Fraction of
Last Age Interval

of Life
Age !
infirval Both
i i+l Sexes Male Female

0-1

1-5 .38 .38 .38
5-10 .46 .46 .46
10-15 .52 .53 .51
15-20 .56 .58 .54
20-25 .50 . .50 .51
25-30 .52 .51 .53
30-35 .52 .52 .53
35-40 .52 .52 .52
40-45 .54 .54 .54
45-50 .54 .55 .54
50-55 .52 .53 .52
55-60 .54 .54 .54
60-65 .54 .53 .54
65-70 _ .53 .53 .54
70-75 .52 .51 .53
75-80 .51 .49 .52
80-85 .48 .47 .49
85-90 .43 .43 .43

90-95 .39 .39 .39
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Table 8

Fraction of Last Age Interval of Life, a;

West Germany, 1969

Fraction of
Last Age Interval

of Life
a,
Age =
infirval Both
i i+l Sexes Male Female
0-1 .10 - .10 11
1-5 .39 .39 .38
5-10 .46 .46 .46
10-15 .52 .51 .52
15-20 .57 .58 .54
20-25 .52 .51 .53
25-30 .51 .51 .51
30-35 .52 .52 .53
35-40 .54 .54 .55
40-45 .53 .53 .53
45-50 .51 .51 .51
50-55 .58 .58 .57
55-60 .54 .54 .54
60-65 .54 .53 .54
65-70 .52 .52 .53:
70-75 .52 .51 .53
75-80 .51 .49 .52
80-85 .49 47 .49
85-90 AN .43 .45
90-95 .39 .38 .40
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Table 9

Fraction of Last Age Interval of Life, a;

Hungary, 1967

Fraction of
Last Age Interval

of Life
a,
Age =
infirval Both
i 7i+l Sexes Male Female
0-1 .10 .10 .11
1-5 .35 .35 .33
5-10 .45 47 .42
10-15 .52 .51 .54
15-20 .55 .57 .52
20-25 .51 .52 .50
25-30 .52 .52 .53
30-35 .52 .51 .52
35-40 .53 .52 .55
40-45 .53 .52 .53
45-50 .54 .54 .53
50-55 .53 .53 .52
55-60 .54 .54 .54
60-65 .53 .53 .54
65-70 .53 .52 .54
70-75 | .52 .51 .53
75-80 .50 .50 .51

80--85 .48 47 .48
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Table 10

Fraction of Last Age Interval of Life, a;

Ireland, 1966

Fraction of
Last Age Interval

of Life
Age !
Interval Both
*37%541 Sexes Male Female

0-1 A3 12 .13
1-5 .38 .39 .37
5-10 47 47 .46
10-15 .48 .48 .46
15-20 .55 .56 .54
20-25 .51 .50 .53
25-30 .51 .50 .53
30-35 .52 .52 .51
35-40 .55 .56 .54
40-45 .54 .55 .54
45-50 .50 .50 .50
50-55 .53 .53 .52
55-60 .52 .53 .52
60-65 .52 .52 .53
65-70 .52 .51 .53
70-75 .52 .52 .53
75-80 .49 .49 .50
80-85 .48 .48 .48
85-90 | .45 A4 .46

90-95 .39 .38 .40
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Table 11

Fraction of Last Age Interval of Life, ay

North Ireland, 1966

Fraction of
Last Age Interval

of Life
Age !
infirval Both

i Tit+l Sexes Male Female

0-1 .13 .13 .14

1-5 .36 .38 .35

5-10 .45 L4700 41
10-15 .50 .49 .52
15-20 .58 .59 .56
20~-25 .52 .54 .48
25-30 .51 .53 .49
30-35 .52 .50 .56
35-40 .53 .51 .55
40-45 .53 .54 .53
45-50 .56 .57 .55
50-55 .54 .54 .54
55-60 .55 .54 .55
60-65 .54 .53 .55
65-70 .52 .52 .53
70~75 .52 .51 .53
75~80 .50 .49 .51

80-85 .50 .49 .51
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Table 12
Fraction of Last Age Interval of Life, a;

Italy, 1966

Fraction of
Last Age Interval

of Life
a,
Age =
infzrval Both

i Ti+l Sexes Male Female

0-1 .16 .15 .17

1-5 .35 .36 .35

5-10 .46 W47 .45
10-15 .53 .54 .53
15-20 .53 .53 .52
20-25 .51 .51 .50
25-30 | .52 .51 .53
30-35 .53 .52 .54
35-40 .53 .53 .53
40-45 .53 .53 .53
45-50 w54 .54 .54
50-55 .54 .54 .53
55-60 .54 .54 .54
60-65 .53 .53 .54
65-70 _ .52 .52 .53

70-75 .52 .51 .53
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Table 13

Fraction of Last Age Interval of Life, a;

The Netherlands, 1968

Fraction of
Last Age Interval

of Life
a,
Age =
infirval Both

i i+l Sexes Male Female

0-1 A1 11 .11

1-5 LAl .43 .39

5-10 47 47 45
10-15 .51 .50 .53
15-20 .54 .55 .52
20-25 .49 .48 .51
25-30 .51 .50 .53
30-35 .51 .51 .51
35-40 .54 .54 .54
40-45 .53 .53 .53
45-50 .55 .55 .54
50-55 .54 .54 .53
55-60 .54 .54 .53
60-65 ‘ .53 .52 .54
65-70 .53 .52 .54
70-75 .52 .51 .53
75-80 .51 .50 .52
80-85 .49 .49 .50
85-90 .46 .46 47

90-95 .42 .42 .42
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Table 14

Fraction of Last Age Interval of Life, ay

Norway, 1968

Fraction of
Last Age Interval

of Life
a,
Age =
infirval Both

i Ti+l Sexes Male Female

0-1 .12 .10 .14

1-5 N .46 .42

5-10 45 L4662
10-15 .56 .55 .60
15-20 .55 .56 .52
20-25 .51 .50 .52
25-30 .48 .48 .50
30-35 .54 .55 .55
35-40 .54 .55 .54
40-45 .56 .56 .56
45-50 .54 .53 .54
50-55 .53 .54 .53
55-60 .53 .53 .54
60-65 .54 .54 .53
65-70 .54 .53 .55
70-75 .53 .52 .54
75-80 .51 .50 .52
80-85 .50 .49 .50
85-90 47 .46 47

90-95 .42 .41 .43
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Table 15

Fraction of Last Age Interval of Life, a;

Okinawa, 1960

Fraction of
Last Age Interval

of Life
a,
Age =
infzrval Both

i Ti+l Sexes Male Female

0-1 .32 .32 .31

1-5 .38 .37 .40

5-10 .45 .47 .45
10-15 .50 .51 .48
15-20 .50 .51 .49
20-25 .51 .53 .49
25-30 .52 .51 .53
30-35 .51 .52 .50
35-40 .50 .48 .52
40-45 .52 .51 .52
45-50 .53 .53 .54
50-55 .52 .52 .52
55-60 .52 .52 .52
60-65 .53 .52 .54
65-70 .53 .53 .53
70-75 .52 .52 .53
75-80 .52 .52 .52

80-85 .50 .50 .50
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Table 16

Fraction of Last Age Interval of Life, a

Panama, 1968

i

Age
Interval

TS|

0-1

1-5

5-10

10-15

15-20

20-25

25-30

30-35

35-40

40-45

45-50

50-55
55-60
60-65
65-70

70-75

Fraction of
Last Age Interval
of Life

a4

Both

Sexes Male Female

.23 .23
.33 .33
y N
.49 .49
.54 .53
.53 .52
.49 .49
.48 .48
.48 W47
.49 .49
.51 .51
.53 .53
.52 .52
.52 .52
.52 .53
.44 .44

.24
.33
A4
.50
.56
.54
.49
.49
.50
.50
.52
.53
.52
.52
.52

.45
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Table 17

Fraction of Last Age Interval of Life, a;

Portugal, 1960

Fraction of
Last Age Interval

of Life
Age !
inf:rval Both
i 7i+l Sexes Male Female
0-1 .26 .25 .27
1-5 .27 .27 .27
5-10 42 A W41
10-15 .50 .50 .50
15-20 .53 .54 .52
20-25 .53 .52 .54
25-30 .52 .52 .52
30-35 .52 .52 .52
35-40 .52 .53 .52
40-45 .53 .53 .53
45-50 .53 .53 .53
50-55 .53 .54 .53
55-60 .54 .53 .54
60-65 .54 .53 .54
65-70 .54 .53 .55
70-75 .53 .52 .54
75-80 .52 .51 .53
80-85 .48 47 .49
85-90 .45 44 46

90-95 .39 .38 .40
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Table 18
Fraction of Last Age Interval of Life, a;

Romania, 1965

Fraction of
Last Age Interval

of Life
a,
Age =
Interval Both
i %441 Sexes Male Female

0-1 .23 .22 .24
1-5 .33 .34 .32
5-10 .46 47 .43
10-15 .51 .51 .51
15-20 .56 .56 .54
20-25 .51 .51 .51
25-30 .51 .51 .52
30~35 .51 .51 .50
35-40 .53 .52 .53
40~45 .52 .52 .53
45~50 .54 .55 .53
50-55 .53 .53 .53
55-60 .54 .54 .54
60~-65 .53 .53 .53
65~70 .54 .52 .55

70~-75 .51 .51 .52
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Table 19
Fraction of Last Age Interval of Life, a;

Scotland, 1968

Fraction of
Last Age Interval

of Life
a,
Age =
inf;rval Both

i 7i+l Sexes Male Female

0-1 .13 .13 .23

1-5 .40 A2 .38

5-10 A4 44 .43
10-15 .53 .53 .53
15-20 .56 .57 .55
20-25 .49 .48 .52
25-30 .51 .51 .52
30-35 .53 .53 .53
35-40 .54 .53 .54
40-~45 .54 .54 .54
45-50 .54 .55 .54
50-55 .53 .54 .52
55~60 .54 .54 .53
60-65 .53 .53 .54
65-70 .52 .52 .53
70-75 .51 .50 .52
75-80 .50 .49 .51

80-85 ' .49 .47 .50
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Table 20

Fraction of Last Age Interval of Life, a;

Spain, 1965

Fraction of
Last Age Interval

of Life
Age ) !
Interva
Xi-xi-lv-l 22;28 Male Female

0-1

1-5 .38 .39 .37
5-10 .46 .47 .46
10-15 .53 .53 .52
15-20 .55 .56 .53
20~-25 .54 .53 .55
25-30 .51 .50 .52
30-35 .52 .52 .52
35-40 .53 .53 .53
4045 54 .53 .54
45-50 .54 .54 .54
50-55 .54 .54 .54
55-60 .54 .54 .54
60-65 .54 .53 .55
65-70 .54 .53 .55
70-75 .53 .52 .54

75-80 .52 .51 .53
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Table 21

Fraction of Last Age Interval of Life, a;

Sri Lanka, 1952

Fraction of
Last Age Interval

of Life
a,
i
Age
Interval
xi_xi+1 Male Female
*

0-1 .28 .35
1-5 .46 .45
5-10 .53 .53
10-15 .55 42
15-20 .49 .55
20-25 .51 .54
25-30 .52 .53
30-35 .53 .54
35-40 .53 .54
40-45 .54 .53
45-50 .54 .53
50-55 .53 .53
55-60 .53 .53
60-65 .53 .53
65-70 .53 .53
70-75 .52 .52
75-80 .50 .45
80-85 42 .35

85-90 .35

* 380 values are estimated from the experience of the
India 1941-50 populations
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Table 22
Fraction of Last Age Interval of Life, a,

Sweden, 1966

Fraction of
Last Age Interval

of Life
a4
Age
infirval Both
i i+l Sexes Male Female
0-1 .08 .08 .08
1-5 WA WA .45
5-10 .45 WA .48
10-15 .53 .52 .55
15-20 .56 .57 .53
20-25 .51 .50 .53
25-30 .52 .53 .51
30-35 .53 .52 .55
35-40 .52 .53 .51
40-45 .53 .53 .54
45-50 .54 .55 .53
50-55 .54 .55 .53
55-60 .54 .54 .53
60-65 .53 .53 .54
65-70 .54 .53 .55
70-75 .53 .52 .54
75-80 .52 .51 .53
80-85 .50 .49 .50
85-90 .46 .45 47

90-95 .42 .41 .42
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Table 23

Fraction of Last Age Interval of Life, a;

Switzerland, 1968

Fraction of
Last Age Interval

of Life
a,
Age =
infirval Both

i Ti+l Sexes Male Female

0-1 .10 .10 A1

1-5 .36 .37 .36

5-10 .45 .45 .45
10-15 .52 .54 47
15-20 .57 .58 .52
20-25 .49 .48 .49
25-30 .49 .50 .48
30-35 .51 .53 .49
35-40 .54 .54 .53
40-45 .53 .53 .54
45-50 .55 .55 .55
50~55 .54 .54 .53
55-60 .54 .55 .53
60-65 .54 .53 .54
65-70 . .53 .53 .54
70-75 .52 .52 .53
75-80 .51 .50 .52
80-85 .50 .49 .51
85-90 Y .45 .48

90-95 .41 .39 42
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Table 24

Fraction of Last Age Interval of Life, ay

United States, 1970

Fraction of
Last Age Interval

of Life
a,
Age =
Interval Both
L Sexes Male Female
0-1 .09 .09 .09
1-5 .40 | .40 .39
5-10 .46 .47 .45
"10-15 .55 .56 .53
15-20 .54 .55 .53
20-25 .51 .51 .52
25-30 : .51 .50 .52
30-35 .52 .52 .53
35-40 .53 .53 .53
40-45 .54 .54 .53
45-50 .54 .54 .53
50-55 .53 .53 .53
55-60 .53 .53 .53
60-65 .52 .52 .53
65-70 .52 .51 .53
70-75 .51 .51 .53
75~-80 .51 .50 .52

80-85 .49 .48 .50
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Table 25

Fraction of Last Age Interval of Life, a;

Yugoslavia, 1968

Fraction of
Last Age Interval

of Life
Age !
infirval Both
i Ti+l Sexes Male Female
0-1 .23 .22 .24
1-5 .29 31 .28
5-10 .45 .46 .43
10-15 .51 .51 .52
15-20 .53 .54 .53
20-25 .51 .52 .50
25-30 .51 .52 .50
30-35 .52 .53 .52
35-40 .53 .53 .53
40-45 .53 .52 .53
45-50 .54 .54 .54
50-55 .52 .52 .52
55-60 .54 .54 .55
60-65 .53 .53 .54
65-70 ' «54 .53 .55
70-75 .52 .51 .53
75-80 .49 .49 .50
80-85 .49 .48 .49
85-90 .45 .45 .46

90-95 .38 .38 .38
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APPENDIX VI-A

COMPUTER PROGRAM FOR ABRIDGED LIFE TABLE CONSTRUCTION

ldentification

Program name ABRIDGE
Author Patrick Wong

Based on original work by Linda Kwok.
Program was further modified by Carol
Langhauser to handle WHO data (1969-70)
in August, 1974

Department Biostatistics Program
School of Public Health
University of California
Berkeley, California

Date February, 1973
Environment Machine = CDC 6400
Operating System = Calidoscope (SCM)

version 01.2-A
Coding l.anguage = FORTRAN

PurEose

This program constructs abridged life tables for a series of countries
based on the method developed by Chin Long Chiang.

Input card preparation

All input data are assumed to be broken down into 5 year age intervals
(except the first year of life) up to age 85with the last interval being
age 85 and over as follows: 0-1, 1-5, 5-10, 10-15, 15-20, 20-25, 25-30,
30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85,
85+. Details are given below.

1. Fractions of year lived by those dying in the interval are
punched in F3.2 format consecutively starting from column one. Columns
61-80 can be used for optional population ID.

2. Title for the population date in columns 1-80. Standard format:

{'TOTAL'/'MALE'/'FEMALE'} 'POPULATION', (country), (year)

e.g., TOTAL POPULATION, CALIFORNIA, 1970
MALE POPULATION, CANADA, 1968

3. Midyear populations of that country in each age interval in
10I8 format. Two cards are required to accommodate the data for 19 age
intervals.
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4. Title for the death date in columns 1-80. Standard format:
same as 2, except substituting the word 'DEATHS' for 'POPULATION'

5. Number of deaths from all causes in each age interval in 1018
format. Two cards are required.

Cards in 1-5 can be repeated for as many countries as one desires.
The program is terminated if a, read in columns 1-3 of card 1 is greater than

or equal to 0.80.

Output

For each country, the following quantities are printed out:

1. Raw input data

a; = fractions of year lived by those dying in each age interval
i T mid-year populations in each age interval
; 5 number of deaths in each age interval

2. Construction of abridged l1ife table

X4TX 4 T age interval
i
i
Mi = age specific death rate
a,
i
9 = proportion dying in interval

3. The abridged life table

fi-xi+l = age interval
94
Qi = number living at age Xy (20 = 100,000)
di = number dying in interval (xi'xi+l)
a,
i
Li = number of years lived in interval
Ei = total number of years lived beyond age X,
e, = observed expectation of life at age Xy
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Program limitations

1. The current version of the program only handles 19 age intervals,
broken down as described in the section, Input card preparation.

2. The maximum population size and number of deaths in any age
interval has to be less than a hundred million. However, the input data
format card can easily be changed to handle larger or smaller limits.

Computational procedure

1. All input data of a country (ai, Pi’ Di) are read in.

2. The age specific death rates are computed for each age interval:
M; = Dy/By

3. Proportions dying in interval:

~ n M,
ii

9 T 7¥(@ ) *M . *n.
1 1 1

where n, = length of e interval = x,,.-X,.
i & ot ag t i+1 i

4. Number alive at age xi:

L. =2.-1 - d,
i i i

In the program, the radix £, is set to be 100,000 for convenience.

0
5. Number of life table deaths in the interval:
dy =259
Note that di's are dependent on the radix 20
6. Number of years lived in interval:

L, =n,*(,~-d,) + a_*n_ *d,
i i i i i i 4

7. Total number of years lived beyond age xi:

T

+1. + ... +
1 - bty L

1 W

= +
Tt Y

where X, = last age interval, i.e., 85 and over.
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8. Observed expectation of life at age X,

T,

~ i
e, = —
i 2.
i

9. 1In the final age interval X s

d =29
A\ w
L =d /M
W W W
T =1
W W
e = Tw/ILw

Reference

Introduction to Stochastic Processes in Biostatistics. Chapter 9:
"The life table and its construction,' Chin Long Chiang, John Wiley and Sons,
Inc., 1968.

Program listing and sample input deck setup

Caution: modifications of certain statements in the program might
be required if used on machines other than CDC 6400. The obvious modifications
are:

1. The first statement in the program, the Program Statement, might
not be required by other machines.

2. The syntax of the read/write statements might be slightly
different for different machines.

3. The input and output unit numbers for card reader and printer
are probably different in different computer installations.

4, The format statements can be changed if the input data are 1in
a different format than what this program assumes.

5. A format of AlO is used in the program for the input and output
of all data titles since a maximum of ten characters can be stored in one
word on a CDC machine. A different A format width and corresponding changes
in the dimensions of the title arrays are called for on machines with different
word structure. For example, IBM 360/370 machines only handle four characters
in a word and a format of A4 has to be used when reading in or printing out
character data.



(@)

a0

QOO0 0O00O0000000000O0

a0

(@ @]

C
C

(@]

a0

- 319 -

PROGRAM ABRIDGE (INPUT, OUTPUT)
PROGRAM CARD IS REQUIRED FOR CDC 6400 RUN COMPILER

DIMENSION TITLE (8), TITLE 2(8)
LARGER DIMENSIONS SHOULD BE USED FOR ARRAYS TITLE AND TITLE2 FOR
MACHINES THAT HANDLE LESS THAN 10 CHARACTERS PER WORD

REAL AI(20), QI(19), E(19)
INTEGER SL(19), PI(19), cL(19), DI(19), T(20)
REAL M(19)
Rd 2 T L e R e e L R R e R L T R L R R R R S A b R

CONSTRUCTION OF ABRIDGED LIFE TABLES

THIS PROGRAM WAS WRITTEN AND DEBUGGED BY PATRICK WONG IN FEB., 1973
BASED ON THE PRELIMINARY WORK OF LINDA WONG.

THIS PROGRAM WAS FURTHER MODIFIED BY CAROL LANGHAUSER
TO HANDLE W.H.O. DATA IN AUGUST, 1974.

ASSUME ALL INPUT DATA TO BE BROKEN DOWN INTO THE FOLLOWING 19 AGE
INTERVALS - 0-1,1-5,5-10,10-15,15-20,20-25,25-30, 30-35,35-40,40-45,
45-50, 50-55,55-60,60-65,65-70,70-75,75-80,80-85, 85+

INPUT DATA.

AI( )=FRACTION OF LAST AGE INTERVAL OF LIFE
PI( )=MID-YEAR POPULATION IN THE AGE INTERVAL
DI( )=NUMBER OF DEATHS IN THE AGE INTERVAL

**

PRI RN AR R AR IR RE RN

*******************+*********+*********************************************

READ AND PRINT DATA..
KCT=0

READ A(I) S WITH OPTIONAL TITLE IN COL. 61-80

500 READ 1, (AI(1), 1=1,20), TITLE(l), TITLE(2)

KCT=KCT+1

PRINT 102, KCT

DO 272 I=1,19

NN=19-1

IF(AI(NN).NE.O.) GO TO 274

272 CONTINUE
274 CONTINUE

PRINT 4, (AI(I), I=1,NN)
PRINT 99, (TITLE (I), I=1,2)
IF((0.8-AI(1)).LE.0.) GO TO 600

READ TITLE FOR POPULATION DATA
READ 108, (TITLE (I), I=1,8)
PRINT 109,(TITLE (I), I=1,8)

READ MIDYEAR POPULATIONS IN EACH AGE INTERVALS
READ 2, (PI(I), 1I=1,19)
PRINT 3, (PI(I),I =1,19)

READ TITLE FOR DEATH DATA
READ 108, (TITLE2(1), I=1,8)
PRINT 109,(TITLE2(I), I=1,8)

READ NUMBERS OF DEATHS IN EACH AGE INTERVALS
READ 2, (DI(I), 1=1,19)
PRINT3, (DI(I), I=1,19)



—320 -

PRINT 119,KCT

CHECK DATA DECK..

LAST=-5

DO 300 I.1,18

IF (AI(I).GT.0.) LAST=LAST +5
300 CONTINUE

LSAT=-10

DO 301 1=1,19

IF(PI(I).GT.0) LSAT=LSAT+5
301 CONTINUE

LTSA=-10

DO 302 I=1,19

IF(DI(I).GT.0) LTSA=LTSA+5
302 CONTINUE

IF(LAST.EQ.LSAT.AND.LSAT.EQ.LTSA) GO TO 305

PRINT 304, JJ

GO TO 500

305 J=LAST/5+1
QI(1)=DI(1)/(PI(1) + (1.-AI(1))*DI(1l))
QI(J+1)=1,
SL(1)=100000
D(1)=SL(1)*QI(1)+0.5
CL(1)=(SL(1)-D(1))+A1(1)*D(1)+0.5
JLAST=J+1
DO 306 I=1,JLAST
F=DI(I)
G=PI(I)
M(I)=F/G
306 CONTINUE
c
C COMPUTE Q(I) D(I) SL(I) CL(I) AND ROUND OFF Q(I)
: N=4
- DO 307 1=2,J
QI(I)=N*M(I)/(1.+(1.-A1(I))*M(I)*N)
TEMP=QI(I)*100000.+0.5
ITEMP=TEMP
TEMP=ITEMP
QI(I)=TEMP/100000.
SL(1)=SL(I-1)-D(I-1)
D(I1)=SL(I)*QI(I)+0.5
CL(I)=N*(SL(I)-D(I))+AI(I)*N*D(I1)+0.5
N=5
307 CONTINUE
SL{J+1)=SL(J)-D(J)
D(J+1)=SL(J+1)
CL(J+1)=SL{J+1)/M(J+1)+0.5
C .
C COMPUTE E(I) AND T (I)
T(J+2)=0
I=J+1
308 T(I1)=T(I+1)+CL(I)
F=T(1)
G=SL(I)
E(I)=F/G
I=I-1
IF(I.GT.0) GO TO 308

PRINT 8, TITLE
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PRINT 14

K=1

KK=0

Do 77 1=1,J

PRINT 7,KK,K,PI(I),DI(I),M(I),AI(I),QI(I)
KK=K

K=KK+5

IF(KK.EQ.1) K=KK+4

CONTINUE

PRINT 5,LAST,PI(J+1),DI(J+1),M(J+1)

PRINT 100,TITLE

PRINT 9

K=1

KK=0

Do 78 1=1,J

PRINT 6,KK,K,QI(I),SL(1),D(I),AI(1),CL(I),T(I),E(I)
KK=K

K=KK+5

IF(KK.EQ.1) K=KK+4

CONT INUE

PRINT 13,LAST,SL(J+1),D(J+1),CL(J+1),T(J+1),E(J+1)
GO TO 500

PRINT 200

FORMAT STATEMENTS
CAUTION - ALL Al10 FORMATS SHOULD BE CHANGED TO APPROPRIATE

WID

ouT
102

4
99
109
3
119
1
304
8
14

TH FOR NON CDC MACHINES

PUT DATA FORMATS
FORMAT (1H6, { , *1 IXXXXXX8XXXXXX16XXXXXX24XXX DATA DECK NO.*,12,* PRI
INT OUT XXXXXXXX64XXXXXX72XXXXXX80%)

FORMAT (1X,20F3.2,2A10)

FORMAT (1H+, 59X,2A10)

FORMAT (1X,8A10)

FORMAT (1X,1018)

FORMAT ( * 1XXXXXX8XXXXXX16XXXXXX24XXX END OF DATA DECK NO.*,12,

* XXX 56XXKXXXX6 4XXXKXX 7 2XXXXXX80*)

FORMAT (1H1,1X,*INPUT DATA DECK NO.*,13,2X,*IN ERROR*)

FORMAT (1H1,/ * CONSTRUCTION OF ABRIDGED LIFE TABLE FOR *,8A10,//)
FORMAT (3X,*AGE*,13X,*MIDYEAR*, 8X,*NUMBER OF *,66X,*DEATHS*, 9X,*FRACT
1ION*, 7X , *PROPORT ION*/3X, *INTERVAL#*, 8X , *POPULAT ION*, 5X , *DEATHS * , 9X ,
2*%RATE*,11X,*OF LAST*,8X,*DYING IN*,/3X,*(IN YEARS)*,6X,*IN INTERVA
3L*,4X,*IN INTERVAL*,4X,*IN INTERVAL*,4X,*AGE INTERVAL*,3X,*INTERVA
4L%/3X,*(X(I) TO X(I+1))*,1X,*(X(I),X(I+1))*,1X,*(X(1),X(I+1))*,2X,
S*(X(I),X(I+1))*,2X,*OF LIFE*,9X,*(X(1),X(I+1))*/19X,*P(I)*,11X,*D(
61)*,11X,*M(I)*,11X,*A(I)*,13X,*Q(I)*/)

7 FORMAT(/3X,12,1H-,12,7X,110,7X,17,8X,¥9.6,9X,F4.2,10X,F9.5)
5 FORMAT(/3X,12,1H+,9X,I10,7X,17,8X,F9.6,25X,7H1.00000)

100 FORMAT(1H1,IX,*ABRIDGED LIFE TABLE FOR*, 8Al10/)

9 FORMAT (/3X,*AGE*,12X,*PROPORT ION*, 4X, *NUMBER*, 2X , *NUMBER*, 8X , *FRAC
ITION*, 5X, *NUMBER*, 9X, *TOTAL*,11X,*OBSERVED*/3X,*INTERVAL* ,7X,*DY
2ING IN*,6X,*LIVING*,2X,*DYING IN*,6X,*OF LAST*,6X,*OF YEARS*, 7X,*N
3UMBER OF*, 7X,*EXPECTATION*/3X,*(IN YEARS)*, 5X,*INTERVAL*,66X,*AT AG
4E* 2X,*INTERVAL*,6X,*AGE INTERVAL*,1X,*LIVED IN*,7X,*YEARS LIVED¥*,
55X,*OF LIFE AT*/3X,*X(I) TO X(I+1)*,1X,*(X(I),X(I+1))*,1X,*X(1)*,4
6X,*(X(1),X(1+1))*,1X,*0OF LIFE*,6X,*INTERVAL*, 7X,*BEYOND AGE X(I)*,
71X,*AGE X (I)*/67X,*(X(I),X(I+1))*,/20X,*Q(I)*, 8X,*SL(I)*,7X,*D(I)
8%, 8X,*A(I)*,9X,*CL(I)*,11X,*T(I)*, 11X, *E(I)*/)

6 FORMAT(/3XI2,1H-,I12,8XF10.5,6XI6,2XI6,8XF5.2,8X18,7XI10,6XF7.2)

13 PORMAT(/3X,I2,1H+,13X,7H1.00000,6X,16,2X,16,21X,18,7X,110,6X,F7.2)
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200 FORMAT(81H 1XXXXXX8XXXXXX16XXXXXX24XXX END OF ALL DATA DECKS XXXX5
16 XXXXXX64XXXXXX 7 2XXXXXX80 )

C
C
1 FORMAT(
2 FORMAT ( 1018)
108 FORMAT(  8Al10)
STOP
END
.10.42.44,55.60.49. 50,52

.54,54,53,54.52,52.51.51

MALE POPULATION, CALIFORNIA, 1970

173822 663481 975971
607160 529935 451259
MALE DEATHS, CALIFORNIA,
3574 607 462
4052 5580 7596
08.40.45.54,56.49.53. 51

FEMALE POPULATION, CALIFORNIA,

166661 638717
638743 553917

942146
481985

872256
202534

998536 930884
363840 278585
1970
452 1432 1996
9222 10667 11022
.52.54.53.53.52.53.52.53
1970
965145 886495 868710

FEMALE DEATHS, CALIFORNIA, 1970

2660 442 261
2670 3368 4346
.09.41.44.54.59.49.51.52

406930 342220 281897
283 622 706
5087 6421 8127

.53.54.53.53.52.52.51.52

TOTAL POPULATION, CALIFORNIA, 1970

340483 1302198 1918117
1245903 1083852 933244

TOTAL DEATHS, CALIFORNIA
6234 1049 723
6722 8948 11942

1963681 1817379 1740966

770770 620805 484431

, 1970
735 2054 2702
14309 17088 19149

INPUT DATA FORMATS - CAX BE MODIFIED IF NEEDED
20F3.2,2A10)

.50.49 CALIF.MALE, 1970
726974 611232 575226 592330
134280 78528 49842

1412 1251 1596 2486
11042 9255 8406

.52.51 FEMALE, CAL. 1970
730640 608157 574773 616220
207817 132425 92849

659 713 992 1628
10283 10874 14077
.51.50 CALIFORNIA, 1970
1457614 1219389 1149999 1208550
342097 210953 142691
2071 1964 2588  4ll4
21325 20129 22483
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APPENDIX VI-B

COMPUTER PROGRAM FOR LIFE TABLE CQNSTRUCTION WHEN A PARTICULAR CAUSE OF DEATH
IS ELIMINATED

Identification
Program name SPCELT
Author Patrick Wong
Based on original work by Linda Kwok.
Program was further modified by Carol
Langhauser to handle WHO data.
Department Biostatistics Program
School of Public Health
University of California
Berkeley, California
Date February 25, 1973
Environment Machine = CDC 6400
Operating System = Calidoscope (SCM)
version 01.2-A
Coding Language = FORTRAN
Purpose

This program constructs abridged life tables when a specific cause
is eliminated as a cause of death based on the method developed by Chin Long
Chiang.

Input card preparation

All input data are assumed to be broken down into most five year
age intervals as follows: 0-1, 1-5, 5-10, 10-15, 15-20, 20-25, 25-30,
30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80,
85+. Details are given below.

1. Number of specific causes of death for the following country
in columns 1-2 (maximum is 25).

2. Fractions of year lived by those dying in the interval are
punched consecutively in F3.2 format beginning at column 1. Columns 61-80
can be used for optimal population identification.

3. Title for population data in columns 1-80. Standard format:

'TOTAL'/'MALE'/'FEMALE' 'POPULATION', (country), (year)

e.g., TOTAL POPULATION, CANADA, 1970
FEMALE POPULATION, AUSTRIA, 1969
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4. Midyear population of that country is each age interval in
1018 format. Two cards are required.
5. Title for death data in columns 1-80. Standard format:

Col. 1-50 'DEATH FROM ALL CAUSES'
Col. 51-80 same as title for population data described in 3.

e.g., Col. 1 ~ DEATH FROM ALL CAUSES, Col. 51 - MALE POPULATION,
CANADA, 1970.

6. Number of deaths from all causes in each age interval in 1018
format. Two cards are required.

7. Title for a specific cause of death in columns 1-80. Standard
format:

Col. 1-10 '"DEATH FROM'
Col. 20-40 (specific cause of death)

Col. 51-80 same as title for population data described in 3.

e.g., Col. 1 - DEATH FROM INFECTIOUS DISEASES, Col. 51 - TOTAL POPULATION,
USA, 1970

8. Number of deaths from that specific cause in each age interval in
1018 format. Two cards are required.

Cards in 7,8 are to be repeated for each specific cause of death
for the number of times as specified in card 1.

Cards 1-8 can then be repeated with data from another country. The
program is terminated if the number specified in card 1 is greater than 25.

Output
For each country, the following output are produced:
1. Raw input data

r = number of specific causes of death

a; = fractions of year lived by those dying in each age interval
Pi = midyear population in each age interval
Di = total number of deaths in each age interval

Dié = number of deaths in each age interval from a specific
cause, §; § = 1,...,r



— 325 —

2. Abridged life tables when each specific cause (RG) is eliminated
as a cause of death:

x.-x.,+]l = age interval
idi
q; s = probablity that an individual alive at X will die in the
interval (x,,x,.,) if cause R, is eliminated as a risk of
i+l 8
death
21 s = number living at age X5 if cause R6 is eliminated as a
risk of death (QO 5 = 100,000)
di.é = number.dylng in interval (xi,xi+l) if cause R6 is eliminated
as a risk of death.
a; = fraction of year lived by those dying in age interval
(xg%g00)
L, = number of years lived in interval if R, is eliminated as
i.8 . 8
a risk of death :
T, = total number of years lived beyond age x, if R, is eliminated
i.d . i §
as a risk of death
e, s = observed expectation of life at age X, if R6 is eliminated

as a risk of death.

Program limiations

1. The current version of the program only handles 19 age intervals
broken down as described in the section Input card preparation.

2. The maximum population size and number of deaths in any age
interval has to be less than a hundred million. However, the input data format
card can easily be changed to handle larger or smaller data fields.

3. The maximum number of specific causes of death to be specified
in columns 1-2 of card 1 is currently 25. This number can also be changed to

handle a larger limit.

Computational procedure

1. All input data of a country (r, a;s Pi’ Di’ Did) are read in.

2. Compute proportions dying in interval (qi)
n,*D,
i i

94 T P +(1-a.)*n,*D,)
1 1 1 1

where n, = length of interval = x, .-x,.
i gt interva X, 017%
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3. Compute the probabilities of dying in interval (q 6) when a
specific cause (RG) is eliminated as a cause of death
(1-D /D )
qi.é = 1_(1—qi)

4. Abridged life table for cause Rg is then constructed using q;
instead of 9 following the same procedure as described in the program
writeup for program ABRIDGE.

Reference

Introduction to Stochastic Processes in Biostatistics. Chapter 11:
"Competing risks,” Chin Long Chiang, John Wiley and Sons, Inc., 1968.

Program listing and sample deck setup

Caution: See same section in program writeup for ABRIDGE.
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PROGRAM SPCELT(INPUT,OUTPUT)

PROGRAM CARD IS REQUIRED FOR CDC 6400 RUN COMPILER
DIMENSION AI(20), QI(19), QQ(19)
INTEGER PI(19), DI(19), DC(19,25)

L R S R S e R S R R R R T L R e e T R R R R e R L e e

CONSTRUCTION OF ABRIDGED LIFE TABLE WHEN A SPECIFIC CAUSE
IS ELIMINATED AS A CAUSE OF DEATH..

THIS PROGRAM WAS WRITTEN AND DEBUGGED BY PATRICK WONG
BASED ON THE PRELIMINARY WORK OF LINDA WONG.

THIS PROGRAM WAS FURTHER MODIFIED BY CAROL LANGHAUSER TO HANDLE
W.H.O. DATA

INPUT DATA..

ASSUME ALL INPUT DATA TO BE BROKEN DOWN INTO 19 AGE INTERVALS -
LT 1,1-5,5-10,10-15,15-20,20-25,25-30,30-35,35-40,40-45,45-50,
50-5%,55-60,60-65,65-70,70-75,75-80,80-85,85+

JCAUSE=NUMBER OF SPECIFIC CAUSES OF DEATH IN THE DATA DECK CONCERNED.

MAX.=25
AI( )=FRACTIONS OF LAST AGE INTERVAL OF LIFE.
PI( )=MID-YEAR POPULATION IN THE AGE INTERVAL.
DI( )=DEATH BY ALL CAUSES IN THE AGE INTERVAL
DC( )=DEATH BY A SPECIFIC CAUSE

WORKING VARIABLES..

QI( )=LIFE TABLE PROPORTION OF DEATHS BY ALL CAUSES

QQ( )=LIFE TABLE PROPORTION OF DEATHS WHEN A SPECIFIC CAUSE IS
ELIMINATED AS A CAUSE OF DEATH :

dededededededededededohdehdekdefededokdoh ok dodedokdedeheddofkdoh o hdod ek ddodek o hoh ok dokdededehdokdokdehdededokodek

LARGER DIMENSIONS SHOULD BE USED FOR THE FOLLOWING TITLE ARRAYS IN
MACHINES THAT HANDLE LESS THAN 10 CHARACTERS PER WORD

REAL B,TITLE(8),TITLE1(8,25),TITLE2(8)

K=0

READ ‘NUMBER OF SPECIFIC CAUSE OF DEATH
500 READ 13, JCAUSE

K=K+1

PRINT 102,K

PRINT 15, JCAUSE

PROGRAM TERMINATES IF JCAUSE GT 25
IF((26-JCAUSE).LE.O) GO TO 600

READ A(I)S WITH OPTIONAL TITLE IN COL. 61-80
READ 1,(AI1(1), 1I=1,20),TITLE2(1),TITLE2(2)

CALCULATE WORKING INDEX..

DO 202 I=1,19

NN=19-1

IF(AI(NN).NE.O.) GO TO 204
202 CONTINUE
204 NM=NN+1

MM=5%NN-5

PRINT 4,(AI(I), I=1,NN)
PRINT 99,(TITLE2(I), I=1,2)

READ TITLE FOR POPULATION DATA
READ 108, (TITLE(I), I=1,8)

FRRRERRRELELRRERRBRRRRR R AL R ERRREEERRRREERLLRERRRRR
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PRINT 109, (TITLE(I), I=1,8)

READ MIDYEAR POPULATIONS IN EACH AGE INTERVAL
READ 2,(PI(I), I=1,19)
PRINT 3,(PI(I), I=1,19)

READ TITLE FOR DEATH DATA
READ 108, (TITLE2(I), I=1,8)
PRINT 109,(TITLE2(I), I=1,8)

READ NUMBERS OF DEATHS IN EACH AGE INTERVAL
READ 2,(DI(1), I=1,19)
PRINT 3,(DI(I), I=1,19)

DO 170 J=1,JCAUSE

READ TITLE FOR A SPECIFIC CAUSE OF DEATH
READ 108,B{TITLE1(I,J), I=1,7)
PRINT 109, B(TITLELI(I,J), I=1,7)

READ NUMBERS OF DEATHS FROM THAT SPECIFIC CAUSE OF DEATH IN EACH AGE
INTERVAL

READ 2,(DC(I,J), I=1,19)

PRINT 3, (DC(I1,J), I=1,19)
170 CONTINUE

PRINT 119,K

COMPUTE QI( )..
DO 112 I=1,NN
N=5
IF(I.EQ.1) N=1
IF(I.EQ.2) N=4
QI(I)=N*DI(I)/(PI(I)+(1.-AI(I))*NDI(I))
112 CONTINUE

COMPUTE THE PROBABILITY OF DYING QQ ( ) WHEN A SPECIFIC CAUSE
IS ELIMINATED AS A CAUSE OF DEATH
DO 700 J=1,JCAUSE
DO 110 I=1,NN
F=DC(I,J)
G=DI(I)
EE=1.-F/G
QQ(I)=1.-(1.-QI(I))**EE
TEMP=QQ(I)*100000.+0.5
ITEMP = TEMP
TEMP=ITEMP
QQ(I)=TEMP/100000.
110 CONTINUE
QQ(NM)=1.

F=DI(NM)-DC(NM, J)
G=PI(NM)
WM=F/G
PRINT 7,(TITLE(I), I=1,5)
PRINT 10,(TITLEL1(I,J), I=1,3)
PRINT 9
CALL ABRLIF(AI,QQ,WM,NN)
700 CONTINUE
GO TO 500
600 PRINT 100
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FORMAT STATEMENTS
CAUTION - ALL A10 FORMATS SHOULD BE CHANGED TO APPROPRIATE WIDTH
FOR NON CDC MACHINES

OO0 0

INPUT DATA FORMATS - CAN BE CHANGED IF NEEDED
1 FORMAT(  20F3.2,2Al10)
2 FORMAT( 10I8)
13 FORMAT(I2)
108 FORMAT(  8A10)

(@]

OUTPUT DATA FORMATS

3 FORMAT(1X,1018)

4 FORMAT(1X,20F3.2,2A10)

7 FORMAT( 1H1,//,254 ABRIDGED LIFE TABLE FOR ,5A10)

9 FORMAT(/3X,*AGE*,12X,*PROPORTION*,4X, *NUMBER*, 2X , *NUMBER* , 8X, *FRAC
1TION*, 5X, *NUMBER*, 9X, *TOTAL*, 11X, *OBSERVED*/3X, *INTERVAL* ,7X,*DY
2ING IN*,6X,*LIVING*,2X,*DYING IN *,6X,*0OF LAST*,6X,*OF YEARS*,7X,*N
3UMBER OF%*, 7X,*EXPECTATION*/3X,*(IN YEARS)*,5X,*INTERVAL*,6X,*AT AG
4E*, 2X ,*INTERVAL*,6X,*AGE INTERVAL*,1X,*LIVED IN%*,7X,*YEARS LIVED¥%,
55X,%0F LIFE AT*/3X,%X(I) TO X{(I+1)*,1X,*(X(1),X(I+1))*,1X,*X(I)*,4
6X,*(X(I),X(I+1))*,1X,*0F LIFE%6X,*INTERVAL*,7X,*BEYOND AGE X(I)%*,
71X,*AGE X(I)*/67X,*(X(1),X(I+1))*,/20X,*Q(I.1)*6X,*SL(I)*,7X,*D(I)
8%, 8X,*%A(I)*;9X,*CL(I)*,11X,*T(I)*,11X,*E(I.1)%*/)

10 FORMAT(5H WHEN 1X,R9, 2A10/35H IS ELIMINATED AS A CAUSE OF DEATH )
15 FORMAT(1X, 12)
99 FORMAT(1H+, 59X, 2A10)
100 FORMAT (81H 1 XXXXXX8XXXXXX16XXXXXX24XXX END OF ALL DATA DECKS XXXX5
16XXXXXX6 4XXXXXX 7 2XXXXXX80 )
102 FORMAT(1H7,/,*11XXXXXX8XXXXXX16XXXXXX24XXX DATA DECK NO.*,12,* PRI
INT OUT XXXXXXXX64XXXXXX72XXXXXX80%)
109 FORMAT(1X,8A10)
119 FORMAT( * IXXXXXX8XXXXXX16XXXXXX24XXX END OF DATA DECK No.*,12,
1 % XXX56XXXXXX64XXXXXX 7 2XXXXXX80%)
STOP
END
SUBROUTINE ABRLIF(AI,QI,WM,J)

C

" C CONSTRUCTION OF ABRIDGED LIFE TABLE..
DIMENSION AI(20),QI(19),E(19)
INTEGER SL(19),CL(19),D(19),T(20)

C COMPUTE D( ),SL( ),CL( )..
SL(1)=100000
D(1)=SL(1)*QI(1)+0.5
CL(1)=(SL(1)-D(1))+AI(1)*D(1)+0.5
N=4
DO 307 I=2,J
SL(I)=SL(I-1)-D(I-1)
D(1)=SL(I)*QI(I)+0.5
CL(I)=N*(SL(I)-D(I)+AI(I)*N*D(I)+0.5
N=5

307 CONTINUE

SL(J+1)=SL(J)-D(J)
D(J+1)=SL(J+1)
CL(J+1)=SL(J+1) /WM+0.5

C

C COMPUTE E( ) AND T( )..
T(J+2)=0



308

78

I=J+1
T(I)=T(I+1)+CL(I)
F=T(I)

G=SL(1)

E(I)=F/G

1=I-1

IF(I.GT.0) GO TO 308

K=1
KK=0
Do 78 1=1,J
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PRINT 6,KK,K,QI(I),SL(1),D(I),AI(I),CL(I),T(I),E(I)

KK=K
K=KK+5

IF(KK.EQ.1) K=KK+4&

CONT INUE
LAST=(J-1)*5

PRINT 13,LAST,SL(J+1),D(J+1),CL(J+1),T(J+1),E(J+1)
6 FORMAT(/3X12,1H-,12,8XF10.5,6X16,4X16,6XF5.2,8X18,7XI10,6XF7.2)

RETURN

END
12

.11.41.45.54.57.48.50.52.53.54,53.54.54.53.53,52.52.52

TOTAL POPULATION, CANADA, 1970
365000 1503300 2301400 2297100 2068200 1851800
585000 448100

1222800 1045900

DEATHS FROM
7001
5327

DEATHS FROM

190

61
DEATHS FROM

25

1515
DEATHS FROM

0

86
DEATHS FROM

0

256
DEATHS FROM

28

1889
DEATHS FROM

20

1637
DEATHS FROM

735

228

DEATHS FROM

5199

16
DEATHS FROM

186

27
DEATHS FROM

328

623

930100
ALL CAUSES
1263 1102
7362 10419
CAUSE 1
102 46
72 92
CAUSE 2
125 185
2239 3066
CAUSE 3
0 0
159 204
CAUSE 4
0 1
439 712
CAUSE 5
15 9
3026 4772
CAUSE 6
9 7
2644 4159
CAUSE 7
171 58
352 545
CAUSE 8
183 77
36 28
CAUSE 9
13 2
31 41
CAUSE 10
490 579
543 543

745500

988
13060

27
126

147
3678

0

308

822

26
6496

21
5602

53
768

50

11

47

528
466

1948
16054

20
98

136

4152

362

876

48
8579

31
7171

55
1016

46
14

1294
405

2105
17989

14
112

159
4171

3

411

800

71
10154

51
8177

48
1322

36
10

15
68

1272
361

329600 194300
TOTAL POPULATION,

1564 1636
19915 19773
TOTAL POPULATION,
12 15
114 92
TOTAL POPULATION,
167 234
3832 2969
TOTAL POPULATION,
3 15
400 337
TOTAL POPULATION,
3 11
514 293
TOTAL POPULATION,
116 214
12137 12838
TOTAL POPULATION,
73 157
9301 9639
TOTAL POPULATION,
55 53
1436 1523
TOTAL POPULATION,
22 24
2 5
TOTAL POPULATION,
10 12
80 141
TOTAL POPULATION,
758 594
408 417

FORMAT(/3X,12,1H+,13X, 7H1.00000,6X,16,4X,16,19X,18,7X,110,6X,F7.2)

CANADA,
2217
22653
CANADA,
27
93
CANADA,
455
2332
CANADA,
31
272
CANADA,
52
162
CANADA,
456
15478
CANADA,
355
11712
CANADA,
90
2058
CANADA,
12
3
CANADA,
17
336
CANADA,
545
604

CANADA, TOTAL, 1968

1508000 1289800 1276900 1295100
119100

1970
3566

1970
35

1970
895

1970
48

1970
117

1970
1024

1970
852

1970
132

1970
20

1970
26

1970
610



DEATHS FROM CAUSE 11

20 168

245 231
DEATHS FROM CAUSE 12

0 0

258 221

342
232

0
211

260
204

17
150

— 331 -

881
186

145
117

864
143

256
70

TOTAL POPULATION, CANADA, 1970

425 312 259 265
124 85 62

TOTAL POPULATION, CANADA, 1970
207 195 231 250

42 32 11
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Pr{A or B or C}

Pr{A or B or C or D}

CHAPTER 1

Probability of A:

Conditional probability:

Multiplication theorem:

Addition theorem-

Formulas
_ n(a)
Pr{a} = - . .
0 <pr{a} <1 . : 0.
Pr{A} = 1 - Pr{a} 2
AB} = 55{?21 .
_ Pr{aB} )
Pr{B|A} = T (
pr{aB} = Pr{A} x Pr{B|A} (2.
pr{aBc} = Pria} x PriB|a} x pr{C|AB} (2.
pr{aBcD} = Pr{a} x Pr{B|A} x pr{c|aB} x Pr{D|ABC} (2.
Pr{A or B} = Pr{A} + Pr{B} - Pr{AB} . 2
= Pr{A} + Pr{B} + Pr{c}
- pr{aB} - Pr{BC} - Pr{cA} + pPr{aBc) (2

Pr{A} + Pr{B} + pr{c} + pr{D}

pr{aB} - Pr{ac} - pr{ap} - Pr{BC} - Pr{BD} - Pr{cD}

(2
+ pr{aBc}l + Pr{aBD} + pr{acD} + ®r{BCD} - Pr{ABCD}

.5a)

13)

15)

16)

.21)

.22)

.23)
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Distributive law:

Pr{A(B or C)} = Pr{AB or AC} (2.27)

Pr{(A or B)(C or D)} = Pr{AC or AD or BC or BD} (2.28)
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CHAPTER 3

Fraction of the last age interval of life.

expected fraction of the interval (xi,x

)

i+l

It is the
lived by

an individual who dies at an age in the interval

).

(xy2%5

Number of life table deaths in the age interval (x

17%441)"

Total number of deaths in a current population.

Number of deaths from cause RG in a current population.

Number of deaths 1in the age group (xi’xi+1) in a current

population.

Number of deaths from cause R_. in age group (xi,xi+1) in

a current population. 8

Total number of deaths in a standard population.

Number of deaths in the age interval (xi
standard population.

Total number of deaths in community u.
Number of deaths in the age interval (xi
Observed expectation of life at age zero

Number alive at exact age Xy

Number of years lived in (xi,x ) by 2

i+l 1

o X

X1

i+l

) in the

) in community u.

in the life table population.

individua’s.

Length of the age interval (xi,xi+1); nyoT X%y

(Hypothetical) number of individuals alive at exact age Xy

Total midyear population.
Midyear population in age interval (xi,x

Total midyear standard population.

1+1

).

Midyear population in the age interval (xi,xi+1) of the

standard population.
Total midyear population of community u.

Midyear population in age interval (xi,x

1+1

) of community u.

page no.

19

19

22

22

20

23

29

29

28

28

38

19

37

19

22

23

29

29

29

28



Age-specific
death rate

Fetal death
rate

Neonatal
mortality
race

Perinatal
mortality
rate

Post neonatal

mortality rate

Infant
mortality
rate

Fetal death
ratio

Maternal
mortality
rate

_ 354

Total number of years lived by the life table population
beyond Xy

Exact age in years at the lower limit of the i-th interva’”,
Exact age in years at the upper limit of the i-~th interval.

i+1)
Number of years lived in (Xi’xi+1) by

Number dying in (xi,x

M, =
i

those alive at x,

1

(alias "stillbirth rate). Two definitions are availiable:

Number of fetal deaths or 28 or more weeks of gestation

x 1000

of live births + fetal deaths of 28
of gestation

Number or more weeks

of fetal deaths of 20 weeks or more
of live births + fetal deaths of 20
of gestation

Number
Number

of gestation
or more veels

x 1000

Number of deaths under 28 days of age

Number of live births

x 1000

There are two definitions in common use:

Numbzr of deaths under 7 days + fetal deaths of 28 weeks or more
of gestation

page no.

37

13

13

19

24

24

24

24

Number of live births + fetal deaths of 28 weeks or more of
gestation

fetal deaths of 20 or more
weeks of gestation

Number of deaths under
28 days of life

Number of live births + fetal deaths of 20 or more * 1000
weeks of gestation
Number of deaths at age 28 days through one year % 1660

Number of live births - neonatal deaths

Number of deaths under one year of age
Number of live births

x 1000

_ Number of fetal deaths of 20 or more weeks of gestation

_ Number of maternal deaths

Number of live births

x 1000

Number of live births

25

25

25

25

25
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Probability of dying for age interval (xi,xi+l):
N d.
=1
94 7 T,
i
D,
T = L
91 7 N,
i

Age-specific death rate for age interval (Xi’xi+1):
d.
M = 1 ’
1 ni(?/i'di) + ainidi
D,
i

s
i P,
i

Relationship between q., and M, for age interval L s X,
301p a3 i & (xi2%540

I o
i 1+(1-a. )n M,
1 1 1

0>

Cauvse~-gpecific death rate for cause R6:

M. =

it
S P

x 100,000

Age-cause-specific death rate for cause RG

Dis
Mi6 = R x 100,000
i

):

age interval (xi,x

i+l

):

(1.3)

(1.3a)

(1.2)

1. 2a)

(1.5)

(1.4)

a. 9

(1.10)



Crude death rate:

D
M=
5 X 1000

Crude death rate for communitv u:

C.D.R. =D /P
u'u

Age~specific death rate for community u and age interval (xl,x

M, =D _,/P

ui ui’ ui

C.D.R. = ¥ —

Direct method of adjustment:

D.M.D.R.

Comparative mortality ratio:

C.M.R. = %
' i

i

"d"d

u

P

P

=M

]

ui

Pui

P

u

— 4

Mo
si ui

si

P

]

M

ui

Indirect method of adjustment:

I.M.D.R.

D /P

ui si

i

Life table death rate:

L.T.D.R.

L.T.D.R.

L
T

IH

>

g1
i

0

M

TP M /P
u

ui

D

u

P

u
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)

Crude death rate (as a weighted average of Mu1

i+l

):

(1.6)

(3.3)

(3.5)

(3.8)

(3.10)

(3.11)

(3.12)

(3.15)

(3.21)



Equivalent average death rate:

E.A.D.R. = L

e

Relative mortality index

e~}
=

_ ui ui
R.M.I. = ; PN
i u si

Standardized mortality ratio:

P M .
ui ui
IP .M .
ui si

S.M.R. =
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(3.22)

(3.23)

(3.24)

(3.25)
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CHAPTER 3

Fraction of the last age interval of life.
The number of deaths in the age group (x,,x,+])
in a current population. o

)

Expected number of deaths in the interval (Xi’xi+1

The total number of deaths in the standard population.
The total number of deaths in community u.
The conditional expectation of a; given Ni'

Number of years lived in (Xi’ ) by L individuals.

X,
i+1

The age specific death rate 1 v i o iooad Lo

The age-specific death rate for interval (Xi’xi )

+
in the standard population. ]

)

The age-specific death rate for interval (xi.xi+1
in community u.

)i n. = X

The length of the age interval (gi,xi+1 ; Xip17Xy

(Hypothetical) number of individuals alive at exact
age x..

).

Midyear population in age interval (Xi’xi+1

Total midyear standard population.

Midyear population in the age interval (Xi’xi+1) of the
standard population.

Total midyear population of community u.

Midyear population in age interval (Xi'xi+1) of
community u. ’
Probability of death in the interval (Xi’xi+1)'

Estimate of the probability of death in the interval
(g% i4y)

Estimate of the probability of death in the interval
(Xi’xi+1) of community u.

General symbol for an adjusted rate or mortality iudex.

The sample variance of Di'

rage

no.

47

43

43

53

53

49

52

46

53

53

47

43

47

52

52

52

52

43

43

59

54

48
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5 i
e

Binomial
Nistribution

Cocefficient
of Variation -
of R
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page no.

The sample variance of qi.

Sample variance of an adjusted rate or mortality index, R.
Variance of Di'

Variance of q;-

Conditional variance of qi given Ni.

Weight of Mli used to calculate adjusted rates and
1

mortality indices.

Total number of years lived by the life table population
beyond g

Exact age in vears at the lower limit of the age interval.

Ezart nee in years at the upper limit of the age interval.

If an event has a constant probability q of occurrine in
any one trial, then the number of times (D) that the event
will occur in N independent trials has a binomial distribu=-
tion, with the cxpected value E(D) = Nq and variance

-

oé =N q(l-q).

A measure of the magnitude of the standard deviation of an
adjusted rate, R, relative to R itself.

44

55

43

49

53

52

43

43

43

57
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Formulas

Expectations and variances of the number of deaths and probability of dying
in (xi,x. ):

i+l
E(Di) = Niqi (2.1)
D
A
94 T W, (2.3
i
2
oDi = Niqi(l—qi). (2.2)
D
a = i — l = L -
E(qi) = E(;\:‘)— N E(Di) =X Niqi qi . (2.4)
i i i
2
= — - . 2.5
cql Ni qi(l qi) ( )
2 1 - ~
gs = — - } .
qi Ni qi(l qi) (2.6)

95% confidence interval for q ¢

q.-q,
7 = i *1 (2.7)
V4 _
q; (=g ) /N,
q; - 1.96 Sai < q; < q; * 1.96 Sa. (2.10)

L
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A
. £ .
Sample variances of Mi’ 95 and qX

2 ~ N n
T = - = j - 3.7
", fpegmap) = 0 (mgy) 3.7)
1)
A .
T u? (2.3)
i
M, = Oy
i P
i (3.4)
2 l ~ N\
S~ = q, (1-9,) @3.5)
9y Di 1 i
2 1 A2 A
Sa = 9, (l-qx) (8.5)
X X
2 1
S = — M (1-3
M q,) .
1 Fp 10 (3.8)
Sample variance of age adjusted death rates
R =
LM (6.1)
i
2 2.2
Sg = T ¥iSy (6.3)
i ui
M
2 2 ui ~
Sp =i e (e (6.)
i ui
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Sample variance of direct method of age adjustment:

Coeff. of variation of R = e

Sample variance for life table death rate:

XLXMU‘ de 20 1
LTDR = —5 7 = E‘E‘ = ’,]‘:"“ =
o X 0 éO
SZ _ ;;<Q2
LTDR éa “éo
0
2 1
Ss = A ) Po, [(1-a )n_ +
0 eo >0

8]

(7.1)

(7.5)

(8.1)

(8.2)

(8.4)
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Summary of adjusted death rates and indices (Table 1):

Crude death rate (C.D R.)
Direct method of adjustment (D.M.D.R.)
Comparative mortality rate (C.M.R.)

Indirect method of adjustment (I.M.D.R.)

Life table death rate (L.T.D.R.)

Equivalent average death rate (E.A.D.R.)

Relative mortality index (R.M.I.)
Mortality index (M.I.)

Standardized mortality ratio (S.M.R.)

TP M
¢ ui ui
P
u
Ip M
¢ si ui
P
s
P P
%Z( ui+ 51>M
i P P ui
u s
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CHAPTER 4

Fraction of the last year of life.

Number of life table deaths in the age interval (x,x+1).

Number of deaths in the age interval (x,x+1l) in a current
population.

The expectation of life at age x.

Observed expectation of life at age x.

Number alive at exact age x in a life table population.

Number of years lived in (x,x+1) by the Qx individuals.

Age-specificdeath rate in the interval (x,x+1).

(Hypothetical) number of individuals alive at exact age Xx.

Proportion of those alive at age x surviving the interval
(x,x+1).

Proportion of those alive at age x surviving to age y.
Midyear population in age interval (x,x+1).

Estimate of the probability of dying in (x,x+1).

page no.

66

71

68

67

65

67

71

71

68

68

71

65



— 365 —

page no.
TX - Total number of years lived by the life table population
beyond age x. ‘ 67
x - Lower limit of age interval (x,x+1). 65
x+1 - Upper limit of age interval (x,x+1). ; 65
X - Lower limit of the final age interval in a life table. 65
Abri
'rldged - A life table with age intervals greater than one year
Life Table
(beyond age 1). 64
Complete A 1if bl ith singl int 11
Life Table ife table wi single year age intervals. 64
Current . : i
Life Table - A life table based on current mortality and population data. 63
Cohort . . . :
. - A life table based on the mortality experience of a single
Life Table s yao s
group of individuals. 62
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Formula§

Relationship between life table functions in the complete life tablo:

d = 24§, x=0,1,...,w (2.1)
X X X
= - = « e w - - 2.2
X+l Q’X dx’ X 0)1) » W l ( )
L = (2 -d)+a'd x=0,1,...,w-1 (2.3)
X X X X X

Tx = LX + Lx+l + ... + Lw , x=0,1,...,w . (2.5)
TX = Lx + Tx+1 . (2.6)
T
e = 0,1
s x=0,1,...,w.

X Rx w (2.7)
. . (2.8)
px =1 qx ’

Ev
3 =3 B ...D = < 2.9
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A A
Computation of q , L., T, and e :
xT w oW w

qx = N .
x (3.1)
Dx
Mo X
X N - 1 .
(N,-D ) + a’D (3.2)
D
M = _X
x .
px
(3.4)
~ M
- —__'.__*_x‘.__
x 1 -a’ ) . 3.7
+ (1 al M (3.7)
L
L =¥
[ ]
vy (3.11)
= T
Tw Lw ‘and ° =l=_1iv__1
W 2 Y -
v 4, M (3.12)
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CHAPTER 5 page no.
Fraction of the last age interval of life. 69
Number of life table deaths in the age interval (xi,xi+1) 69

Number of deaths in the age interval (x,,x

i i+1) in a current
population

Observed expectation of life at age X,

Number alive at exact age X, in a life table population.

Number of years lived in the interval (xi’xi+l) by the
Ri individuals.
Age-specific death rate in the interval (xi,xi+1).

Length of the age interval (xi,xi+1); no= XX

(Hypothetical) number of individuals alive at exact

age X, .

).

Midyear population in age interval (xi,xi+1

Estimate of the probability of dying in interval
SR

Total number of years lived by the 1life table population
beyond age X

Lower limit of age interval (xi,xi+1).
Upper limit of age interval (xi,xi+1).
Formulas
Construction of abridged life table:
Di
q, = 3 . (2.1)
i ki
M 1 - | (2.2)
i (N _Di)ni + ainiDi
n M,
2 1 . 2.3)

93

68

94

94

93

93

93

94

94

95

92

92
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Dy
=5
1
d, = 2.4, 1=0,1,...,w-1,
= - .=O 1 av e w_]-)
11"'1 21 di, 1=U,4, ’
= - + i=0 e
Ly = n;(84-dy) + ayn.dy, i=0,1,
zw
Lw = T
w
L + + .
s L L +L
i 2 ’ i=0,

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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Computation of the fraction of last age interval of life, ai:

S & U P19, (1+a5 ) + p pya;(2+a; ) + pP,Pq,(3+a, ) G5.1)
! 401 - PyPoPsPy)

545 + (1+.5)pcqg + (2+.5)pgPeay * (3+.5)pgpeP,ag *+ (4¢.5)PsPcPyPgAg

) p5q6 +2p5p6q7 + 3P5P6P7q8 + 4p5p6p7p8q9 + .1 , (3.3)

95 * Pgdg * PgPgd; * PPgP;g * PgPP,Pglg = 1 - PgPeP,PgPy - (3.4)
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Computation of cohort life table functions:

x-£x+n = dx (5‘-1)
g =g2-d . (5-2)
X+n X X
a\ . dx (5.3)
x L
= - . .4
L =t + (1-a )nd (5.4)
Tx = Lx + L.+ Lw (5.5)
~r T
ele— ’ x=0,1,...,w . : (5'6)
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CHAPTER 6

Fraction of the last age interval of life.
Number of life table deaths in the age interval (xi’xi+l

Number of deaths in the age interval (x Xi+l) in a
current population.

Expectation of life at age X .
Observed expectation of life at age X, -

Life table population at age x It is an arbitrarily
assigned number and is referreg to as the radix.

Number alive at exact age X in the life table population.

Number of years lived in the interval (x 2 Xy 1) by the 2.
i
individuals.

14103 My T XyypTX

).

Length of the age interval (x » X,

Probability of surviving the interval (x Xi 4

Estimate of the probability of surviving the interval
(x5,% 4)-

Probability of surviving from age X to age xj.

Estimate of the probability of surviving from age Xy to
age xj.

Probability of surviving from age x, to age X,

0

Estimate of the probability of surviving from age x

]
to age xj.

).

Probability of death in the interval (x X1y

Estimate of the probability of dying in age interval
(% ’X1+1)

Standard error.
Standard error of a difference.

Sample standard error of éi'

Sample standard error of ai'

).

page no.

131

122

19
119

131

134

122

125
131

119

119

119

123

123

123

119

119
121
128
139

120
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- Sample standard deviation of 501'
- Sample variance.

- Sample variance of e .

— Sample variance of q..
- Sample variance of p,.
~ Sample variance of Poic

- Sample variance of Y .

- Sample variance of Ya'

- Total number of years lived by the life table populatio~
beyond age X .

- Lower limit of the final age interval in a life table.

).

- Lower limit of age interval (Xi’xi+l

).

~ Upper limit of age interval (Xi’xi+l
- Length of life beyond age X, of the k-th individual in

the group of ﬁa, for k=1,2,...,2a.

- Mean length of life beyond age X -

Formulas

Estimation and hypothesis testing concerning probability q;°

2 -2
9 Py
2 1 a2 o~
%, Tp, U 7
1 1

Pr{q, - 1.96 5~ <q. <q. + 1.96 S~} = .9
i q; U4 qi] >

60(1960) - §,(1970)
Z =
s.E.[QO(1960) - 30(1970)]

page no.

126

122

134

119

119

124

134

134

125
119
119

119

131

131

(2.1)

(2.2)

(2.3)

(2.4)
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Hypothesis testing concerning survival probaiblity p'j:
i

Pij = Pi Piap ==+ Py (3.1)
le = (1°q1)(1'q1+1) e (l‘qJ_l) . (3.2)
2 ~231 2
SA = . . t ~
Pi;  Tid g Pn Shy 27

A A
Pp,20(U-S:) = By ,(Call)

Z S.E.(diff.) . (3.7a)

NOTE: For the cohort life table, 5ij 1s computed directly from

e,
i Ei—- , (3.5)

with the variance given by:

2 1 ~ ., ~
. §a = p:.(1-p..) . » : 3.10
Pij i 1] 1) ( )

Mean life time and expectation of life:

Y o= 22y « (4.1)
a a k=1 @
L +L _+...+L
¥ = © “ZL w (4.13)
o
Y =e (4.2)
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Variance of the observed expectation of life:

2 W

= 1 - - o 2
SY I I [(xi X, * aini) ea] di . (4.14)
a a i=q
2 2 _ 1 2 (4.15)
Se - SY = 2_' SY » .
a a a a
2 ~ W}-:l A2 1 . -~ ]2 sz (4.27)
S = Pai [(1-3;)m; + €5 1" S5 ~
a i=a i



Crude probability -

Net probability -

Partial crude
probability
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CHAPTER 7

The probability of death from a specific
cause in the presence of competition of all
other risks acting in a population.

The probability of death if a specific risk
is the only risk in effect in a population,
or conversely, the probability of death if
a specific risk is eliminated from a
population.

The probability of death from a specific cause

page no.

141

142

when another risk is (or risk are) eliminated from

a population. 142
Risk and cause - Both terms may refer to the same condition but
are different on the time scale relative to the
occurrence of death. Prior to death the
condition in question is a risk; after death
the condition is a cause (provided, of course,
this is the condition from which an individual
dies). 142
Coh 1tipl
ohort multiple - A cohort multiple decrement table records the
decrement table . . .
mortality experience by cause of a well defined
cohort of people from birth to the death of the
last person of the group. 142
c .
urrent multiple - A current multiple decrement table is the one
decrement table . . .
derived from the mortality experience by cause
of a population of all ages during a current
year. 144
Formulas
Age specific death rate:
Dy
M, =
i N. - D.)n. . n, D, ? 2.
( i Di)nl * 34 n1 Dl (2.1
Di
M, = —~
1 .
P1 (2.3)
Estimate of the probability of dying:
A Di
4 ° N‘: , (2.4)
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Relationship between Mi and q;:

AL "M (2.5)
i 1 + (l-ai)ni Ml
Age-cause-specific death rate:
D.
_ ié
Mid ) Pi ’ 6 = l,...,r. 2.7
Estimate of the crude probability of dying from risk RG:
A "i"is
Qié ® 1v(l-a.)n. M, ) (2.9)
17741
a . Dis 1
id Di q; . (2.9a)
Relationship between the probability of dying q, and the crude
probabilities, Q, .: +
id
Q 0. = q 2.10
Qy * oo * Q=9 - (2.10)
Variance of the estimate of crude probability 616:
Var(Q, ) = 1= Q< (1 - Q. ) (2.11)
16 © N “i6 ig’ ° .
-~ 1 ~ ~ A9
Vv = = - 1 A
ar(Q, 4) N, Qs - Q) 5y Qs(1-Q, ) - (2.12)
i
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A
Standard deviation (standard error) of the estimate Qid:

~ - LAZ A
5. DL (Q; ) /"ia Qs Q) - (2.13)

A
Standard deviation (standard error) of the estimate q¢

~ - 1 A2
J.D.(q-)' / . 1’ . .
1°7/n; aj (1-q;) (2.14)

A A
Covariance between Qil and QiZ from the same population:

A A 1 A A 1 A2 A
C .4 Q. B e — . . B e c—— . . .
°V(Q11 Q12) Ni Q11Q12 Dil Q11Q12 (4.2)

N A
Standard deviation (standard error) of the difference Qil—QiZ:

A A ?
5.D.(0;,-Q;,) = ,/sQil . Séiz -2 Cov(ﬁil,r?iz) (4.4)

Critical ratio for comparing Qil between two populations:

n A
s ,1A) = Qs 1

2
./ s, 1@ T s 1)

Z =

. (4.1)
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CHAPTER 8
page no.
Net probability:
ﬁi 1 - The probability of dying in (xj,%y,7) when Ry
' is eliminated as a risk of death. 163
441 - The probability of dying in (xi,xi+1) when R1
is the only risk acting in a population. 190
ﬁi-ﬁi 1 " Reduction in the probability of dying in interval
(Xi’xi+1) due to the presence of risk Rl' 178
Expectation of 1life:
éi 1 - The expectation of life at age x, when R, is
’ eliminated as a risk of death. 183
A~ F'S
ei‘l-e - Reduction in the expectation of life at age X, .
1 due to the presence of risk Rl' 183
Formulas
The net probabilities:
1
q ;= (3;-Q;1) (1 + 5 Q)
i.l i 2 'l
il i (2.1)
1 .
i1 = Q. 1+ = -
U1 * Yy U+ 57 (g Q) . (5.1)
'y
Computation of the estimate 9y 1}
D.
il
S Tl (2.3)
1
4 = 1 '(1; k! ) (2.4)
+ -a . 1, .
i) i ’1
A n, M,
Yy " T =
+ (1-a, .
R (2.5)

A A A 1 A
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Formulas nsed 1in the construction of life tables when R1 is
eliminated: )

d =
0.1 "% 19, (3.1)
b1 %.1 "%
(3.2)
Loy = (g 17dp.1) * 35 95,
(3.3)
A P
95.1 " Dyg - Dy 4
(3.4)
T . ~
95.1 = f95.1 €g5.1
Los.1 = Tgs.1 (3.6)
dos.1 = %95y (3.7)
9gs.1 = 100000 (3.8)
T. =
30 Bl U UETTIR g YO (3.9)
s L Tia
i1 T (3.11)



u(t)

u(tss)

X6

1
dxd
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CHAPTER 9

The number of years since admission to a follow-up
study.

The number of patients alive at the beginning of the
interval (x,x+1), Nx = mx+n.

The number of patients who entered a follow-up study
more than x+1 years before the closing date who will be
observed for the entire interval (x,x+l).

The number of patients who entered the study less than
x+l years before the closing date and are due to with-
draw in the interval (x,x+1).

The number of patients among m_ dying in the interval
X
(x,x+1).

The number of patients among m_surviving to the end of
the interval (x,x+1). X :

The number of patients among n  who will die before *he
. . X
time of withdrawal.

The number of patients who survive to the time of
withdrawal.

Estimate of the probability of surviving from admission
to the interval (0,x).

Estimate of the expectation of life at x=a.
Total force of mortality at time t.

The force of mortality for risk R6 at time t.

The number of patients among dx dying from risk Rd'
The number among d; dying from risk RG'

Formulas

5 d_
qQ P (l-px)

E -
(sxlmx) L and E(dxlmx) = mx(l-px)

page no.

195

195

196

196

196

197

197

197

201

202

213

213

216

217

Binomial distribution among those not due for withdrawal in (x,x+1):

(2.1)

(22)
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Binomial distribution among those due for withdrawal in (x,x+1):

d'
€y p::"'x(l-pi’) x (2.5)

Y
!(wxlnx) =np - and E(d}"[nx) = nx(l-p:f »  (2.6)

Estimate of the probability of survival P and its sample variance:

2
) hd! + /&d;z + 48 hm ) (s, + b))
) (2.8)
208 - i)
qx‘ - l-ﬁx ? x-o,l’ '".Y"l. (2.9)
2 . P (2.10)
Px Hx
where

e+ “xu"'s:)-l (2.11)
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Estimate of survival probability Pox and its sample variance:

= pPeeep =1,2,°**,y. 2.12
Pox ™ PoPy1°"Pyy x=1,2,°*°,y (2.12)
2 2%t L
S; =P P " s.° .
Pox 0% UZO u B, (2.13)

é-k+§+§ﬁ +”'+.‘ ssen +. ﬁt
a a ratatl pqpu-}-l py_l pqy 1-p ’ (2.19)

s - P [e + st 3 ty
®a  xeq X x+1 B ] Py + Pat [et+l + o+ u 2] SE » Gact,
x¥t (l—Pt) t
(2.23)
y:1 2 52
2 2[ A
S = 1, [ex+l+’i] s2 48 o2 o
¢ x=a Px  -pt P o>t (224)

Forces of mortality:

H(T51) + o0 4+ pu(1ir) = u(r) 3.1)
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Crude probability of dying:

- B(x;6 . Al eee
QxG(t) —y—(u—(-;-S-L_[l-px(t)], 0<t<l; &=1,°°°,r.

Qxl(t) + oo +, er(t) + px(t) =1, »0<t_§_1.

u(x)

x

3.2)

(3.3)

Rl B J - g [1+e ] een 0w

Net probabilities of dying:

1 )
U6 = Q51450 =0 ) + 7 (0 Q) (20,-Q )] s

X

Partial crude probability of dying:

- 1
U1 ™ Byell + Qg * g-Qxl(qx+Qx1)] ’

1
q .8 - (qx_QxG)[l + ;ioxé + E %G(QX-‘-QXG)] y 6=1,...,1,

(3.6)

(3.7

(3.8)
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Multinomial distribution among those not due for withdrawal in (x,x+1):

Cir Tt oy T g T 3.10)
E(sJ m) =mp and E(dxél m) =mQ, (3.11)

Multinomial distribution among those due for withdrawal in (x,x+1):

r ]
)
*" E .} *
X -1
Cz P, =l Qxé a+ Py ) ’ (3.13)
!(vxln’) - nxp;!- and E@d’' In )=n st(l-rp-}) (3.14)

Estimates of probabilities of dying:

x x 6-1’2’ooo’r’
x=0,1,***,y-1. (3.18)
qx6 XG[ l(qx OXG) + 6 [qx"oxé) (qu—QXG)] (3019)

Q)
>
3)

- - 1
x (q Q 6)[1 + 110 L6 + -6- (q +f'g(6)] , 6 = 1’...’1-’ (3.20)
and
Qxé'l - Qx6[1 + ,ﬁxs 6 xl(q -.-QXI)] ’ § = 2,...,!’;

X = 0,1,000,?’1 . (3.21)
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Lost cases:

p(x;r)a + o(a) = Pr{a patient will be lost to the study
in (t,7t+A) due to follow-up failurel,

X< 1<xtl . (4.1)
p. = Pr{ a patient alive at time x will remain alive arg
X under observation at time x+1}. (4.2)

q = 1l-p = Pr{a patient alive at time x will either die or

% % be lost to the study due to follow-up failur=n
in interval (x,x+1)}. (4.3)

Q r = Pr{a patient alive at time x will be lost to the study
X in (x,x+1)}. (h.4)

q, . = Pr{a patient alive at time x will die in interval

* (x,x+1) 1if the risk Rr of being lost is eliminated}.(4.5)
1-q = Pr{a patient alive at x will survive to time x+1 if
) the risk Rr of being lost is eliminated]}. (4.6)

Qx6 . = Pr{a patient alive at x will die in (x,x+1l) from risk

R, if the risk R_ of being lost is eliminated}. .7)



e

u(x)
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APPENDIX I

The fraction of last age interval of life. The

expected fraction of the interval (xi,xi+ni) lived

by an individual who dies at an age included in the
interval

The fraction of the interval (xi,xi+ni) lived by an

individual who dies at an age included in the interval.
T is a random variable whose expectation is a;s or

E(Ti) =a,.

Age specific death rate. The ratio of the observed
number of deaths (Di) to the total number of years lived
in the interval (xi,xi+ni) by those who are alive gt X, .
Mi is a random variable.

(Theoretical) age specific death rate. The ratio of the

expected number of deaths to the expected number of years
lived in the interval (xi,xi+ni) by those who are alive

at xi. m, is an unknown theoretical value.

Probability of dying in interval (xi,xi+ni).

Force of mortality (mortality intensity function) age age .

Formulas

Relationship between a4y and m,

n,
1
q; = l-exp{-jo u(x;+8) d8} . 1)
5
1-exp{-S  u(x,+E) d&}
m, = 0 (2)

1 n,
1

y
J exp{-/ u(x;+E) dgldy
0 0

n.t
[exp{-/ " u(x;+D)dE}] u(x;+n t)n, dt

g(t)dt = 0 (4)

page no.

227

227

227

227

227

227
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1
a; = E(1;) = fo tg(t)dt (6)
n.m,
q. = ii
i 14-(1-11:.1)11:.1111:.l (9)
My
qx N 1*(1-axi $mx (10)
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APPENDIX II

The future life time beyond age X, . This is a random
variable.

The true expectation of life byond age X, Ya is a

random variable whose expectation is e , or
E(Y) = eq- *

o a
Probability density function of Ya. The product
f(ya)dya is the probability that an individual alive
at X, will survive the period (Xa’xa+ya) and then
die in the interval (xa+ya, (xa+yu+dya)

The life span of an individual. It is a continuous
random variable.

Distributicn function of the length of 1life X. It is
the probability of dying prior to, or at, age x.

The number of individuals surviving to age x.

Probability that an individual alive at age X, will
survive to age xj’ for i<j.

Probability that an individual alive at age X; will die

before age x,.

]

Probability that one individual alive at age 0 will
survive to age x.

Probability that an individual alive at age X, will die

in the interval (xi’xi+l)’ i=0,1,...,w.

Probability that an individual alive at age x will die

in the interval (Xi’xi+l) subsequent to X -
Correlation between Qi and Qj.

Covariance between Qi’ Qj

Formulas

page no.

247

248

247

234

234

234

232

232

235

242

243

241

241

Distribution of the length of life X and the number of survivors Qx:

u(x)A + 0o(A) = Pr{an individual alive at age x will die in interval

(x,x+A) }

FX(X) = Pr{X<x}

(2.1)

(2.2)
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x
-[ w(t)dt
0
1- Fx(x) = e = Pox (2.7)
L. L=k
0 k 0
Pr{llx =k} = W pox(l-pox) . k-O,l,...,ILO (2.8)
E(2,]24) = 20P04 (2.11)
2 =2 (1 ) 2.12
%2,]12, = "oPos1‘1Pog (2.12)
x
piJ = expf- f u(t)dr}, for i<j (2.13)
x
i
x
dF (X) ‘f ufe)de
£200) = —2— = y(x)e O x>0 (2.20)
= ( x<0
Gompertz distribution:
u(t) = Bet (2.23)
£(x) = che‘B[Cx—lllln c
(2.24)

Fx(x) =1 - exp{- 1: = (Cx-l)}

(2.25)
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Makeham distribution:
u(t) = A+ Bct (2.26)

f(x) = [A+BcX) exp{-[Ax+B(c*-1)/1n cl}

(2.27)
Fy(x) = 1 - exp{~[Ax+B(c*-1)/In c]} (2.28)
Weibull distribution:
u(t) = pat®t (2.29)
a
f(x) = uaxa-le-ux (2.29a)
LB
F (x) = 1-e W% (2.30)
X
Exponential distribution:
u(t) = 4 is a constant,
£(x) = pe ¥ (2.31)
Fg(x) = 1-e *¥ (2.32)
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Joint distribution of 21,22,...,2 , and their correlation:
‘ u

u-1 k,! k k. -k
o ) . 1 141, KR
Prig =k ,2,%ky,eeesl ku|£0} i_é LI py-  (1-py)

ki+1 = 0,1,...,ki, with k0=20 (3.3)
. - pOj(l-pOi) (3.8)
L,,2
? 0 - - \
1773 f py @ pOi)pOj(l Poy)
pOOqO + ...+ pquw =1, . (4.2)
Joint distribution of dO’dl""’dw’ and their correlation:
10! 60 éw
Prldy = g0 nady = ) = g (Poglp) o (Pgygy) 4.3)
= (4.4)
E(d;|2g) = 2gPos9;
2 . - (4.5)
°q, L4Po39; (1Po3%1)
= - for i#'; i,j=0,1,'.'92‘7_' (4'6)
Maximum likelihood estimates of PosPpoee«sP ¢
i i+1 i
L= | i i+1
120 B TEFET P Gop) .2
- A
Pj = lj j=0,1,...,u-1 ’ (5.5)
A Y41 1
E[py] = E[— = Bl E(h 1201 = py (5.6)

3
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2 - pfd
°5. E(Q ) Pj(1-p,) = o2
3 5 q (5.8)
When 2. is large, 02 = 1 p.(1-p.)
0 P. E(ﬂj) J h| (5.9)
G~ 4 =0
‘1.

o~ ~ = E =) -

PasPoy \za/pak(l paj) @< J<k (5.12)

Expectation of life and its estimate:

Xa+'y

o ‘j aU(T)dT
[y £(y )d - *a
e = -
a g 7a Ve’V é a® W(x ty ddy (6.6)
® 2
2 = - (6.7)
0% / (y,me,)” £(,)dy,
o 0
Ya = ea (6.13)
L
e =an_ + c,—=an_ + c, P
a ata T iZ1 i 2u oo Lt i Yai (6.15)
w
e =an +
Q aQ c p ] = see
jeq+1 1 ol a=0,1,+-,w. (6.16)
w-1 )
= 2
a i=a i



is

95

Vi5.12

u(t;d,e)
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APPENDIX III

Crude probability of dying from risk R5'

Qié = Pr{an individual alive at age xi will die in
the interval (xi’xi+l) from RG in the
presence of other competing risks operating
in the population}

Net probability of dying from risk RG'

dyg = Pr{an individual alive at age Xy will die in
the interval (xi’xi+l) when R5 is the only
risk operating in the population}

Net probability of dying when RG is eliminated as a

risk of death.

qi 5 = Pr{an individual alive at age xi will die in

. , - p
the interval (xi’xi+l) when R6 is eliminated

as a risk of death}
Partial crude probability of dying

Qié 1 ° Pr{an individual alive at age X, will die in
the interval (xi,xi+1) from RG when R1 is

eliminated as a risk of deathl}

Partial crude probability of dying

Q16.12 = Pr{an individual alive at age x; will die in

the interval (xi,x ) from RS when R, and

i+1 1
R2 are eliminated as risks of death}

)

Probability of surviving the interval (xi’xi+l

Probability of dying in the interval (xi’xi+l)

Interaction between risks RG and Re.

Force of mortality associated with risk R_, § =1,....r.

6,
Total force of mortality.
pu(t) = w(tsl) + ... + p(t;r)

Force of mortality associated with the interaction Rée

page

no.

259

259

259

259

259
259
259
270

261

261

270
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Formulas

Relationship between three types of probabilities:

p(t;8)A + o(4) = Pr{an individual alive at time t will die in interval

(t, t+4) from risk Ré}, =l e, r

(t;1) + o 4+ u(t;r) = u(t)

Proportionality Assumption: MB(t;6)

w(t) T 16
Qil + ee e + Qir = qi i-o’l’coo.
Q,./q.
is
s = 1l - Py . § =1, ,r.
- 1 = Q. [1+% (q.-Q,0 ]
When a9 is extremely small, in i8 2 qi is
(95-Qs¢)/ay
Sl—p .

9.5 i

1 1
. = (947Q4) [1+5 Qg + & Qs(a+Q4)]

1 1 )
Qié.l = QiG[I +E Qil+ 6 Qil(qi+Qil)] 8 2,...,1‘.

pu(t;8,e)s + o(A) = Pr{an individual alive at time t will die

in interval (t,t+4A) from Rée}
r r-1 r
Iow(e8) + J T u(ris,e) = u(r)
=] o=]1 e=g+1

.
(9,-Q,,-JQ,, )/q
Ggeq = 1-p i 11_£ 117793

(2.1)

(2.2)

(2.3)

(2.10)

(2.17)

(2.21 5)

(2.27)

(2.29)

(2.33)

(3.3)

(3.5)

(3.10)
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Tr
1 r 1 r
q.q = (947Qqy = I Q) [1+5 (Qyy +:2Qile)+ Q7 gQils)(qi‘*Qn* 2Q41¢]
=2 -
(3.12)

Qs

q.-Q f Q d
i %417
il ce ile

Qsey =
id-1 i1 (3.16)
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APPENDIX IV

page no.
d, — Number of deaths from cause R_ in the interval
is (x..%. ) 8 277
i’ 7i417
p ~ Correlation coefficient between d, d. , given £2.. 279
d. ., |2. i ie i
i§” e
0 - Correlation coefficient between d,_. and d, . 283
d. ., ié ie
i’ ie
- - Q. .. 8
SQ. Standard error of Qié 28
id
Formulas
U R = :
d11 +dir di (1.1)
2i = di1+"'+dir+2i+l | (1.3)
E = .
Qp* "y = 94 (1.4)
]l = Qil+...+Q' +P
ir i (1.6)
Joint probability distribution of dil,...,dir,li+l given Qi:
2.1 d
i 0., ... A . 141 1.7
s e ] ] . . R
dipt  dg eyt i ir i
where dil+...+dir+2i+l = Qi.

- 1.8
B 5le0) = 2304 .8

Var(d, . [2;) = liQié(l-QiG), g=l, ++¢,r. 1.9)
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. - QP4 (1.11)

/// Q, 5Py (1.13)
P T/ (-q o-p,)
dygrtin |t (-9, ) (1P

Var (2 (1.15)

= 0
g1 lty) “4P194

Joint probability distribution of all the random variables dil""'d' ’Qi+1'

1r
for i=0,1,...,u, given Qo:
T 2k q 1 0 Y4r A (2.1
1m0 Gypfe-edg b R0 L ir Pi
_ 6=1,...,r3
Var(did) - 2«0 Poi Qid(l-poiqia), i=0,...,u- (2.6)
- _ S¢¥e; 6 €=l,...,r;
Cov(dssd, ) L 0P0i%%6P0i e » i0,.. u. C (2.7)
e
P =-p i€
did’die 01 / (2.9)
Vo= pgiQsy 1= PpyQ.
/@ ] Q .
14 ie for i<j
p = =Py /P ’ (2.12)
dia,dje 01 15\/1 AR
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= - .13
Cov(d,ss2y) 20014 6P0; (2.13)
Cov(L,, d ) = £ (1-pn.)pn.Q. 8= 1,...,r; (2.14)
i 736 0™ 7047705756 1<y; 1,4=0,1,....
“zi,zj - zo(l'POi)PoJ i<y, (2.15)
Maximum likelihood estimates of pi, Qid:
; 2! Q 443 Q dyr o Lin .1
gmo dqq! eee 9! 4! 1 ir i
d
8 _1s 6=1,...,r
Qs g, 0 120, .u (3.7)
2
" i+1 .
B, = —;—i— . CT (3.8)
N . , (3.10)
E[Q;q] = Q4
a vy _ Sml,....1r (3.15)
Var (Q¢) E(zi ) Qs (1-Q,4), 1=0, . 0 ou
V ) = ‘(& = L
ar(py) = var(q,) E(21 )P; a4 (3.16)
Cov(Q.., 8 ) w —p(Ll_
Qs Q) = -EG) o, Qe (3.17)
i
Sn = /1_1._ Q5 (10, ) S=l,...,r (3.20)
Qs 1
(L o (1-3 , =0, ... (3.21)
Sq. = “2. q; (1-8,) SEETL IS

qi i





