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XIII 

L I FE TABLE AND MORTALITY ANALYSIS 

FOREWORD 

This publication on advanced methods of analysis of the mortality of 

populations is the second in a series of teaching aids addressed to a wide 

spectrum of professionals in the health field, statistics and demography. 

The first, a Manual on methods of analysis of national mortality statistics 

for public health purposes, was published in 1977 and focussed on basic methods 

of analysis which are commonly used in National Statistical Departments. 

Public Health and Demography owe so much to the quantitative study of 

mortality. For centuries, the primary determinant of population trends has 

been mortality and it still remains so in many less developed countries; it 

was mortality that formed the primary challenge to the medical professions; 

it was the prevention of early death that was the primary objective of public 

health workers and of social legislation. Nowadays, this central role of the 

study of mortality has gradually yielded way to concern for other phenomena 

such as fertility and morbidity and the definition of positive health and the 

study of the provision and use of health services. Nonetheless, the analysis 

of mortality data is still an indispensable part of informed decision-making 

and of the evaluation of policies on health services. New problems have 

arisen even in the area of mortality analysiS; the growing importance of 

chronic diseases have raised new issues and problems; demands for statistical 

analysis have become ever more sophisticated; the improved quality of 

certification of the causes of death has created a demand for a detailed 

study of the difficulties encountered in their interpretation; the use of 

computers has changed the problems of data processing and facilitated more 

complex methods of analysis. It was with these considerations in mind that 

the work on an up-to-date publication on mortality analysis was initiated. 

This volume emphasizes the more advanced methods in the study of survival 

and mortality. The life table method of analysis, historically rooted in the 

actuarial and demographic sciences has by now become an indispensable tool for 

investigators in other diSCiplines such as epidemiology, zoology, manufacturing 

etc. The classical concept of counting risks is introduced and integrated 

into a coherent probabilistic approach to the study of a broad range of 

processes with a stochastic distribution of exit from one or more competing 
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causes with the life table as central theme. Follow-up studies with due 

attention to truncated information are of great practical importance not only 

for medical research but may prove particularly useful for health statisticians 

in less developed countries who - in the absence of complete nation-wide vital 

statistics - concentrate on the study of the survival experience of relatively 

small population groups. 

It is hoped that this volume will be of use for post-graduate courses in 

biometry, demography and epidemiology, and together with the manual will also 

serve as a background for training activities and refresher courses in health 

statistics organized or sponsored by the World Health Organization. In 

fact, part of the manuscript has been tested in courses organized by the 

World Health Organization with the financial support of UNFPA; the experience 

gained in this practical application is reflected in the text. 

This volume has been prepared by Professor Chin Long Chiang, University 

of California, Berkeley (U.S.A.) an outstanding authority and pioneer in the 

application of the stochastic, approach to the study of death processes. 1be 

manuscript has also profited from the comments of the United Nations' Population 

Division, Professors H. Campbell (U.K.) and S. Koller (Federal Republic of 

Germany) and various staff members of the World Health Organization such as 

the statistical officers in the Regional Offices. Dr H. Hansluwka, World 

Health Organization was most actively involved in the design of this volume 

and coordinated the various activities which led to the production of this 

volume • 
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This manual was made possible with the help of the following persons: 

Flora Fung, Bonnie Hutchings, Linda Kwok, Carol Langhauser, Patrick Wong, and 

Rodney Wong. Their assistance is very much appreciated. 
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CH:'\PTr:R 1 

ELEMENTS OF PROBARHnv 

1. Introduction 

A good understanding of the basic concept of probabi~ity is essential 

for proper analysis of mortality data. Because of its potential as an analytic 

tool, probability has been increasingly used in vital statistics and life 

table analyses. As a result, st~dies of vital data are no longer limited to 

a mere description or interpretation of numerical values; statistic21 

inference can be made regarding mortality and survival patterns of an entire 

population. While it is a mathematical cOT,cept, probabili.ty has an interr~~~ti.'1g 

intcitive appeal. Many natural phenomena can be descriLed by means of 

probability laws; occurrence of daily events also seems to follow a dcfinit~ 

patterr.. Even such spontaneous events as accidents can be predicted i.n 

advance with 3 certain degree of accuracy. Mortality laws proposed by 

BenjaT:1in Gompertz in l82Ci and by v.'. 1·1. Makeham in 1860 have been used jn 

studies of hUI:lan sun ivaI and death both in the field o[ health and in t:,e i1c1uarial 

sciences. It is appropriate then to hegin this manual by introducing 

the fundamental probability concept, related ::>rmul:1s and illustrative 

examples. 

The concept of probability involves three components: 

(a) a racdoru p};periment~ (b) possible ()\Jtcomes, and (c) an event of interest. 

A rondo!!' experir:lent is an experiment that Ions a number uf possible out'.-or'lf:s. 

but it is not certain which of the outcomes will occur before the 

experiment is perforr.ied. Thus, in 1) lking of probabi1 itl', one must have 

in mind a random experiment una,of consideration and an eVE,nt of intprest. 
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2.2. Definition of probability'. The probability of the occurrence of event 

A is defined as the ratio of the number of outcomes where event A occurs to the 

total number of outcomes. For simplicity, we shall use the term "the 

probability of event A" for "the probability of the occurrence of event A." 

Suppose that a random experiment may result in a number n of possible (and 

equally likely) outcomes, and in n(A) of these outcomes event A occurs. Then 

the probability of event A is defined as follows: 

(2.1) 

Thus, the probability of event A in a random experiment is a measure of the 

likelihood of occurrence of the event. 

2.3. Ex~~ples. The following examples may elucidate the concept of 

probability. 

Exampl~~. In tossing a fair coin once, what is the probability of a 

head turning up? Here, J:::~ss}ng ~ir coin once is the random experiment, and 

the possible outcomes are a head and a tail. Let event A be "a head." The 

number of possible outcomes, n, is 2, and the number of outcomes where a head 

occurs, n(A), is 1. Therefore, the probability is 

1 
2 

Example 2. In rolling a fair die once, there are 6 possible outcomes. 

Let event A be 3 dots. Here n=6 and n(A) = 1; therefore: 

1 
6 

Let event B be an even number of dots, with nCB) 

B is: 

3. The probability of 
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3 1 
- = 
6 2 

Example 3. A name is drawn at random from a group of 120 people 

consisting of 39 females and 81 males. Let event A be the drawing of a female nawe. 

The probability of event A is: 

n(A) 
n 

39 
120 

13 
40 

Example 4. A list of n=lOO names consists of n(s) = 98 names of survivors 

and ned) = 2 of those who have died. A name is drawn at random from the list. 

The probability that the name drawn will be that of a survivor is 

pes) 
n(s) 

n 
98 

100 .98 

and that of one who has died is 

P(d) 2 
100 

.02 

Clearly, the sum of the two probabilities is unity: 

pes) + P(d) .98 + .02 1 

2.4. Values of a probability. From the definition we see that the probability 

of an event A is.an (idealized) proportion or relative frequency. Thus, a 

probability can only take on values between zero and one, i.e., 

o < Pr{A} < 1 (2.2) 

2.5. Sure event and impossible event. A sure event is an event that 

always occurs. If I is a sure event, then 

pdI} 1 (2.3) 
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An impossible event is an event that never occurs. If 0 is an impossible 

event, then 

o (2.4) 

2.6. Complement of an event (or negation of an event) can be best illustrated 

with examples. Let A be the complement of event A. 

Example A A 

Sex of a baby male female 

Toss of a coin head tail 

Toss of a die 3 dots anything but 3 dots 

Toss of a die even no. odd number of dots 
of dots 

Survival analysis survival death 

Thus, the complement A occurs when and only when event A does not occur. In 

a random experiment the total number of outcomes can be divided into two 

groups according to the occurrence of A or of A, 

n = n(A) + n(A) 

The probability of A in a random experiment is, by definition, 

PrCD 
n(A) 

n 

It is clear then that, whatever event A may be, 

pdA} + Pre\"} 1 (2.5) 

or 
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1 - pdA} (2. Sa) 

In words, the probability of the complement of A is equal to the comple-

ment of the probability uf A. 

2.7. Con'l1osite event (A and B). Given two events A and B, we define a 

composite event A and B (or AB for simplicity) by saying that the event AB 

occurs if both event A and event B occur. 

Example 5. Consider a group of 200 newborn babies divided accurding to 

sex and prematurity as shown in the following 2x2 table: 

.. "" ....... '~"--,.~----

Male Female Marginal 

" A row total 

Premature 11 9 20 

B n(AB) n(AB) nCB) 

Full term 93 87 180 
--

B n(AB) n(AB) nCB) 

Marginal 104 96 200 

Column Total n(A) n(A) n 

Let A male, A = female, B premature, B full term. 

A baby is picked at random from the group; the composite event AB is a premature 

boy. The corresponding probability is 

pdAB} n(AB) 
n 

11 
= --

200 

Other possible composite events are 

AB = a full term boy 

AB a premature girl 

--AB = a full term girl 

(2.6) 



The probabilities Pr{AB}, Pr{AB}, and Pr{AB} can be computed from the above 

table. 

If I is a sure event, then 

(2.7) 

If r/J is an impossible event, then 

o (2.8) 

2.8. Conditional probability. The conditional probability of F given that A 

has occurred is defined by: 

(2.9) 

Since 

and 
n(A) 

n 

we have 

n (An) In n (AB) 
-;-(A~ = n (A) -

(2.10) 

In terms of the previous example, Pr{BIA} is the probability th2t a baby 

chosen at random from the boys will be premature. Since there are n(A) = 104 

boys, and among them n(AB) = 11 are premature, we have 

{I n(AB) 11 
Pr B A} = n(A) - = 104 ' 

or, using 

and 

n(AB) 
n 

and 1l = --
200 

Pr{A} 
n (A) 104 

=--= 
n 200 



11/200 
T04/200 

we obtain the same value. 

7 

11 
104 ' 

It is clear that the conditional probability Pr{B!A} is different from 

the conditional probability Pr{A!B}. In the above example the probability 

that a premature baby will be a boy is computed from 

n(AB) 
nCB) 

11 
20 

The reader is advised to use the above example to compute and interpret the 

following conditional probabilities: Pr{81~}, Pr{~IA}, Pr{~!~}, Pr{AI~}, 

priAIB}, and PrrAIT~L 

In applyi.ng conditional probability to a practical problem, ope should 

beware of a sequence that may exist in the occurrence of events. If (,vent A 

occurs before event B, then the condi.tional probability Pr{AIB} may not be 

meaningfu I, whereas the conditional probability Pr{B !A} is mCi}!lingfuJ. For 

example, in a study of sex differential infant mortality, sex of infant, 

male (A) or female (A), is determined before mortality in the l'irst year of 

life (denoted by B) occurs. Comparison of infant mortality of males with that of 

females requires the conditiollal probabiJ fties Pr{B!A} and pdB!A}. Rut it 

may be difficult to comprehend the cOlldi.tional probability pdA!S} that an 

in fiJ II t w 11 0 die swill bema 1 to • 

2.9. fndependence. Event B is ~;aid to be independent of l'vent /\ If t lIP 

conditional probability of B given A is equal to the (nbsolutc) prohabil itv 

of B. In formula 

pr{ B I A} = pr{ B } (2.11) 

This means that the likelihood of the occurrence of B is nut influenced be 

the uccurrence of A. Clearly, if B is illdependent of A, B is also 
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independent of A, or 

Pr{BIA} (2.12) 

Let A male, B prematurity. If 

Prtpremature babylmale} Pr{premature baby}, 

then 

pdpremature babylfemale} = Pr{premature baby}, 

and \.Jp say that prematurity is indep~~lldl'llt uf :;ex of the baby. 

To verify whether an event B is independent of an event A in a particular 

problem, we compute separately 

and Pr{B} 

If the two numerical vables are equal, we say that B is independent of A. 

In the example in section 2.7 

pdB I A} 
11 

104 
and Pr{B} 20 

200 

Since 11/104 is not equal to 20/200, according to the information given in this 

example, prematurity is dependent on the sex of a baby. 

2.10. Multiplication theorem. The probability of AB is equal to the product 

of probability of A and the conditional probability of B given A, or 

pdAB} ().l3) 

Proof: 

pdAB} PdA} x pdB I A} 
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With reference to the 2x2 table in example 5, we see that 

11 
pr{ABr = 200 

and 

104 11 11 
PdA} x pdB! A} = 200 x 104 = 200 

therefore 

pdAB} 

Since event AB is the same as event BA, the multiplication theorem has an 

alternative formula: 

pdAB} (2.14) 

The formulas of the muJtiplication theorem for three and four events are 

Pr{ABC} = Pr{A} x Pr{B!A} x Pr{C!AB} (2.15) 

and 

pdABCD} (2.16 ) 

2.11. Hultiplication theorem (continu~tion). If events are i.ndependent, 

then the formulas of the multiplication theorem become 

Pr{AB} = Pr{Ar x Pr{Br (2.17) 

Pr{ABC} = Pr{A} x Pr{B} x Pr{C} (2.18) 

Pr{ABCD} = Pr{A} x Pr{B} x Pr{C} x Pr{D} (2.19) 

2.12. A theorem of (pairwise) independence. If B is independent of A, 

then A is independent of B, and A and B are said to be independent events. 

Symbolically, the theorem may be stated as follows: 
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pdB} 

then 

Pruof: According to the mulliplication theorem, 

Pr{AB} == pdA} x pr{BIA} and pdAn} 

It follows that 

pdA} x pdB I A} 

If B is independent of A so that Pr{BIA} Pr{B}, then (2.20) becomes 

and consequently 

Pr{A} 

Conversely, if B is clepc>ndent of A, then A is dependent of B. 

In the example in part 7, 

11 
104 

and 

so that B is dependent of A, while 

11 
20 

and 

so that A is dependent of B. 

20 
200 

104 
200 

(2.20) 

A or B or both. Thus the event A or B occurs if either A occurs, or B occurs, 

or AB occurs. 
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2.14. Mutual exclusiveness. Two events are said to be mutually exclusive 

if the occurrence of one implies the non-occurrence of the other; in other 

words, they cannot occur simultaneously in a single experiment. If A and B 

are mutually exclusive events, then n(AB) = 0 and Pr{AB} = O. 

2.15. Addition theorem. 

Proof: Using the example in part 2.7 again and by direct enumeration, we see 

that 

pdA or B} n(A) + nCB) - n(AB) 
n 

Dividing every term in the numerator by the denominator, we have 

pdA or Bt = n(~ + nCB) _ n(AB) 
n n n 

(2.21) 

!xampl~: Let A = male, B ~ prematurity. From example 5 in section 2.7, we compute 

pdA or B} = pdA} + pdBr - pdn} 

The formulas of the addition theorem for three and four events are 

pdA or B or C} PrtA} + Pr{B} + Pr{C} 

(2.22) 

Pr{A or B or C or D} Pr{A} + Pr{B} + Pr{C} + Pr{D} 

pdBD} - Pr{CD} 

+ Pr{ABC} + Pr{ABD} + Pr{ACD} + Pr{BCD} - Pr{ABCD} 

(2.23) 
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2.16. Addition theorem (continuation). {-Then events are mutually exclusive 

so that Pr{AR=O}, etc., then the formulas of the addition theorem become 

Pr{A or B or C} = Pr{A} + PrIB} + Pr{C} (2.25) 

Pr{A or B or C or O} = Pr{A} + Pr{Bl + Prfe} + Pr{O} (2.2f)) 

and so on. 

may appear to be, the addition and multiplication theorems are indispensible 

in computing probabilities. The following table is prepared to facilitate the 

applications of these two theorems. 

Hhich theorem I Multiplication theor::--r Addition theorem 
~~~-===~===-~---- r=' ,",~""-"""=,- ,======""~~="-"=-~- -==- -"--""--"" "-""=,==~="=,=~==-:,-~""" 

'VJhen to use A and B A or B 

Theorem pdAB} = PdA} x pdB IA} pdA or B} = PdA} + pr{ H} - pdAB} 

Are the events independent? mutually exclusive? 
-----------------+--------------------------r--------------------------
Particular form 
of theorem 

If independent, then 
Pr{AB} = Pr{A} x Pr{B} 

If mutually exclusive, then 
Pr{A or B} = Pr{A} + Pr{B} 

2.18. The distributive law. When the computation of a probability requjres 

hath the addition and multiplication theorems, the rule of application of the 

two theorems is simi lar to that in an arithl:H: l i (" problem. The most useful 

rule of operation is the distributive law: 

2(3 + 4) = 2 x 3 + 2 x 4 

in an arithmetic problem, and 

pdA(B or C)} = PriAB or AC} (2.27) 

in probability~ or 
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(2 + 3)(4 + 5) 2 x 4 + 2 x 5 + 3 x 4 + 3 x 5 

and 

Pr{(A or B)(C or D)] O"Pr{AC orAD or Be or BD} . 

Us i I1~~ example 5 once aga in, we have 

Pr {A(B or B)} Pr{AB or AB} 

= Pr{AB} + Pr{AB} 

11 93 104 --- + -- = -<- • 
200 200 200 

In this case, (B or B) = I is a sure event, 

Pr{A (B or B)} Pr{AI} = PrfA} = i~~ 

2.19. An example from the life table 

Table 1. The number of survivors and the numher died (Jut of 
100,000 live births 

Age 
Interval 

(in years) 

x. to x. 1 
1 1+ 

__ J 1 ) _______ _ 

0- 1 
<-- -~-------.. 

1- 5 
[)-JO 

10-15 
J 'j-2() 

20-25 
25-30 

--.-.-- -_ ...... _----
:W-35 
35-40 
40-45 
45-5() 
50-55 
55-60 --60..:65--------
65-70 
60-75 

---75.:::-80-----

80-85 
85+ 

96216 
----- _.". --- --

95535 
9476<) 
93709 
92126 
8%72 

1()60 
1 < ,,~ 

24 
3631 

Pfi041 5341 -------._- -" -----_._-- --.. ------.-~----.-
80700 7171 
7352Y 9480 

Ht~f ----t-nm --
_______ 211/f.3 ___ < __ 1 _______ ?}2~J ___ _ 

(2.28) 
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E~~~pl~_t'J... Table 1 is a part of a life t:-ible for the 1970 California, USA, 

popu la t ion. Column (1) shows the age intervals in years. Column 

(2) is the number of (life table) people I iving at the beg inning of cc1C'h age 

interval. Thus, the column shows that there are 100,0000ife table) people 

alive at the exact age ° (that is, the population size at birth); of these 

98,199 survive to the exact age of 1 year (the first birthday), 97.883 survived 

to the exact age of 5 years, etc., and finally 23,5~survived to the exact age of 

85 years. Each figure in column (3) is the number of people dying wi thin 

the corresponding age interval. Among the lOO,OOO living at age 0, l801 

died during the age interval (0,1),316 died between ages 1 and 5, etc., and 

23543 died beyond age 85 years. 

For the purpose of illustration, we con.-;ider 100,000 newborns who are subject 

to the mortality experience of the 1970 California pe[lul;]l iun. hThat is the 

probabil ity that a newhorn \,,111 survive to his first birthday? In this example, 

the "rLmdom experiment" is the baby's first year of life; possihle outcomes are 

survival or death of the 100,000 infants; the event A of interest is a newborn's 

survival to his first birthday. Since 98,199 of the 100,000 neltlborns (the 

possible number of surv ivors) actually survived (event A occurred), the 

probability that a newborn will survive to his first birthday is 

Il(A) 
n 

__ 9~-,-~J? 
100,000 

.98199 or 981.99 per 1,000 

Similarly, the probability that a newborn will survive to the fifth birthday 

is 97883/100,000 = .97883, to the 10th birthday is 97699/100,000 = .97699. 

For the probability of death, we use the corresponding number of deaths in 

the numerator of the formula. Thus we have 
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Pr{a newborn will die in the first year of life} 

Pr{a newborn will die in interval (1,5)} 316 
100,000 

1801 
_. ___ ~ ____ 4_+ 

100.000 

.01801 or 18.01 per 1,000 

.00316 or 3.16 per 1,000 

2.19.1. Conditional Probability. The probabilities computed above are 

absolute probabilities based on the 100,000 live births. When the base 

population is changed, we have conditional probabilities: 

and 

Pr{a child alive at age 1 will die in interval (1,5)1 

Pr{a child will die in interval (1,5) Ihe is alive at age I} 

number dying in (1,5) 
number living at age 1 

316 
98J99 .00322 or 1.22 per 1,000 , 

Pr{a child alive at age 5 will die in interval (5,10)} 

number dyinIL_~~ (5, ~O)_ 
number living at age 5 

184 
~.----

97883 . 00188 or 18.8 per 1,000 . 

These conditional probahilities, which are based on the number of individuals 

living at the beginning of the corresponding age interval, are known as the age-

specific probabilities of dying. Other conditional probahilities are possible, 

depending upon the given condition and the event of interest. The following 

are a few examples: 

Pr{an individual of age 25 will survive to age 50} 

and 

number living at age 50 
numher living at age 25 

89672 
96216 .93199 
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Pr{an individual of age 25 will die before age 50} 

number dying between ages 25 and 50 
number living at age 25 

6544 
96216 = .06801 

96216-89672 
96216 

where the number 6544 can be determined also from the number of deaths in all 

the intervals from 25 to 50: 

6544 681 + 766 + 1060 + 1583 + 2454 . 

Since an individual alive at age 25 will either survive to age 50 or die 

before age 50, the corresponding probabilities must add to unity: 

.93199 + .06801 1.00000 

For an individual alive at age 20, the corresponding probabilities are: 

and 

Pr{an individual of age 20 will survive to age 4S} 

92126 
96966 .95009 

Pr{an individual of age 20 will die before age 45} 1 - .95009 

2.19.2. Probabilities of Composite Events. Let A be an event that a 

.04991. 

male of age 25 survives to age 50 and A he dies before age 50; let B be an event that 

a female of age 20 survives to age 45 and B she dies before age 45. If they are 

subject to the probability of dying shown in the above table and if their 

survival is independent of one another, then we can use the multiplication 

theorem to compute the following probabilities: 
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Pr{both male and female live for 25 years} 

= PdA and B} = PdA} x pdB} = . 93199 x .95008 = .88547, 

Pr{both die within 25 years} 

= pdA and B} == PrfA} x pdB"} .06801 x. 04991 .00339 

Pdmale lives and female dies in 25 years} 

= PdA and "B} = pdA} x pd"B} = .93199 x .04991 .04652 

and 

Pr{male dies and female lives for 25 years} 

= Pr{I and B} : Pr{I} x Pr{B} = .06801 x .95009 .06462 . 

Since either both male and female will survive a period of 25 years, or one 

of them dies, or both die, the sum of the above probabilities is equal to 

one: 

.88547 + .00339 + .04652 + .06462 1 

The reader may wish to compute similar probabilities for other ages or for a 

period different from 25 years. 

2.19.3. Probability of Dissolution of Marriage. The above probabilities can 

be used to compute joint life insurance premiums or dissolution of marriages. 

Fur example, if a husband is of age 25 and his wife of age 20, the probability 

that their marriage will be dissolved in 25 years due to death may be computed 

as follows: 

Pr{dissolution of marriage in 25 years due to death} 

Pdone or both of them die in 25 Yl'ars} 

= Pr{(A and B) or (I and B) or (I and B)} 
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Here the three events (A and B), (A and B), and (A and "B) are mutually 

exclusive; we use the addition theorem and the above numerical values to 

obtain the probability 

Pr{(A and B)} + Pr{(A and B)} + Pr{(A and B)} 

.04652 + .06462 + .00339 .11453 

Thus the probability of dissolution of their marriage is better than 10 

percent. On the other hand, 

Pr{their marriage will not be dissolved in 25 years} 

Pr{both live for 25 years} PdA and B} .88547 

Obviously, the two probabilities are complementary to each other, and 

.11453 + .88547 1.00000 • 
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CHAPTER 2 

DEATH RATES AND ADJUSTMENT OF RATES 

For a specific age interval (xi,x
i
+

l
), the death rate, M

i
, is defined as follows: 

N, 
1 

--------- -------~--

Number of years lived in (x"x'f-l) by those alive at x, 
1 ~ 1 

(1.1) 

Suppose that of £1' people living at exact age xl" d, die between age x, and 
1 ~ 1 

Xi +r and each of d i people lives on the average a fraction, ai' of the interval 

formula 

M, 
1 

Then the death rate M, defined in (1.1) may be expressed in the 
1 

d, 
1 

n,(£,-d,) + a,n,d, 
111 111 

(1. 2) 

where n, = x'+l-x, is the length of the interval (x"x'+l)' n,(£,-d,) is the 1111111 1 

number of years lived in (x"x'+l) by the (t,-d,) survivors, and a,n.d. is the 
1 1 1 1 111 

number of years lived by the d. people who die in the interval. The unit of a 
1 

death rate is the number of deaths per person-years. The corresponding 

estimate of probability of dying, given by 

d. 
1 

£. 
1 

(1.3) 

is a pure number. From (1.2) and (1.3), we find a relationship between q. and M. 
1 1 

n.M. 
1 1 

l+(l-a,)n.M. 
111 

(1.4) 

He see then that the age-specific death· rate and the probability of dying are two 

different concepts and they are related by formula (1.4). Consider as an 

example the age interval (1,5) in the 1970 California life table population. 

Here xl=l, x5 = 5, and nl =5-l=4. From Section 2, Table 1, we find £1 = 98199, 
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316, and from Appendix [V], a 1 
.41. The death rate is 

316 
4(98199-316) + .41 x 4 x 316 

.000806 

and the estimate of the probability is 

1\ 316 
q1 98199 = .00322 

Formula (1.2) of the age-specific death rate is expressed in terms of a life 

table framework where ~. people are followed for n. years to determi1le the 
1 1 

number of deaths (d.) and the number of survivors (~.-d.) at the end of n. 
1 1 1 .. ,,1 

years. In a current population, such as the 1970 California population, an age 

specific death rate is computed from the mortality and population data during a 

calendar year (1970). Instead of d. defined in a life table, we have D., the 
1 1 

observed number of deaths occurring to people in the age group (xi ,xi +1) during 

a calendar year. To derive a formula for the death rate as in (1.2), we let N. 
1 

be the (hypothetical) number of people alive at exact age xi; 

deaths occur. Then we have the death rate 

M. 
1 n. (Ni-D .) + a. n . D . 

1 1 111 

and an estimate of the probability 1i' 

D. 
1 

q1· = N . 
1 

They also have the relationship in (1.4). 

among them D. 
1 

(1.2a) 

(1.3a) 

Since N. is a hypothetical number, the denominator of (1.2a) and the death 
1 . 

rate for a current population cannot be computed from (1.2a). Customarily, 
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the denominator of (1.2a) is estimated by the midyear (calendar year) population 

Pi for age group (xi,xi +l ), and hence the age-specific death rate is given by 

M. 
1 

D. 
1 

p. 
1 

(1.5) 

Although it is a well known and accepted definition of age-specific death rates, 

formula (1.5) is much more meaningful when p. is interpreted as an estimate of the 
1 

denominator in (1.1). 

In California 1970, there were Dl = 1049 deaths occurring in age interval 

(1,5), and PI = 1,302,198 people of ages 1 to 5 <It midyear. Therefore, the 

corresponding death rate is 

1049 .000806 
~302,198- = 

A death rate usually is a small number; its significance is not easily 

appreciated. To remedy this, the numerical value of a death rate is multiplied 

by a number, such as 1000, which is called the base. The formula of a death rate 

often appears as 

M. 
1 

D. 
1 X 1000 

p. 
1 

(l.5a) 

1/ Thus, instead of Mi = .000806, we have Ml = .806 per 1000 person-years.-

It should be clear that in formula (l.5) and (l.5a) the number of deaths D. 
1 

in the numerator and the midyear population p. in the denominator refer to 
1 

the same population, such as the 1970 California population between ages 1 

and 5. The population and the base must be clearly stated in a death rate. 

For example, the death rate for the age group 1 to 5 years in the 19}0 

California population is .806 per 1000. 

liThe words "person-years" are often deleted. 
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When a death rate is for an entire life. it is called the crude death 

rate. In formula: 

M 

where 

D 

D P x 1000 

L D. 
i 1 

is the total number of deaths occurring during a calendar year, and 

p L p. 
i 1 

(1·.7) 

(1.8) 

is the total midyear population of a community, or a country. in question. 

Death rates may be computed for any specific category of pec'p1e in a 

population. Sex-specific death rates, occupation-specific death rates, 

age-sex-specific death rates, are examples. In each case. the specific rate 

is defined as the number of deaths occurring to people in the stated 

category during a calendar year divided by the midyear population of the same 

category. 

Death rates may also be computed for specific cau~es such as death rates from 

cancer, tuberculosis, or heart diseases. These are known as cause-specific death 

rates. Here it is deaths, rather than population, that is divided into categories. 

A cause-specific death rate is defined as the number of deaths from the specific 

cause divided by the midyear population. In formula. the death rate from cause 

RO is given by: 

Do 
= p x 1CO,000 ( 1.9) 

Here Do is the number of deaths from cause R, during a calendar year in question, 

the base is 100,000 hecause of the small magnitude of the rate. 
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Prevalence of diseases varies with age. Cardiovascular disease, for 

example, is more prevalent among the aged than among young people; the 

converse is true for infectious diseases. Therefore, age-cause-specific death 

rates are in common use. For the age interval (x.,x.+l ) and cause R~, the 
1. 1 () 

specific death rate, M
io

' is computed from 

x 100,000 ( 1.10) 

where D
iO 

is the number of deaths from cause Ro occurring to people in age 

group (xi,x
i
+

l
) during a calendar year, and Pi is the midyear population of 

the same age group. Here a base, 100,000, is used. 

In the human population, mortality is the highest ainong newborns and among 

the elderly. Infant mortality also has a great impact on the population 

distribution in later years of life. Various efforts have been made in 

different countries to reduce infant deaths, and many of these efforts have 

resulted in a considerable amount of success. Mortality in the first year 

of life has been decreasing, especially in the developed countries prior to 

1950. Since many different causes affect mortality from conception to the 

end of the first year of life, this period of human life has been divided 

into subintervals and designated by special names, as shown in the following 

table. 
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Table 1. Fetal death and infant mortality 

Designation Interval 

Early fetal death Under 20 weeks of gestation 

Intermediate fetal death 20-27 weeks of gestation 

Late fetal death 28 or more weeks of gestation 

Neonatal death Under 28 days of age 

Post neonatal death 28 days to end of first year of life 

Infant death Under one year of age 

--------

The corresponding definitions of death rates differ somewhat from the 

definition of th0 age-specific death rate discussed in the preceding section. 

The following rates are measures of mortality for a defined population during 

a given calendar year: 

2.1. Fetal death rate (alias "stillb irth rate"). Two definitions are 

available: 

Number of fetal deaths of 28 or more weeks of gestation x 1000 
Number of live births + fetal deaths of 28 or more weeks 

of gestation 

Number of fetal deaths of 20 or m~re weeks of gestation 
- x 1000 

Number of live births + fetal deaths of 20 or more weeks 
of gestation 

2.2. Neonatal mortality rate. 

Number of deaths under 28 days of age x 1000 
Number of live bIrths 

(2.1) 

(2.2) 

(2.3) 

2.3. Perinatal mortality rate. There are two definitions in common use: 

Number of deaths under 7 days + fetal deaths of 28 or more weeks. of gestation 
Number of live births + fetal deaths of 28 or more weeks of gestation 

(2.4) 
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Number of deaths under 28 days of life + fetal deaths of 20 or more 
_____ . weeks ,?_~~station_ .. _______ x 1000 

Number of live births + fetal deaths of 20 or more weeks of gestation 

(2.5) 

The second definition covers a longer period both in gestation and after birth. 

NumbeE.of deaths at ~e 28~ through one~~. x 1000 
Number of live births - neonatal deaths 

(2.6) 

It is incorrect not to subtract neonatal deaths from live births in the denominator. 

Difference in numerical value due to this error depends on neonatal mortality; 

the difference may be considerable when neonatal mortality is high. 

2.5. Infant mortal~~?te. 

Number of deaths under one .y~~_~L~ x 1000 
Number of live births 

(2.7) 

Mortality rates defined above are closer to prohahility than to age-specific 

death rates, since in each instance the numerator is a part of the denominator. 

There are measures of mortality which resemble neither probability nor age specific 

death rates. Nevertheless, they are quite useful in mortality analysis. Some 

examples follow. 

2.6. Fetal death ratio. 

Number of f~_~l_cl~?_th~_of 2Q....9~~<2~_we~_ks--.£L8..estatio~ x 1000 
Number of live births 

2.7. Maternal mortality rate. 

Number of maternal .. ~aths x 1000 
Number of live births 

A maternal death is a death occurring to women due to complications of 

pregnancy, childbirth and the peurperium (period after delivery). While 

(2.8) 

(2 .9) 
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not strictly a measure of risk, the maternal mortality rate indicates a 

"price" in terms of mother's life that a human population pays for every 

infant brought into the world. 

It was indicated at the beginning of this section tklt fetal death and 

infant mortality have experienced a constant decline. We shall now substantiate 

this statement by citing a report prepared by Helen C. Chase in 1967. She 

states: 

"One of the notable health accomplishments in the 20th century has 
been the decline in infant mortality. Over the first half of the 
century the rapid decline in mortality among infants became an accepted 
component of the Nation's health. In the past decade, it has become 
difficult to adjust to the idea that infant mrirtality in the United 
States is no longer declining at its former rate." 

The deceleration of the rate of decline in infant mortality, however, was not 

peculiar to the United States. Similar changes in trend have appeared in several 

European countries. Tables 2 and 3 summarize these findings. It may be 

noted that even during the period from 1950 to 1962, the reduction in fetal 

death and infant mortality was still substantial. Table 4 shows the fetal 

and infant mortality in the United States from 1960 to 1970. The reductions in 

all categories are still quite considerable. 

Table 2. Infant mortality rates and percent reduction: Selected 
countries, 1935, 1950, and 1962 

Infant Mortaliy~ate_ Percent Reduction 
-"---.-~----

Country 1935 1950 1962 1935-62 1935-50 1950-62 
-----"-------"- "------

Denmark 71.0 30.7 20.0 72 57 35 
England & Hales 56.9 29.9 21.7 62 47 27 
Netherlands 40.0 26.7 17.0 57 33 36 
Norway 44.4 28.8 17.7 60 35 39 
Scotland 76.8 37.6 26.5 65 51 30 
Sweden 45.9 21.0 15.3 67 54 27 
United States 55.7 29.2 25.3 55 48 13 

--------------- ---------------------"---

Rates per 1,000 live births. 

SOURCE: Helen C. Chase, "International Comparision of Perinatal and 
Infant Mortality: The United States and Six West European 
Countries," Vital and Health Statistics, Series 3, No.6, 
pp. 1-97, U.S. Government Printing Office. 
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Table 3. Fetal mortality rates* and percent reduction, selected 
countries, 1955 and 1963 

Fetal Mortality Rates . Percent 
Country 1955 1963 Dlfference Rd' e uctlon 

Denmark 17.9 11.4 6.5 36.3 
England & Wales 23.2 17.2 6.0 25.9 
Netherlands 17.0 14.3 2.7 15.9 
Norway 14.9 12.6 2.3 15.4 
Scotland 24.6 19.1 5.5 22.4 
Sweden 16.7 12.0 4.7 28.1 
United States 12.6 11. 3 1.3 10.3 

*Fetal deaths of 28 or more weeks of gestation. Rates per 1,000 

SOURCE: Helen C. Chase, ibid 

Table 4. Fetal and infant mortality and percent reduction, United 
States, 1960 and 1970 

1960 

Fetal death rate 
15.8 (20 weeks + gestation) 

Neonatal mortality rate 18.7 

Postneonatal mortality rate 7.5 

lnfant mortality rate 26.0 

Fetal death ratio 16.1 

Maternal mortality rate 
37.1 (per 100,000) 

Rates per 1,000 

1970 

14.0 

15.1 

4.9 

20.0 

14.2 

21.5 

Difference 

1.8 

3.6 

2.6 

6.0 

1.9 

15.6 

Percent 
Reduction 

11.4 

19.3 

34.7 

23.1 

11.8 

42.0 
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3. Adjustment of Rates 

Specific death rates presented in Section 3 are essential in 

mortality analysis. Individually, these rates describe mortality experience 

within respective categories of people. Collectively, they represent a 

mortality pattern of the population in question. When a collective measure 

of mortality of an entire population is required, specific rates provide 

the fundamental components. One of the central tasks in statistical 

analysis of mortality data is making comparisons of experiences of various 

communities or countries; summarization of specific rates in a single 

number is extremely important. Since age-sex distribution varies from one 

community to another, and from one country to another, adjustment for such 

variation will have to be made in summarizing specific rates. The resulting 

single figure is called the adjusted rate. Adjustment can be made with 

respect to age, sex, occupation and possibly others. For simplicity, we 

shall consider only age-adjusted rates. Adjusted rates for other variables, 

such as sex-adjusted rates, age-sex-adjusted rates, etc., can be computed 

similarly. Various methods of adjustment have been proposed; some of these 

are listed in Table 5. It is the purpose of this spction to review them. 

But first, let us introduce some notations. 

In the adjustment of rates, two populations are usually involved: 

A community, u, during a calendar year (the population of interest) and a 

standard population, s. For each age interval (xi,x
i
+

l
) in the community, u, 

let Dui be the number of deaths; Pui ' the midyear population; Mui' its specific 

death rate; and let ni = xi+l-xi be the length of the interval. 

The sum 

L D . 
i Ul 

D 
u 

is the total number of deaths occuring in the community during the 

(3. 1) 
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calendar year. The sum 

L P . 
i u~ 

P (3.2) u 

is the total midyear population. For the standard population, the symbols 

D ., P ., M ., D and P are defined similarly. These symbols are similar 
s~ s~ s~ s s 

to those used in Section 1 except for the addition of the subscripts u and s. 

Table 5. Age-adjusted death rates and mortality indices 

Title 

Crude death rate (C.D.R.) 

Direct method of adjustment (D.M.D.R.) 

Comparative mortality rate (C.M.R.) 

Indirect method of adjustment (I.B.D.R.) 

Life table death rate (L.T.D.R.) 

Equivalent average death rate (E.A.D.R.) 

Relative mortality index (R.M.I.) 

Mortality index ( M.I.) 

Standardized mortality ratio (S.M.R.) 

Formula 

[p M 
__ B_i_uL_ 

P 
B 

(DS/P B ) (D/Pu ) 

[p 1M 1 Ip 
u B U 

[niM ui 

P 
U 

EP .M i 
u~ u 

Reference 

Linder, F. E. and 
Grove, R. D. (1943) 

"The Registrar General's 
Statistical Revies of 
England & Wales for the 
Year 1934" 

Ibid 

'~he Resistrar General's 
Decennial Supplement, 
England and Wales, 1921, 
Part III." 

Brownlee, J. (1913) (1922) 

Yule, G. u. (1934) 

Linder, F.E. and 
Grove, R. D. (1943) 

Yerushalmy, J. (1951) 

"The Registrar General's 
Statistical Review of 

England and Wales, 1958 
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3.1. Crude death rate. As was mentioned in Section 1, the crude 

death rate is the ratio of the total number of deaths occurring in a 

community during a calendar year to the community's total midyear population: 

C.D.R. = D Ip 
u u 

The crude death rate, which is the most commonly used and conveniently 

computed single value, bears a close relationship to age-

specific death rates. The numerator in (3.3) is the sum of the number 

of deaths occurring in all age categories: 

D 
u 

L D . 
i Ul 

(3.3) 

(3.4) 

By definition, the age-specific death rate for age interval (xi,xi +l ) is 

given by 

M . D ./p . 
Ul Ul Ul 

so that the number of deaths (D .) is the product of the age-specific 
Ul 

death rate (M .) and the corresponding midyear population (P .): 
Ul Ul 

D . 
Ul 

P .M . 
ul Ul 

Therefore, the total number of deaths in (3.4) may be rewritten as 

D 
u 

L P .M . 
i Ul Ul 

Substituting (3.7) in (3.3) yields 

P '. 
C.D.R. L~M 

i Pu ui 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where the summation is taken over the entire life span. Thus the C.D.R. 

is a weighted mean of age-specific death rates with the actual population 
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proportions P ./p experiencing the mortality used as weights. From this 
Ul u 

viewpoint, the C.D.R. is the most meaningful single figure summarizing the 

mortality experience of a given population. 

The C.D.R., however. is not without deficiencies. The quantity on 

the right-hand side of (3.8) is a function of both the age-specific death 

rates and the age-specific population proportions. As a weighted mean of 

age-specific death rates, the C.D.R. is affected by the population 

composition of the community in question. This disadvantage becomes 

apparent when the C.D.R. is used as a common measure to compare the mortality 

experience of several communities. The example in Table 6 il1ustrates 

this point. 

Table 6. Age-specific death rates and crude death rates for 
communities A and B. 

Community A Community B 

Rate Rate 
Popu- per Popu- per 

lation Deaths 1000 1ation Deaths 1000 

Children 10,000 80 8.0 25,000 250 10.0 

Adults 15,000 165 11.0 15,000 180 12.0 

Senior 
citizens 25,000 375 15.0 10,000 160 16.0 

Total 50,000 620 12.4 50,000 590 11.8 

Although the age-specific death rate for each age group in Community A 

is lower than that for the corresponding age group in Community B, the 

crude death rate for Community A, (12.4'1, is higher than that for Community B 



- 32-

(11.8). This inconsistency is explained by differences in the population 

composition of the two communities. Community A consists of a larger 

percentage of older people, who are subject to a high mortality and 

contribute more deaths. As a result, Community A's overall crude death 

rate is higher than that of the more youthful Community B. 

3.2. Direct Method Death Rate (D.M.D.R.). One way of adjusting for 

peculiarities of population composition is to introduce a standard population 

common to all the communities. When the age-specific death rates of a community 

are applied to such a standard population, we obtain a death rate adjusted 

by the direct method: 

P . 
D.M.D.R. = l: ~ M 

P ui 
i s 

(3.9) 

The D.M.D.R. is thus a weighted mean of the age-specific death rates M . of a 
Ul 

community with standard population proportions, P ./p , applied as weights. 
. Sl S 

If formula (3.9) is rewritten as 

l: P .M . 

D.M.D.R. 
i Sl Ul 

P 
s 

(3.10) 

the numerator becomes the number of deaths that would occur in the standard 

population if it were subject to the age-specific rates of the community. 

The ratio of the total "expected deaths" to the entire standard population 

yields the D.M.D.R. However, the D.M.D.R., as well as other age adjusted 

rates which follow, is not designed to measure the mortality experience of 

a community. It is simply a means for evaluating mortality experience of 

one communitv relative to another. An age-adjusted rate should be 

considered with this understanding. 

Computation of the D.M.D.R. based on the example in Table 6 is 

given in Table 7. In this illustration, the combined population of the two 
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connnunities is used as the standard population shown in column (1) in 

Table 7. The age-specific rates in the two connnunities are recorded in 

columns (2) and (3), respectively. Each of the specific rates is then 

applied to the standard population in the same age group to obtain the 

number of deaths expected in the standard population shown in columns (4) 

and (5). Summing these expected numbers of deaths over all age groups 

yields the total number of deaths, 1,135 and 1,270, respectively. Hhen 

the total number of deaths is divided by the total standard population, we 

obtain the D.M.D.R. 

Table 7. Direct method age-adjusted rates for Communities 
A and B 

Standard Age Specific Rates Expected No. of Deaths 
Population 

Connnunity A Community B Connnunity 

(1) (2 ) (3) (4) 

35,000 8.0 10.0 280 

30,000 11.0 12.0 330 

35,000 15.0 16.0 525 

100,000 ~ ~ 1,135 

Adjusted Rate: Connnunity A 
Connnunity B 

11.35/1,000 
12.70/1,000 

A Community 

(5) 

350 

360 

560 

1,270 

B 

Using a single standard population, the direct method of adjustment 

eliminates the effect of differences in age-composition of the communities 

under study; the result nevertheless depends upon the composition of the 

population selected as a standard. When connnunities with very different 

mortality patterns are compared, different standard populations may even 

produce contradictory results. In computing the age-adjusted rate for the 

1940 white male population of Louisiana and New Mexico, Yerushalmy (1951) 
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found that the age-adjusted rate for Louisiana (13.06 per 1,000) was 

slightly higher than the rate for New Mexico (13.05 per 1,000) when the 

1940 u.s. population was used as the standard; but the rate for Louisiana 

(10.14 per 1,000) was lower than the rate for New Mexico (11.68 per 1,000) 

when the 1901 population of England and lva1es was used as the standard. 

This kind of dilemma has led to the development of other methods of 

adjustment. 

3.3. Comparative Mortality Rate (C.M.R.). In this method of 

adjustment, both the age composition of the community and that of the 

standard population are taken into account. The formula is 

C.M.R. [P. P'J ~ ~ p~1 + p:1 M . 
U1 

(3 .11) 

Easy computations show that the first sum is the crude death rate of the 

community, 

P . 
l: u1 M 

P ui 
i u 

D . 
= L: U1 

• P 
1 U 

D 
u 

P 
u 

while the second sum is the direct method death rate. Thus the C.M.R. 

is simply the mean of the C.D.R. and D.M.D.R. Using the previous example 

once again, we find 

C.M.R. (community A) ~(12.4 + 11.35) 11.87 

C.M.R.(community B) = ~(11.8 + 12.70) = 12.25 
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3.4. Indirect Method Death Rate (I.M.D.R.). In the age-adjusted rate 

by the indirect method, the crude death rate of the community is mUltiplied 

by the ratio of the crude death rate of a standard population to the death 

rate that would be expected in the standard population if it had the same 

composition as the given communit~-I The formula for the I.M.D.R. is 

I.M.D.R. 
D Ip 

s s 
L: P .M ./p 
i Ul Sl U 

D 
u 

P 
u 

The denominator of the first factor in (3.12) 

P .M . 
Ul Sl 

P 
u i 

(3.12) 

is in effect a D.M.D.R. when the position of a community and a standard 

population is interchanged: the age-specific death rates of a standard 

population (M .) are applied to a community population (P .). 
Sl Ul 

When the population composition of a community and a standard 

population are the same, so that 

P . P . 
Ul Sl 

P P 
u s 

for every interval (xi ,xi +1), then the first factor in (3.12) becomes unity, 

D Ip 
s s 

L: P .M ./p 
i Ul s l_ U 

L: P .M ./p 
. Sl Sl S 
1 

L: P .H . II' 
i Ul Sl U 

1 , 

and the I.M.D.R. is equal to the C.D.R. of the community. If a community 

should have a higher proportion of old people than the standard population, 

then for the old age group 

II 
- A method suggested by Herald Westergaard is also used in the study of 

death rates. Westergaard's formula, however, can be derived froTI! the 
indirect method and vice versa. 
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and the crude death rate of the community will be greater than the I.M.D.R. 

where 

Formula (3.12) can be written also as 

D 
I.M.D.R. 

__ --=.s_ _ __ D 
0: P .M .)P u 

w. 
1 

i U1 S1 S 

= L wiM . 
i U1 

D 

(L. P ~M--.)-P- Pui 
i U1 S1 S 

L. P .M . 
i U1 \11 

Here the weights w. do not add to unity unless the community and the 
1 

standard population have the same composition. Therefore, generally 

the I.H.D.R. is not an average of the specific death rates, and is not 

directly comparable with the C.D.R. or the D.M.D.R. 

0.13) 

(3.14) 

One advantage of the indirect method of adjustment may be noted. 

Since only the total number of deaths in a community (D ) is in the formula, 
u 

this method of adjustment requires less information from a community than 

the direct method. 

3.5. Life Table Death Rate (L.T.D.R.). Most of the methods of 

adjustment rely on a standard population or its rates. One exception is the 

L.T.D.R. which is defined as 
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L.T.D.R. (3.15) 

where L. is the number of years spent in (x.,x.+
l

) by a life table population and 
111 

(3.16 ) 

A full appreciation of this method of adj ustrnent requires the blO,,:ledge of 

the life table discussed in Chapter 5; a brief discussion of formula 

(3. L5) follows. Given ~o people alive at age 0 who are subject to the age­

specific death rates of the community, Li/TO is the proportion of their 

life time spent in the age interval (xi,x
i
+

l
). In other words, the L.T.D.R. 

shown in formula (3.15) is a weighted mean of the age specific death 

rates (Mui ) with the proportion of life time spent in (xi,x
i
+

l
) being used 

as weights. Since the weights Li/TO depend solely on the age-specific 

death rates, the L.T.D.R. is independent of the population composition either 

of a community or a standard population. 

As we will see in Chapter 5, lhe age specific death rate M . is equal 
Ul 

to the ratio d./L., 
1 1 

M. d .IL. 
Ul 1 1 

hence 

L.M i = d. 
1 U 1 

where di is the life table deaths in age interval (xi,x
i
+

l
). The sum, 

is equal to the total number of individuals ~O at age O. Substituting 

(3.17) in (3.15) and recognizing (3.18), we have 

(3.18) 
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i 

The inverse 
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is known as the (observed) expectation of life at age 0; therefore 

L.T.D.R. 
1 

=­
A 

(3.19) 

(3.20) 

(3.21) 

3.6. Equivalent Average Death Rate (E.A.D.R.). In this method of 

adjustment each age-specific rate is weighted with the corresponding 

interval length rather than the number of people for which the rate is 

computed. In formula, it is: 

E.A.D.R. = E 
i 

n. 
1 

~ Mui 
i 1 

(3.22) 

where n. = x.+l-x .• The last age interval is an open interval, such as 
111 

60 and over, and the corresponding death rate is usually high. An upper 

limit must be set for the last interval in order to prevent the high death 

rate of the elderly from asserting an undue effect on the resulting adjusted 

rate. G. U. Yule, the original author of the index, suggested that the 

limit of the last age interval be set at 65 years. It may be observed 

that since there are fewer people in the old age group, the E.A.D.R. 

places more emphasis on old ages than the C.R.D. or the D.M.D.R. 
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3.7. Relative Mortality Index (R.M.I.). The basic quantities used 

in the relative mortality index are the ratios of specific rates of a 

community to the corresponding rates of a standard population. The index 

is a weighted mean of these ratios, obtained by using the community age-specific 

population proportions as weights. The formula for the R.M.I. is 

P . 
R.M. I. 

Ul 
2: P 
i u 

M • 
Ul 

M. 
Sl 

• (3.23) 

The R.M.I. strongly reflects the mortality pattern of young age groups where 

small changes in the specific rates may produce large differences in the value 

of the index. 

When (3.23) is rewritten as 

R.M.I. 1 
P 

u 
2: 
i 

D . 
Ul 

t1 . 
Sl 

we see that the R.M.I. may be computed without knowledge of the community's 

population by age. 

3.8. Mortality Index (M.I.). This index is also a weighted average 

of the ratios of community age-specific death rates to the corresponding rates 

of a standard population. It differs from the relative mortality index 

in that the weights used here are the lengths of age intervals. The formula for 

the index is 

M. I. 

M. 
Ul 

2:n. 
1 M . 

l:n. 
1 

Sl (3 .24) 

Generally, the M.I. is affected more by the death rates in old age groups 

than is the R.M.I. A main feature of this method is that, for intervals of 

the same length, a constant change of the ratio M ./M . has an equal effect 
Ul Sl 

on the value of the index. 
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3.9. Standardized Mortality Ratio (S.M.R.). The General Register 

Office of Great Britain has used the S.M.R. in the Statistical Review of 

England and Wales since 1958. It is a ratio of the number of deaths 

occurring in a community to the eXptOcted number of deaths in the community 

if it were subject to the age-specific rates of a standard population. In 

f Ofmu la, 

L: D 
ui P i L .M 

Ul ui (3.25 ) S.M.R. 
I P .M = --.----

\' P .N 
i 

ul si til si 

Since the numerator is the total deaths in the cOIilmur.ity, (3.25) can be 

rewritten as 

S.M.R. 

or 

S.H.R. 

D 
u 

TP-:M-. 
Ul 51 

i 

Thus, the S .• ·;.E. is the crude death rate d a conununi::y divided by the 

(3.26) 

(3.27) 

direct method death rate .hen • standard populat ion ap,e-specific death rates 

arc applied to a cormnunity population. 



- 41 -

CHArTER 3 

STANDARD ERROR OF MORTALITY RATES 

1. Introduction 

An age-specific death rate is a measure of the mortality experience of 

a defined population group over a given period of time. ~ age~adjusted 

death rate,as a function of age-specific rates, is designed to summarize 

the mortality experience of an entire population for the purpose of couparinr 

it with that of other populations. As with any observable statistical ~uantity, 

both the specific rate and the adjusted rate are subject to random variation 

(random error) and any expression of the rates must take this variation into 

account. A measure of the variation is the standard deviation, or the standard 

error, of a rate. We need the standard deviation in order to use the rates in 

estimation, for testing hypotheses, or for making other statistical inferences 

concerning the mortality of a population. With the standard deviation one can 

assess the degree of confidence that may be placed in the findings and conclusions 

reached on the basis of these rates. With the standard deviation one can also 

measure the quality of the vital statistics and, in fact, evaluate the reliability 

of the rates themselves. 

Since a death rate is often determined from the mortality experience 

of an entire population rather than from a sample, it is sometimes argued 

that there is no sampling error; and therefore the standard deviation, if it 

exists, can be disregarded. TIllS point of view, however, is static. 

Stat istically speaking. human life· is a random experiment and its outcome, 

su'rvi valor dea th, is subj ec t to chance. If two people were subj ected to the 

same risk of dying (force of mortality) during a calendar year, one might die 

during the year and the other survive. If a person was allowed to relive .the year 
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he survived the first time, he might not survive the second time. 

SiIr.llarly, if a populntion were allowed to live the same year over again, 

the total number of deaths occuring during the second time would assume a 

different value and so, of course, would the corresponding death rate. It 

1s in this sense that a death rate is subject to random variation even 

though it is based on the total number of deaths and the entire population. 

From a theoretical viewpoint, a dea~h rate is an estimate of certain 

functions of the force of mortal'lty acting upon each individual ,and may 

assume different values .with correspondingly different probabilities, even 

if the force of mortality remains constant. Therefore, it is natural and 

meaningful to study the standard deviation of a rate. 

'\i,c-specific death r:lte~, when they are determiner! from a sample, are suh.1cct 

to samrlinr. variation in addition to random v:triati0n. The standard deviation of 

a death rate assumes different forms, depending upon the sampling unit and sampling 

procedure used. But generally it consists of two components: one due to sampling, 

RnQ the other due to experimentation (the chance of mJ~vlvtng t,h. ~.~}. The 

standard deviation of a death rate based on a sample will be discussed 1n Section 4. 

At present, we will discuss the standard deviation of death rates subject to random 

ve!"iation only. 

REMARK. The terr.1S "standard deviation" (of a death rate) and 

"standard error" (of a death rate) have the same meaning. They are 

the square root of the variance (of a death rate), and both are commonly 

used in statistics and in mortality analysis. To acquaint the reader with 

both terms, we shall use "ftandard deviation" and "standard error" 

alternately in this manual. 
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2. The Binomial Distribution 

The basic concept used in application of statistical inference to death 

rates is the binomial distribution and the central limit theorem. Consider 

a sequence of independent trials, each trial having either of two possible 

outcomes, 1. e., "success" or "failure," with the corresponding probabilities 

remaining the same for all trials. Such trials are called Bernoulli trials. 

Tossing a coin is a familiar example: each toss of a coin constitutes a trial 

(a random experiment) with either of two possible outcomes, heads or tails. 

A person's life over a year is another example with the corresponding outcomes 

of survival or death during the year. The binomial random variable is the 

number of "successes" in a number of independent and identical trials, each 

trial can result either in a "success" or a "failure" and the probability of 

a "success" is the same for all trials. Thus a binomial random variable is 

the number of "successes" in a number of Bernoulli trials. The number of 

heads shown in a number of tosses of a coin is a binomial random variable. 

If N. people alive at exact age x. are subject to the same probability q. 
1. 1. 1. 

of dying in the age interval (x ,x ), the number of people D. dying in i HI . 1. 

the interval is also a binomial random variable. The expected number of 

deaths, denoted by E(D.) is 
1. 

and the variance of D i is 

N.q .(l-q.). 
1. 1. 1. 

The proportion of deaths, or the binomial proportion, 

(2.1) 

(2.2) 

(2.3) 
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is an unbiased estimate of the probability qi in the sense that its expected 

value is equal to qi 

The variance of qi' which may be derived from (2.2), is given by 

2 1 
°A. • N: q (l-q ). 

"il iii 

When the probability qi is unknown, its estimate qi is substituted in (2.5) 

to give the "sample" variance of q., 
1 

l'" ~ = -N 4· (l-q.) 
.1.1 
1 

Both the variance in (2.5) and the sample variance in (2.6) are measures 

of variation associated with the proportion qi and play an important role 

(2.4) 

(2.5) 

(2.6) 

in making inferences concerning the unknown probability qi' The fundamental 

theorem needed in this situation is the central limit theorem. According 

to the theorem, when Ni is sufficiently large, the standardized form of the 

random variable q., 
1 

z 
/q. (l--~-/N .--
111 

has the standard normal distribt.tion with a mean of zer·) and a variance of 

one. 

(2.7) 
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1\ 
Formula (2.7) expresses the deviation of the random variable qi from its 

expected value q. in units of the standard deviation OA. Using formula 
1 qi 

(2.7), one can t est a hypothesis concerning the probability q. or 
1 

estimate q. by means of a confidence interval. 
1 

Suppose a study of infant mortality in a community suggests a 

decline in infant deaths. A hypothesis cunc~rning the probability of death 

in the first year of life, qo = .028 (or.28 per 1,000), is to be tested 

against an alternative hypothesis qo < .208. The statistic used to test 

the hypothesis is the quantity in (2.7) with the substitution of qo = .028, 

or 

A 

z 
qo - .028 

--- (2.8) 
1(.028)(1-.028)/N

O 

where NO' the number of newborns in the study and qo = DO/NO' the proportion 

of infant deaths, can be determined from the data observed, and the quantity 

in (2.8) can be computed. Rejection or acceptance of the hypothesis qo = .028 

is based on the computed value of (2.8). At the 5% level of significance, 

for example, the hypothesis is rejected if the computed value of Z is less 

than -1.645, the fifth percentile in the standard normal distribution. 

One may also use (2.7) and the normal distribution percentiles to 

determine confidence intervals for the probability q .• For a .95 
1 

confidence coefficient, for example, we use the 2.5 percentile of -1.96 and 

the 97.5 percentile of +1.96. This means that 

pd-1. 96 < < 1. 96} .95 (2.9) 
,----;----

v" q . 0-q . ) /N . 
111 

The inequalities inside the braces are approximately equivalent to 

ql. - 1.96 SA < q. < ql. + 1.96 SA 
qi 1 qi 

(2.10) 
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where the sample standard deviation, S~ ,is the square root of the variance 
qi 

in (2.6). The inequalities in (2.10) provide the fundamental formula for the 

95% confidence interval for the probability qi. 

3. Probability of Death and the Age-specific Death Rate 

The probability of death and the age-specific death rate are two 

measures of the risk of mortality acting on individuals in the population. 

While the probability of death is an established concept in the field of 

statistics, analytic meaning of the age-specific death rate is not fully 

appreciated. The age-specific death rate either is regarded as an ill-defined 

statistical quantity, or else it is treated as if it were another name for the 

probability of death. These misconceptions need be corrected. The age-specific 

death rate is just as meaningful analytically as the probability. The exact 

meaning of the age-specific death rate and its relationship with the probability 

of death have been given in Chapter 2 and will be discussed in more detail in 

Chapter 5. For easy reference, we state again the estimate of the probability and 

the age-specific death rate below. 

Let Ni be the number of individuals alive at the exact age Xi' among them 

a number Di dying during the interval (xi' xi +1). Then the estimate of the 

probability of dying in (xi' xi +1) is given by (cf. equation (2.3», 

A Di 
qi - Ni 

(3.1) 

On the other hand, the age-specific death rate, Mi , is the ratio of the number of 

deaths, Di' to the total number of years lived in the interval (xi' xi +1) by the 

Ni people. In formula 

M -i 
(3.2) 

A 
Solving equations (3.1) and (3.2) yields the basic relationship between qi and Mi 
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• (3.3) 

Here ni - xi +1- xi' and a i is the average fraction of the age interval (xi' xi +1) 

lived by individuals dying at any age included in the interval. The fraction ai 

has been computed for a number of countries whose population and mortality data 

are available; the values of ai are given in Appendix V. 

For a current population, the age-specific death rates are determined 

from the vital and population statistics, 

M • i 
(3.4) 

where Di is the number of deaths occurring in age group (xi' xi +1) during a 

calendar year and Pi is the corresponding mid-year population. The probability 

of death is computed from formula (3.3). 

A 
To determine the variance of qi' we start with formula (2.6) 

(2.6) 

Since equation (3.1) implies that 

wehave the desired formula for the sample variance of 

1 A2 (1 A ) • ---- q -q 
Di i i 

(3.5) 

The exact formula for the variance of the age-specific death rate is 

difficult to derive. However, since the population size Pi in (3.4) usually 

is large, we use Taylor's expansion to establish the following relationship 

between the variance of Mi and the variance of Di : 
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2 1 2 
S • -2- SD ' 
Mi Pi i 

(3.6) 

where the sample variance of Di is 

(3.7) 

Substituting formula (3.7) in (3.6) yields the required formula for the sample 

variance of the age-specific death rate 

(3.8) 

~len &1 is very small so that l-&i is close to one, formulas (3.5) 

and (3.8) may be approximated by 

(3.9) 

and 

(3.10) 

respectively. 
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4. The Death Rate Determined from a Sample 

It should be emphasized that although N. and p. in the above discussion 
1 1 

both refer to the numbers of people in a population, the formulas of sample 

variances of qi and Mi in (3.5) and (3.8) hold also when Ni and Pi are the 

numbers of people in a sample. To verify this, suppose a random sample of 

N people is taken from an entire population. In the sample there are Nt 

*/ people of age xi' Di of whom die during the year, and-

D. 
1 

N. 
1 

(4.1) 

is an estimate of the probability qi' We are interested in the sample variance 

of q .. In formula (4.1) both the numerator and the denominator are random 
1 

variables; N. is subject to sampling variation in the sense that the number 
1 

of people of agex. included in the sample varies from one sample to another, 
1 

while D. is subject to sampling variation and random variation (survival 
1 

or death during the year). The formula for the variance of the ratio in 

(4.1) thus can be expressed in terms of the variance of N. and of D .• 
1 1 

However, the variance of D. consists of two components: the random component 
1 

~ 

and the sampling component. The derivation of the variance of qi through 

the variance of Di is lengthy. To save space, we use the following simpler 

approach to derive the variance of qi directly. 

It is easy to verify that given Ni the conditional expectation and 

A 
conditional variance of qi are, respectively, 

and 

~I For simplicity in demonstrating our reasoning, but at the expense of a 
certain degree of reality, we assume Ni people of exact age xi' 

(4.2) 

(4.3) 
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On the other hand, because of (4.2), the variance of qi is equal to the 

expected value of the conditional variance of q. given N., 
1 1 

Substituting (4.3) in (4.4) gives 

Using the sample information, we obtain the sample variance of qi 

~ (l_qA) 1 ... 2 " 
.... , '1 = - q (l-q.) 
N 1· 1· D. i 1 

i 1 

since Ni is given in (4.1). This shows that although qi in (4.1) is 

computed from a sample, its sample variance has the same expression as the 

variance of qi based on a total population. It is easy to justify now that 

the variance of the age-specific death rate in (3.8) holds true also when 

the death rate is computed on the basis of a sample. 

(4.4) 

(4.5) 

(4.6) 
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5. Age-Adjusted Death Rates and Mortality Indices 

In Chapter 2 several methods of adjustment of age-specific death 

rates were presented. Although each method was developed on the basis of 

a specific philosophic argument and designed to serve a definite purpose~ 

they all assume a general form of a weighted mean of the age-specific 

death rates. These methods of adjustment are reproduced in Table 1 for 

easy reference. 

With the exception of the indirect method of adjustment, the weights 

add to unity. The sum of the weights in the indirect method can be greater 

or less than unity, depending upon the difference between community and 

standard populations in age composition. For this reason, the indirect 

method is not strictly comparable with any other adjusted rate, and neither 

is its standard error. 

The inclusion of the crude death rate in the list of adjusted rates 

is of significance. Since it is usually expressed as the ratio of all 

deaths to the total midyear population, the crude death rate is occasionally 

treated as a binomial proportion, which leads to an incorrect formula for 

the standard deviation. Individuals differing in age and sex obviously 

do not have the same probability of dying, and the notion of an average 

probability is incomprehensible; therefore, a direct application of the 

binomial theory is inappropriate. If, however, it is visualized as the 

weighted mean of specific death rates, with the actual population size 

employed as weights, then the crude death rate is perhaps the most meaningful 

measure of mortality for a single community. This way of viewing the 

crude rate is also essential in the derivation of its standard deviation. 

In all the adjusted rates, the choice of weights applied to specific 

rates is based on: (1) the proportion of those in a specific age group 
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to the total population, i.e., population proportion, and (2) the relative 

interval length of a specific age group. For the crude rate, the weights 

used are the community population proportions in specific age groups 

(P ./p ); for the direct method of adjustment, the standard population 
Ul u 

proportions in specific age groups (P ./p ); for the comparative mortality 
Sl s 

rate, the average of the two population proportions; for the life table 

death rate, the life table population proportions for specific age groups 

(Li/TO); and for the equivalent average death rate, the relative interval 

lengths of the age groups (n./Ln.). The weights used in the indirect method 
·11 

of adjustment are functions of the age-specific rate for the standard 

population, community population proportions, and standard population proportions. 

The methods of adjustment listed in Table 1 also include two indices, 

the relative mortality index, the mortality index, and the standardized mortality ratio. 

As seen from the second panel of Table 1, the two indices are weighted means of the 

ratios of a community's specific death rates to the corresponding specific rates for 

the standard population. The difference is that the relative mortality 

index uses the population proportions of the community for specific age 

groups as weights, while the mortality index uses the relative lengths of the 

age intervals. In the derivation of their standard deviations, however, 

we shall consider them as linear functions of age-specific death rates of 

a community with coefficients as listed in the weight column. 
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Table 1. Formulas and weights used to compute the crude death 
rate, age-adjusted rates and mortality indices 

----------------------

Title Formula 
I.[eight (w.) 

_________________ t ____ _ 

Crude death rate (C.D.R.) 

Direct method of adjustment (D.M.D.R.) 

Comparative mortality rate (C.M.R.) 

Indirect method of adjustment (I.M.D.R.) 

Life table death rate (L.T.D.R.) 

Equivalent aVerage death rate (E.A.D.R.) 

Relative mortality index (R.M.I.) 

Mortality index (.M.I.) 

Standardized mortality ratio (S.M.R.) 

( 

p P 
~[ ~+~)M 

P P ul 
u 8 

rLiHui 
rL

i 

rniMlii 
rn! 

P -u 

_ PUi _ 

P 
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P 
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( 

p P 
~ pUi+

p
9i) 

u 8 

D /p 
8 8 

Li 
[L

i 

n
i 

tn1 

P M i u 8 



- 54-

6. Sample Variance of the Age-Adjusted Death Rate 

To derive the formula for the sample variance of an adjusted death rate, 

it is first essential to identify the random variables involved. Clearly, 

M ., the age-specific death rates for a community, are random variables while 
Ul. 

n i , the interval length for an age group, is a constant. Community and standard 

population proportions for specific age groups will not be treated as random 

variables for the reason that the random event under study is death, not popu-

1ation. The age-specific death rates of the standard population are random 

variables, just as are the-community age-specific death rates. However, since 

adjusted death rates are derived for the purpose of testing hypotheses con-

cerning the mortality experience of communities, only that part of the random 

variation associated with the communities in question should be taken into 

consideration. In other words, random variations attributable to the age-

specific rates for the standard population should not be included in the 

variance of the adjusted rates. Life table t>opuiation proportions, on the 

other hand, are derived from the age-specific death rates for a community; 

therefore, they should be treated as random variables. To summarize, we 

shall consider only the community age-specific death rates and the life 

table population proportions for specific age groups as random variables 

in the derivation of the sample variance. 

With this understanding, and making an exception of the life table death 

rate, we shall write adjusted rates and mortality indices as linear functions 

of the basic random variables, the age-specific death rates of a community. 

The general formula fo; an adjusted death rate or mortality index R takes 

the form 

R = LW M (6.1) 
. i ·ui 
l. 

with the coefficient wi as given in Table 1. The general rules for the 
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variance of a linear function of random variables may now be applied and the 

variance of the adjusted rate, R, may be expressed as follows: 

where 

group 

~ 2 S2 + ~ ~ S 
L.. wi M L.. L.. wiw. M M 
i ui i:fj J ui' uj 

S2 is the sample variance of the age-specific death rate for age M . 
u~ 

(xi,xi +1) in the community u, and S 
M "M , 
u~ U] 

is the sample covariance 

between the age-specific death rates, M , 
u~ 

and M " 
UJ 

The age-specific 

estimated probability 

death rate, M " is a function of the corresponding 
u~ 

0\ 
of death, qi; and the covariance between death rates 

(6.2) 

is also a function of the covariance between the two corresponding estimated 

probabilities. It has been proved [cf. Section 5, Appendix II] that the 

estimated probabilities for two ~onoverlapping age intervals have a zero 

covariance. Thus, two death rates will also have a zero covariance. It 

follows that all the covariances in formula (6.2) will vanish,and the formula 

for the sample variance of R becomes 

Using (3.8) for the variance of M ., we have 
u~ 

Mui A 

(l-q .) 
p . u~ 
u~ 

or using the approximate formula, (3.10), we have 

MUi 

P . 
u~ 

(6.3) 

(6.4) 

(6.5) 
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7. Computation of the Sample Variance of the Direct Method Age-Adju~~~d 
Death Rate 

The computation of the samplf~ variance of the age-specific death 

rate is the common essential part to all the methods of adjustment except 

for the life table death rate. Therefore, it is sufficient to use only 

the direct method of adjustment (D.M.D.R.) as an example. The formula for 

the sample variance of D.M.D.R. is obtained from (6.4) with w. 
1 

[ ]

2 
p. M. 

S2 = L: ~ Ul 
R . P P. 

1 s· Ul 

A 

[l-q .] 
Ul 

P .ip 
Sl s 

(7.1) 

For this illustration, we use the death rates of the total California 

population of 1970,and the United States 1970 population as the standard 

population. The steps involved in the computation are shown in Tnbll.' 2. 

The age group 85 and over presents a problem which needs special 

treatment. Because it is an open-ended group, the interval length is not 

~eterminable. The average number of years, a
85

n85 , lived by individuals 

may be estimated by the reciprocal of the central death rate, 

(7.2) 

Justification of (7.2) is given in Appendix II (cf., equation (8» on life 

table construction. Equation (7.2) implies 

which means that the sample variance of M
8S

' as given in (3.8), is equal to 

zero. Intuitively, the zero variance can be justified as follows: Each 

individual alive at age 85 has a future life time of, say, y years. The 

sample variance of y is the mean-square devi~tion of each y from the sample 

mean. If in a group of individuals alive at age 85, the only information 
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available is that each y assumes an average of a
85

n
85 

years, then the 

deviation of each y from the sample mean is zero. The sample variance is 

also zero. This implies that the sample variance of M85 is zero. It may 

be noted also that q85 1 so that the variance in (3.8) is equal to zero. 

For each of the remaining age groups (x.,x. 1) we compute the sample 
1 1+ 

variance of the death rate M . [cf., equation (3.8)] 
Ul 

H 
ui (l-q .) 

P . Ul. 
Ul 

as shown in column (7) in Table 2 and the corresponding weight squared 

(P ./p )2 in column (8), and find the product 
Sl s 

M. "-
Ul (l-q .) 

P . Ul 
Ul 

Adding the products in (7.4) over all age groups, we obtain the sample 

variance of R in formula (7.1). 

(7.3) 

(7.4) 

For the California 1970 population the age-adjusted death rate is 

P . 
Sl 

P 
R == 2.: M . 

Ul 
s 

.1,787,768.98 
203,211,926 

.0087976 

The computation in Table 2 shows that the sample variance is 

S2 340.631 x 10-12 
R 

and the standard deviation is 

. 2 6 
SR = /340.631 x 10- = 18.456 x 10-

In comparison, the standard deviation SR is much smaller than the age-adjusted 

death rate. Formally, the magnitude of a standard deviation is measured by 

the coefficient of variatio~which is defined as the ratio 



Coeff. of variation of R 

In this case 

Coeff. of variation of R 
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.018456 
8.7976 

.0020979 = .21 percent 

(7.5) 

The small magnitude of the coefficient of variance is mainly due to the 

large population sizes P " 
Ul 

The age-adjusted death rate of 8.7976 per 1000 for the California 

1970 population may be compared with. the total United States population, 

1970, death rate, 9.453 per 1000, since both are based on the same population 

distribution. Because of the small standard deviation (SR = .018456 

per 1000), we conclude that in 1970 the California population had a 

significantly lower mortality than the United States as a whole. 
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Table 2. Computation of sample standard error of the age-adjusted death rate 
for total popu1ation~ California, 1970. 

(Adjustment made by the direct method. The standard population used is the total 
pomdation of the United States, enumerated as of April 1, 1970) 

Age Length Mid-
Interval of Papu1 

(in years) Interval in In 
(x. , 

1 

-------

year 
ation 
terva1 
x j +1) 

----+------ +----- --_.------,,---. 

ui n. P 
1 

x. to X i +l 1 

--.------
(1) (2) ( 3) 

------,._-

0-1 1 340 483 

1-5 4 1302 198 

5-10 5 1918 117 

10-15 5 1963 681 

15-20 5 1817 379 

20-25 5 1740 966 

25-30 5 1457 614 

30-35 5 1219 389 

35-40 5 1149 999 

40-45 5 1208 550 

45-50 5 1245 903 

50-55 5 1083 852 

5S-60 5 933 244 

60-65 5 770 770 

65-70 5 620 805 

70-75 5 484 431 

75-80 5 342 097 

80-85 5 210 953 

35+ 142 691 

--------------'-----

r-·------,----
Fractionl 
of Last 

Age 
Interval 

Death Rate of Life 

1---------.--- -" -.. --- ----.---

M 
ui 

a 
ui 

r-----------r-----

(4) (5) 
--t--o 

.OJB309 .09 

.000806 .4J 

.000377 .44 

.000374 .54 

. 001130 .59 

.001552 .49 

.001421 .5] 

.001611 . 52 

.002250 .53 

.003404 .54 

.005395 .53 

.008256 .53 

. 012796 .52 

.018565 .52 

. 027526 .51 

.039529 .52 

.062336 .51 

.095419 .50 

.157564 -

Proha b il ity 
of Dying 

in Interval 

-------
A 

qui 
----

(6) 
-----

.01801 

.00322 

.00188 

. 00187 

.00564 

• 0077 3 

.00708 

.00802 

. 01119 

.01689 

. 02664 

.04049 

.06207 

. 08886 

.12893 

.18052 

. 27039 

.38521 

1.00000 

----
Samp1 e-----r 

Varian ce Square of 
of Ag e StClnclard 

lC T'opulati.on 
ate n ro)1ortion 

Specif . 
Death R 

M ui A 

----(l-q 
P . 

(I1.S., 1970) 

. ) 
Ul 

Ul r--------·· 
10

12 s~ 
r-- .----------- ... --------

(7) (8) 
r------- .. -~-----

52805. 15 29415.50 

(d 6. 96 Lf52458.67 

196. 18 964404.79 

190. 10 1046618.41 

618 . 271 880681.46 

884 . 57 649012.63 

967. 98 439832.81 

1110 . 56 316393.25 

1934 . 63 298733.21 

2769. 03 347603.72 

4214 . 84 355480.49 

7308. 85 ~98580.84 

12860 . 25 i 240855.01 

21945 . 99 179800.97 

38622 . 55 118374.42 

66868. 60 71764.70 

132947 . 58 35611.87 

278083. 97 12636.07 

O. 00 5528.07 
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8. Sample Variance of the Life Table Death Rate 

The life-table death rate is a special case in that the weights L / LL , 
x x 

x 
as functions of the age-specific death rates, are themselves random variables 

and. are correlated not only with each other, but with the specific death rates 

as well. Obviously, a derivation of the sample variance of the life-table 

death rate based on the approach presented in the previous sections will 

involve a series of complicated and difficult computations. 

The derivation can be simplified by making use of the inverse relation-

ship between R, the life-table death rate, and eO' the observed expectation 

of life at birth: 

R = 
EL M 

x ux 
EL 

x 
(8.1) 

Employing the general rule on the variance of the inverse of a random variable, 

we have 

h 
Here the sample variance of eO' which may be found in Chapter 4, is 

= 
A2 2 

L POx [(l-a)n + e + ] 
x>o x x x nx 

Substituting (8.3) in (8.2) gives the required formula 

where 
A2 [l_qA ] 
qx X 

= ---------
D 

x 

as given in Section 3 • 

(8.2) 

(8.3) 

(8.4) 
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CHAPTER 4 

THI.: LIFE TABLE NlD ITS r:O'{ST~UCTl()\l 

An Historical :-.lote 

Long before the development of nodern probability and statistics, men 

,,,ere concerned with the length of I tfe and constructed tables to r.Jeasure 

longevity. Particular interest has been. expressed to the lonr,evity of famous 

persons or to individuals who were reported to have died at an extreme old 

age. A crude table, credited to the !!onan Praetorian Praefect Ulpianus, 

was constructed in the r.Jiddle of the third century A.D., and indicates an 

expectation of life of thirtv years. Rut si.nce its purpose was to serve 

as a hasis for determininr, annuitv prants, it is unlikely that it reflects 

mortality in the general population. Nevertheless, it continued in official 

use in northern Italy unti.l the end of the ei~hteenth centurv. .lohn Graunt's 

Bills of !lortality, published in 1662, and Edmund Halley's famous table for 

the city of Breslau, published in 1693, mark the bepinninp, of modern life 

tables. In Bills of "lortality, Craunt introduced the proportion survivin~ 

to various ages, while Halley's table already contained most of the columns 

in use today. ROUGh calculation of the average length of life from Graunt's 

data for seventeenth centurv London ~ives a fi~ure of 18.2 years, whereas 

Halley's estimate for nreslau near the end of the century was 33.5 years. 

T)uring the next hundred years several life tables ,.,ere constructed, including 

the French tables of Deparcieuy. (1746), of TIuffon (1749), of t·fourgue and 

i:>uvillard (both published in the 1790' s), the i{orthampton table of lUchard 

Price (1783), and in the United ~;tates l!igglesworth' s table for :1assachusetts 

and :Jew ~iampshire (1793). The first official English life table was published 

in 1843 during Willia~ Farr's term as Compiler of Abstracts in the General 
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Records Office. Several countries in Continental [urope have establ ished 

series of life tables dating back almost two centuries. S'ATeden, for exaT:1.~le, 

began a series of life tables in 1755, Netherlands in 1816, France in ]817, 

Norway in 1821, Germany in 1871 and S\vitzerland in 1~76. n.eliable 111ortalit'l 

statistics for the construction of United States life tables did not become 

available until 1900; from there J. vI. Glover, of the Bureau of the Census, 

determined that the expectation of life at birth was 46.07 years for males 

and 49.42 for females. 

1. Introduction 

The life table is largely a product of actuarial science, but itR annlica­

tion is not limited to the computation of insurance premiums. ~ecent advances 

in theoretical statistics and stochastic processes have made it possible to 

study the leugth of life from a purely statistical point of view, naldng 

the life table a valuable analytical tool for demo~raphers, epidcrniolo5;ists, 

physicians, and research workers in other areas of public health. 

There are two forms of the life table in r:eneral: the cohort (or 

generation) life table and the current lj fe tahle. In its strictest forT'1, 

a cohort life table records the actual mortality experience of a o'lrticular 

group of individuals (the cohort) from birth to the death of the last met:!ber 

of the group. The difficulties involved in constructin~ a cohort life table 

for a human population are apparent. Statistics coverinr; a period of 100 

years are available for only a few populations and even those are likely to 

be less reliable than current statistics. Individuals in a piven cohort 

may have emigrated or died unrecorded, and the life expectancy of a ~roup of 

people already dead is of little more than historical interest. However, 

cohort life tables do have practical applications in studying animal populations 

and have even been extended to access the durability of inanimate objects 

such as engines, electric light bulbs, etc. ~[odi fied or adapted cohort tables 
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have heen useful in epidemiological, sociological, and medical and para-

medical studies with human subjects. Extensive use of life table methods 

has been made in the analysis of chance and duration of patient-survival 

in studies of treatment effectiveness. These will be discussed in more detail 

with some examples in Chapter 9. 

The current life table, as the name implies, gives a cross-section view 

of the mortality and survival experience of all ages in a population during 

one short period of time, for example, the California population of 

1970. It is dependent entirely on the age-specific death rates prevailing 

in the year for which it is constructed. Such tables project the life span 

of each individual in a hypothetical cohort on the basis of the actual death 

rates in a ~iven population. When we speak of the life expectancy of an 

infant born in a current year, for example, .we mean the life expectancy 

that would be obtained if he were subjected throughout his life to the 
~ 

same age-specific mortalities prevailing in the current year. The current 

life table is then a fictitious pattern reflectin~ the mortality experience 

of a real population during a calendar year. However, it is the most effective 

means of summarizing mortality and survival experience of a population, and 

is a sound basis for making statistical inference about the population under 

study. The reader can no doubt confirm from his own experience that the 

current life table is a standard and useful tool for comparing international 

mortality data, and for assessing mortality trends on the national level. 

A current life table may be based on the deaths occurring over three, 

instead of one, calendar years; e.g., years 1969, 1970, 1971. For each age 

group the average number of deaths per year is then divided by the corres-
I 

ponding population size of the middle of the three years (1970, in this 

example) to obtain the age-specific death rate. Usually, the middle year 

is a census year, so that population figures are available and more accurate. 
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The advantage of such a table is to reduce the possible abnor"a1ities in 

mortality pattern which may exist in a single calendar ye~r. 

Data for constructinr, life tables are so~etiMes refined by praduation 

or other methods for smoothing or reducinr, the effect of extreme values. 

Techniques for refinement of life tah1e data were deve10red by acuaria1 

scientists. While refinement of data has its merit in smoothinr, data, it is 

difficult to make proper statistical inference of life tahle functions 

which is based on such information. 

This chapter will describe a ~enera1 form of the life tah1e uith inter­

pretations of its variau:::; functions and present a r:ethod of constructing a 

current life table. Theoretical aspects of life tah1e functions will he 

discussed in detail in Appendix II. 

Cohort and current life tables may be either complete or abridged. 

In a complete life table the functions are conputed for each year of life; 

an abridged life table differs only in that it deals Y1ith ap,e intervals 

greater than one year, except possibly the first year of the first five 

years of life. A typical set of intervals is 0-1, 1-5, 5-10, 10-15, etc. 
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2. Descrintion of the Life Table 

Cohort and current life tables are identical in appearance but different 

in construction. The following discussion refers to the complete current life 

table. The function of each column is defined and its relation to the other 

columns explained; conventional symbols have been modified for the sake of 

simplicity. The complete current life table for the California total population 

in 1970, presented in Table 2, will serve as an example. 

Column 1. Age interval, (x,x+l) -- As with the cohort table, each interval 

in this column is defined by the two exact ages stated except for the final 

age interval, ~l1hich iR open-enderl such as 85 and over. The starting point 

for the final age interval is denoted by w. 

Column 2. Proportion (of those alive at age x) dying in interval 

(x,x+l), q -- Each q is an estimate of the probability that an individual x x 

alive at the exact age x will die during the interval. These proportions are 

the basic quantities from which figures in other columns of the table are 

computed. They are derived from the corresponding age-specific death rates 

of the current population, using formulas that will be explained in the next 

section. To avoid decimals, the proportions are sometimes expressed as the 

number of deaths per 1,000 population, and the column is headed, "1000 q ." 
x 

Column 3. Number alive at age x, 9, -- The first number in this column, 
x 

10 , is an arbitrary figure called the "radix," while each successive figure 

represents the number of survivors at the exact age x. Thus the figures in 

this column have meaning only in conjunction with the radix 10 , and do not 

describe any observed population. The radix is usually assigned a convenient 

number, such as 100,000. Table 2 shows that 12 or 98,088 of every 100,000 

persons born alive will survive to the second birthday, provided they are 

subject to the same mortality experience as that of the 1970 California 

population. 
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Column 4. Number dying in interval (x,x+l), dx -- The figures in this 

column are the product of t and q and thus also depend upon the radix to' 
x x 

Again using the 1970 California experien~e, we see that out of to = 100,000 

born alive, dO = 1801 will die in the first year of life. Rut the number 1801 

is meaningless by itself, and is certainly not the number of infant deaths 

occurring in California in 1970. For each age interval (x,x+l), dx 

is merely the number of life table deaths. 

The figures in the columns t and d are computed from the values of 
x x 

qo' ql""'~ and the radix to by using the relations 

x=O,l, ••• ,w, (2.1) 

and 

t +1 - t -d , x x x 
x=O,l, ••• ,w-l (2.2) 

Starting with the first age interval, we use equation (2.1) for x=O to obtain 

the number dO dying in the interval (0,1) and equation (2.2) for x-O to obtain 

the number tl who survive to the end of the interval. With tl persons alive 

at the exact age 1, we again use the relations (2.1) and (2.2) for x-I to 

obtain the corresponding figures for the second interval. By repeated 

applications of (2.1) and (2.2) we compute all the figures in columns 3 and 4. 

Column 5. 
, 

Fraction of last year of life for age x, a -- Each of the d x x 

people who die during the interval (x,x+l) has lived x complete years plus 

some fraction of the year (x,x+l). The average of these fractions, denoted 

by a', plays an important role in the construction of life tables, and in 
x 

the theoretical studies of life table functions as presented in Appendix II. 

This will be explained more fully in the next section. 



- 67-

Column 6. ~lumber of years lived by the total co~ort in interval (x.x+l), 

L -- Each l'1emher of the cohort who survives the year (x,x+l) contributes one x 

year to L , while each memher uho clies durin~ the year (x,x+l) contrihutes. on , x 

the average, a fraction a I of a year, so that 
x 

L = (1 -d ) + a Id 
x x x x x x=O, 1, ••.• w-l, (2.3) 

where the first term on the rir:ht side is the numher of years lived in the 

interval (x,x+l) by the (1 -d ) survivors, anci the last teTlT! is the nllmber of 
x x 

years lived in (x ,x+l) by the d persons "7ho died during the interval. Hhen 
x 

a I is assumed to be 1/2 (which is usually the case for ar,es greater than 5), x 

then 

L x 
= Q, - ~ x 2 x 

The similarity of L to the concept of "person years" may be recognizeci by 
x 

the reader. 

Column 7. Total number of years lived beyond age x, T -- This total - x 

(2.4) 

is essential for computation of the life expectancy. It is equal to the sum 

of the number of years lived in each age interval be~inninr. lvith age x. or 

T 
x 

with an obvious relationship 

T 
x L + T l. x x+ 

x=O.l •••• ,w , (2.5) 

(2.6) 

Column 8. Expectation of life at a~e x. @ -- This is number of years, , x 

on the average, yet to be lived by a person now aged x. Since the total number 

of years of life remaining to the Q, individuals is T , 
x x 

x=O.l ••••• w. (2.7) 
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Each e summarizes the mortality experience of persons beyond a~e x in the 
x 

current population under consideration, maldn~ this column the most important 

in the life table. Further, this is the onlv column in the table other than 

<Ix and ax' that is meanin8ful without reference to the radix £0' As a rule, 

the expection of life e decreases as the a~e x increases, t.rith the sinf!le 
x 

exception of the first year of life where the reverse is true clue to the hir,h 

mortality during the first year. In the 1970 California population, 

for example, the expectation of life at birth is eO = 71.90 years whereas 

at age one el = 72.22 The symbol ex' denoting the observed expectation 

of life, is computed from the actual mortality data and is an estimate of 

1/ 
the true unknown expectation of life at a~c x.-

Remark 1: Useful quantities which are not listed in the conventional 

life table are 

the proportion of survivors over the age interval (x,x+l), and 
R, 

A AA A --Z 
Pxy - PxPx+l···Py-l = ~ , 

x 

the proportion of those living at age x who will survive to age v. Hhen 

e , 
x 

(2.8) 

(2.9) 

x-a, Pay becomes the proportion of the total born alive who survive to age 

y; clearly 
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3. Construction of the Complete Current Life Table 

In the construction of current life tables, we are mainly concerned 

with the computations of qx' the proportion dying in the age interval 

(x,x+l), and Lx' the number of years lived by the radix~f) in the interval 

(x,x+l). 

An important element in complete life table construction as described 

in this section is the fraction of the last year of life lived by those who 

die at each age; for example, a man who dies at age 30 has lived 30 complete 

years plus a fraction of the 31st year. The average value of this fraction 

is denoted by a' where x refers to the age at the last birthday. It might x 

reasonably be expected that the average value of this fraction is equal to 

one half on the assumption that there are as many deaths at 30 years plus 

one month as at 30 years plus two months, and at each month thereafter through 

the 11th; or, in other words, on the assumption that deaths occur uniformly 

throughout each year of age. Extensive studies of the fraction have been 

made using the 1960 California mortality data (Chiang, et al [1961]) collected hy 

the State of California Department of Public Health and the 1963 U.S. data C0l1f',~1,1 

by the National Vital Statistics Division of the National renter 

for Health Statistics, respectively. The results obtained so far show that 

from age 5 on the fractions at are invariant with respect to race, sex, and x 

age, and that the assumed value of .5 is then valid. But a much smaller 

value has been observed for the first year because of the large proportion 

of infant deaths occurring in the first weeks of life. A brief description of 

the analYSis regarding a' using 
x the California data is given in Section 5. 
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To return to the computation of q , readers familiar with vital statistics 
x 

terminology will recognize the resemblance between q and M , the age specific x x 

death rate. The essential step in constructing a complete life table for a 

current population is to establish a relationship between q and M so that x x 

the probability of dying q can be computed from the death rate ~·1 for each x x 

age x. These two quantities can both be expressed in terms of the number of 

observed deaths of age x (D ) that occur during the calendar year and the 
x 

corresponding midyear (calendar year) population (P). Let N be the number x x 

of people alive at the exact age x, among whom 0 deaths occur in (x,x+l). 
x 

Then, by definition, the proportion died is given by 

(3.1) 

The age specific death rate, M , is the ratio of the number of deaths (D ) x x 

to the total number of years lived by the N people during the interval (x,x+l). 
x 

This total number is composed of (N -D ) years lived by the survivors and 
x x 

the number of years by those dying during the year. Let a ' be the fraction 
x 

of the year (x,x+l) lived by a person who dies during the year; then n x 

people as a group will live a'D years. Hence the total number of years x x 

lived in (x,x+l) is (N -D ) + a'D and the formula x x x x 

M = 
x 

n 
x 

(N -D ) + a'D x x x x 
(3.2) 

When the denominator is estimated with the corresponding mid-year population 

P , 
x 

(N -D )+a'D = P x x x x x 
(3.3) 
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(3.4) 

Now, N , which was introduced to establish a relationship between q and Ivf , x x x 

is nevertheless an unknown quantity. By eliminating N from (3.1) and (3.2) x 

and using (3.4), we obtain the desired relationship. Formally, ,,,e derive 

N from (3.3): 
x 

or 

and substituting 

N = x 

N = x 

(3.5) 

qx = 

P x 

P 
x 

in 

P x 

+ 0 aID 
x x x 

(3.5) 

+ (I-a' )0 x x 

(3.1) to obtain 

D 
x 

+ (I-a' )D 
x x 

(3.6) 

Since the age-specific death rate is usually availahle, we may divide both 

the numerator and denominator of (3.6) by P to obtain the basic formula 
x 

~1 

q = x (3.7) 
x 1 + (I-a' )~1 

x x 

As it was noted earlier, the fraction a' is subject to little variation. 
x 

The California data suggest values: aO = .09, ai = .43, 

a' = 45 a' - 47 a' = .49, a' = .50 for x > 5. 2 . J 3-' • 4 x - Formula (3.7) is fundamental 

in the construction of complete life tables by the present method and was 

suggested in Chiang [1960b], [1961]. 

To illustrate, let us consider the 1970 California population as 

shown in Table 1. For the first year of life we have Po = 340,483 in 

Column 2 and DO = 6,234 in Column 3. Thus, the age-specific rate for x=O is 
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DO 6,234 
M • -- - • .018309 o Po 340,483 or 18.309 per 1000. 

The average fraction of the year lived by an infant who dies in his first 

year of life is a' - .09. Therefore, the estimate of the probability of o 

dying is computed from (3.1): 

.018309 . 
CiO - 1 + (1 - .09) .018309 - .01801 • 

When all the values of Cix have been computed and iO has been selected, 

dx and ix for successive values of x are determined from equations (2.1) 

and (2.2) as shown in Table 2. For the 1970 Califoynia population we determine 

first the number of life table infant deaths with io = 100,000, 

and the life table survivors at age one, 

i l = iO - dO - 100,000 - 1801 - 98199 

The formula for the number L of years lived in the age interval (x,x+l) 
x 

is derived also with the aid of a' the fraction of the last year of life x ' 

as given in Section 2: 

L - (i - d ) + 'd x x x ax x x-O,l, ••• 

, 
To take again the example of the first year of life, a

O 
- .09 and 

LO = 98199 + .09 x 1801 = 98361 • 

(2.3) 

Remark 3: The ratio d /L is shown as the life-table death rate for age 
x x 

x. Since a life table is entirely based on the age-specific death rates of 

a current population, the death rates computed from the life table should be 

identical to the corresponding rates of the current population; symbolically 
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D 
x --p 
x 

x-O ,1,. •• • (3. B) 

To prove equation (3.8), we substitute (2.3) in the left side of (3.8) and 

divide the resulting expression by 1 to obtain 
x 

d 
x - -

Lx 1 - (I-a '><i x x 
(3. 9) 

Substituting (3.6) for q in (3.9) and simplifying the resulting expression x 

give D IP , proving the assertion (3.8). x x 

The final age interval in a life table is a half-open interval, such as 

age 85 and over. The values of D , P , :·1 , 1 , d , and T all refer to the w w w w w w 

open interval age wand over, and ~ - 1 (since there can be no survivors). 

The length of the interval is infinite and the necessary information for 

oetermining the average number of years lived by an individual beyond a~e w 

is unavailable. We must therefore use an approach other than equation (2.3) 

to determine L. Writing the first equation in (3. ~ for x-w, we have w 

L 
w 

d 
w --M 
w 

(3. 10) 

Since each one of the 1 people alive at w will eventually die, 1 - d , 
w w w 

and from (3'10) we have the required formula 

L 
w -

1 
w 

M 
w 

(3. 11) 

phere p~ , survivors to age 'ol, is computed from the preceding interval and Hw 
w 

is the mortality rate for age interval wand over. The quantities T and ~ w w 

can be computed as follows: 

T - L w w and 
Tw Lw 1 ------1 d 11 

(3.12) 
w w w 

In the 1970 California life table w - 85, and 185 - 23274. The death rate 

for age 85 and over is Mas - .157564; therefore 
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L85 
~85 23274 147711 = -= = 
M85 .157564 

and 

T85 = 147711 and e85 = 6.35 
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Figures 1 to 4 show graphically the probability of dying (q ), the 
x 

number of survivors (~ ), the number of deaths (d ), and the expectation 
x x 

of life (e ), for each age x for the total California population, 1970. 
x 

Figures 5 to 8 show the corresponding four sets of quantities for the total 

United States population, 1970. As we see from Figure 1 that the probability 

of dying is extremely high for the first year of life. It decreases 

sharply after the first year and reaches. a minimum at the age of 10 years. 

From there, the probability rises gradually and reaches the same magnitude 

of qo around age 65 and it continues to increase monotonically and later 

drastically. The pattern of q is also reflected in the ~ ,d and e . 
x x x x 

Since the life tables for the California population and for the United 

States population end at age 85, the graphics also stop at that age. 

In this manual we have introduced two sets of terms, one for the 

theoretical quantities and the other for the estimates of the theoretical 

quantities. The theoretical quantities include the probability of dying 

q , the expectation of life e for each age x, and many others; the 
x x 

corresponding estimates are qx and e • 
x 

For simplicity of reading and 

when there would be no confusion, we shall drop the words "estimate of" 

and refer to q as the probability of dying and e as the expectation of 
x x 

life, etc. 
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Table 1. 

Construction of Complete Life Table for Total California Population, USA, 1970 

================================;===================~================================ 

Age 
interval 
(in years) 

x to x+1 

(1) 

0- 1 
1- 2 
2- 3 
3- 4 
4- 5 

5- 6 
6- 7 
7- 8 
8- 9 
9-1;J 

10-11 
11-12 
12-l3 
13-14 
14-15 

15-16 
16-17 
17-18 
18-19 
19-20 

20-21 
21-22 
22-23 
23-24 
24-25 

25-26 
26-27 
27-28 
28-29 
29-30 

Midyear 
population 
in interval 

(x, x+l) 

P 
x 

(2) 

340483 
326154 
313699 
323441 
338904 

362161 
379642 
386980 
391610 
397724 

406118 
388927 
395025 
388526 
385085 

377127 
368156 
366198 
354932 
350966 

359833 
349557 
365839 
370548 
295189 

304013 
305558 
310554 
275897 
261592 

Number 
of deaths 

in interval 
(x,x+1) 

D 
x 

(3) 

6234 
368 
269 
237 
175 

179 
171 
131 
121 
121 

126 
127 
138 
158 
186 

235 
344 
385 
506 
584 

583 
562 
572 
564 
421 

416 
391 
461 
411 
392 

Death rate 
in interval 

(x,x+l) 

M 
x 

(4) 

.018309 

.001128 

.000858 

.000733 

.000516 

.000494 

.000450 

.000339 

.000309 

.000304 

.000310 

.000327 

.000349 

.000407 

.000483 

.000623 

.000934 

.001051 

.001426 

.001664 

.001620 

.001608 

.001564 

.001522 

.001426 

.001368 

.001280 

.001484 

.001490 

.001499 

Fraction Probability 
of last of dying 

year in interval 
of life (x,x+1) 

a' q 
x x 

(5) (6) 

.09 .01801 

.43 .00113 

.45 .00086 

.47 .00073 

.49 .00052 

.50 .00049 

.50 .00045 

.50 .00034 

.50 .00031 

.50 .00030 

.50 .00031 

.50 .00033 

.50 . '10035 

.50 .00041 

.50 .00048 

.50 .00062 

.50 .00093 

.50 .00105 

.50 .00142 

.50 .00166 

.50 .00162 

.50 .00161 

.50 .00156 

.50 .00152 

.50 .00143 

.50 .00137 

.50 .00128 

.50 .00148 

.50 .00149 

.50 .00150 
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Table 1. (continuerl) 

Construction of Complete Life Table for Total California Population, USA, 1970 

x to x+1 P D M a' qx x x x x 

(1) (2) (3) (4) ( 5) (6 ) 

30-31 264083 399 .001511 .50 .00151 
31-32 247777 378 .001526 .50 .00152 
32-33 241726 388 .001605 .50 .00160 
33-34 232025 365 .001573 .50 .00157 
34-35 233778 434 .001856 .50 .00185 

35-36 234338 439 .001873 .50 .00187 
36-37 224302 475 .002118 .50 .00212 
37-38 228652 519 .002270 .50 .00227 
38-39 226727 549 .002421 .50 .00242 
39-40 235980 606 .002568 .50 .00256 

40-41 249027 665 .002670 .50 .00267 
41-42 232893 719 .003087 .50 .00308 
42-43 239747 863 .003600 .50 .00359 
43-44 238783 874 .003660 .50 .00365 
44-45 248100 993 .004002 .50 .00399 

45-46 253828 11l~0 .')0449l .50 .00448 
46-47 249857 1268 .005075 .50 .00506 
47-48 247955 1362 .005493 .50 .'00548 
48-49 252137 1422 .005640 .50 .00562 
49-50 242126 1530 .006319 .50 .00630 

50-51 243799 1594 .006538 .50 .00652 
51-52 220599 1710 .0077 52 .50 .00772 
52-53 213448 1793 .008400 .50 .00837 
53-54 203618 1870 .009184 .50 .00914 
54-55 202388 1981 .009788 .50 .00974 

55-56 201750 2217 .010989 .50 .01093 
56-57 193828 2333 .012036 .50 .01196 
57-58 187257 2483 .013260 .50 .01317 
58-59 178602 2392 .0l3393 .50 .01330 

·59-60 171807 2517 .014650 .50 .01454 

60-61 174613 2733 .015652 .50 .01553 
61-62 157734 2743 .017390 .50 .01724 
62-63 154174 2911 .018881 .50 .01870 
63-64 144149 2968 .020590 .50 .02038 
64-65 140100 2954 .021085 .50 .02086 

65-66 135857 3391 .024960 .50 .02465 
66-67 129386 3278 .025335 .50 .02502 
67-68 123925 3352 .027049 .50 .02669 
68-69 112574 3331 .029589 .50 .029l6 
69-70 119063 3736 .031378 .50 .03089 
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Table 1. (continued) 

Construction of Complete Life Table for Total California Population, USA, 1970 

x to x+1 Px 
D M a' <Ix x x x 

(1) (2) (3) (4) ( 5) (6) 

70-71 114066 3846 .033717 .50 .03316 

71-72 100781 3704 .036753 .50 .03609 
72-73 93031 3706 .039836 .50 .03906 
73-74 89992 3830 .042559 .50 .04167 
74-75 86561 4063 .046938 .50 .04586 

75-76 81003 4275 .052776 .50 .05142 
76-77 73552 4383 .059590 .50 .05787 
77-78 70516 4259 .060398 .50 .05863 
78-79 60616 4181 .068975 .50 .06668 
79-80 56410 4227 .074934 .50 .07223 

80-81 57646 4424 .076744 .50 .07391 
81-82 48299 4288 .088780 .50 .08501 
82-83 39560 3995 .100986 .50 .09613 
83-84 34439 3753 .108975 .50 .10334 
84-85 31009 3669 .118320 .50 .11171 

85+- 14269l 22483 .157564 1.00000 
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Table 2. 

Complete Life Table for Total California Population, USA, 1970 

================================================================================================ 

Total 
Number number 

Probability Number Fraction of years of years Observed 
Age of dying Number dying in of last lived in lived Expectation 

interval in intervals living at interval year of interval beyond of 1 ife 
(in years) (x,x+1) age x (x,x+1) life (x,x+1) age x at age x 

x to x+-1 qx 
) d L T " ,{. a' e 
x x x x x x 

(1) ( 2) (3) (4) (5) (6) (7) (8) 

0- 1 .01801 100000 1801 .09 98361 7190390 71.90 
1- 2 .00113 98199 III .43 98136 7092029 72.22 
2- 3 .00086 98088 84 .45 98042 6993893 71.30 
3- 4 .00073 98004 72 .47 97966 6895851 70.36 
4- 5 .00052 97932 51 .49 97906 6797885 69.41 

5- 6 .00049 97881 48 .50 97857 6699979 68.45 
6- 7 .00045 97833 44 .50 97811 6602122 67.48 
7- 8 .00034 97789 33 .50 97772 6504311 66.51 
8- 9 .00031 97756 30 .50 97741 6406539 65.54 
9-10 .00030 97726 29 .50 97711 6308798 64.56 

10-11 .00031 9769/ 30 .50 97682 6211087 63.58 
11-12 .00033 97667 32 .50 97651 6113405 62.59 
12-13 .00035 97635 34 .50 97618 6015754 61. 61 
13-14 .00041 97601 40 .50 97581 5918136 60.64 
14-15 .00048 97561 47 .50 97538 5820555 59.66 

15-16 .00062 97514 60 .50 97484 5723017 58.69 
16-17 .00093 97454 91 .50 97408 5625533 57.73 
17-18 .00105 97363 102 .50 97312 5528125 56.78 
18-19 .00142 97261 138 .50 97192 5430813 55.84 
19-20 .00166 97123 161 .50 97043 5333621 54.92 

20-21 .00162 96962 157 .50 96884 5236578 54.01 
21-22 .00161 96805 156 .50 96727 5139694 53.09 
22-23 .00156 96649 151 .50 96574 5042967 52.18 
23-24 .00152 96498 147 .50 96424 4946393 51. 26 
24-25 .00143 96351 138 .50 96282 4849969 50.34 

25-26 .00137 96213 132 .50 96147 4753687 49.41 
26-27 .00128 96081 123 .50 96020 4657540 48.48 
27-28 .00148 95958 142 .50 95887 4561520 47.54 
28-29 .00149 95816 143 .50 95745 4465633 46.61 
29-30 .00150 95673 144 .50 95601 4369888 45.68 
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Table 2. (continued) 

Complete Life Table for Total California Population, USA, 1970 

Total 
Number number 

Probability Number Fraction of years of years Observed 
Age of dying Number dying in of last lived in lived Expectation 

interval in interval living at interval year of interval beyond of life 
(in years) (x,x+l) age x (x ,x+l) life (x,x+l) age x at age x 

x to x+1 qx d a' L T e 
x x x x x x 

(1) (2) (3) (4) ( 5) (6 ) (7) (8) 

30-31 .00151 95529 144 .50 95457 4274287 44.74 
31-32 .00152 95385 145 .50 95312 4178830 43.81 
32-33 .00160 95240 152 .50 95164 408318 42.88 
33-34 .00157 95088 149 .50 95014 3988354 41. 94 
34-35 .00185 94939 176 .50 94851 3893340 41.01 

35-36 .00187 94763 177 .50 94674 3798489 40.08 
36-37 .00212 94586 201 .50 94486 3703815 39.16 
37-38 .00227 94385 214 .50 94278 3609329 38.24 
38-39 .00242 94171 228 .50 94057 3515051 37.33 
39-40 .00256 93943 240 .50 93823 3420994 36.42 

40-41 .00267 93703 250 .50 93578 3327171 35.51 
41-42 .00308 93453 288 .50 93309 3233593 34.60 
42-43 .00359 93165 334 .50 92998 3140284 33.71 
43-44 .00365 92831 339 .50 92661 3047286 32.83 
44-45 .00399 92492 369 .50 92307 2954625 31.94 

45-46 .00448 92123 413 .50 91916 2862318 31.07 
46-47 .00506 91710 464 .50 91478 2770402 30.21 
47-48 .00548 91246 500 .50 90996 2678924 29.36 
48-49 .00562 90746 510 .50 90491 2587928 28.52 
49-50 .00630 90236 568 .50 89952 2497437 27.68 

50-51 .00652 89668 585 .50 89376 2407485 26.85 
51-52 .00772 89083 688 .50 88739 2318109 26.02 
52-53 .00837 88395 740 .50 88025 2229370 25.22 
53-54 .00914 87655 801 .50 87255 2141345 24.43 
54-55 .00974 86854 846 .50 86431 2054090 23.65 

55-56 .01093 86008 940 .50 85538 1967659 22.88 
56-57 .01196 85068 1017 .50 84559 1882121 22.12 
57-58 .01317 84051 1107 .50 83497 1797562 21. 39 
58-59 .01330 82944 1103 .50 82393 1714065 20.67 
59-60 .01454 81841 1190 .50 81246 1631672 19.94 
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Table 2. (continued) 

Complete Life Table for Total California Population, USA, 1970 

Total 
Number number 

Probabil ity Number Fraction of years of years Observed 
Age of dying Number dying in of last lived in lived Expectation 

interval in interval living at interval year of interval beyond of life 
(in years) (x,x+l) age x (x,x+l) life (x ,x+l) age x at age x 

x to x+1 qx d a' L T "', e 
x x x x x x 

(1) (2) (3) (4) ( 5) (6) (7) (8) 

60-61 .01553 80651 1253 .50 80025 1550426 19.22 
61-62 .01724 79398 1369 .50 78713 1470401 18.52 
62-63 .01870 78029 1459 .50 77299 1391688 17.84 
63-64 .02038 76570 1560 .50 75790 1314389 17.17 
64-65 .02086 75010 1565 .50 74228 1238599 16.51 

65-66 .02465 73445 1810 .50 72540 1164371 15.85 
66-67 .02502 71635 1792 .50 70739 1091831 15.24 
67-68 .02669 69843 1864 .50 68911 1021092 14.62 
68-69 .02916 67979 1982 .50 66988 952181 14.01 
69-70 .03089 65997 2039 .50 64978 885193 13.41 

70-71 .03316 63958 2121 .50 62897 820215 12.82 
71-72 .03609 61837 2232 .50 60721 757318 12.25 
72-73 .03906 59605 2328 .50 58441 696597 11. 69 
73-74 .04167 57277 2387 .50 56083 638156 11.14 
74-75 .04586 54890 2517 • 50 53632 582073 10.60 . 

75-76 .05142 52373 2693 .50 51026 528441 10.09 
76-77 .05787 49680 2875 .50 48243 477415 9.61 
77-78 .05863 46805 2744 .50 45433 429172 9.17 
78-79 .06668 44061 2938 .50 42592 383739 8.71 
79-80 .07223 41123 2970 .50 39638 341147 8.30 

80-81 .07391 38153 2820 .50 36743 301509 7.90 
81-82 .08501 35333 3004 .50 33831 264766 7.49 
82-83 .09613 32329 3108 .50 30775 230935 7.14 
83-84 .10334 29221 3020 .50 27711 200160 6.85 
84-85 .11171 26201 2927 .50 24738 172449 6.58 

85+ 1.00000 23274 23274 147711 147711 6.35 
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CHAPTER 5 

THE LIFE TABLE AND ITS CONSTRUCTION - ABRIDGED LIFE TABLES 

1. Introduction 

Clearly, the current life table furnishes information not obtainable 

from other sources. It provides the public health worker, demographers 

and other research workers with tools for making international comparisons 

as well as for comparing contemporary groups within a country or for 

assessing trends within a given population. The life table death rate 

has the advantage over other mortality indices of being independent of 

age and sex distributions. This, of course, is also true for eO' the average 

length of life, or for e , the average remaining lifetime at any age x. 
x 

The ratio ~k/~j gives a convenient measurement for comparing the 

survival of selected age segments of two populations; for example, one 

might want to know if Swedish women who survive to age 20 have as good a 

chance of surviving to age 45 as do their Italian counterparts by comparing 

Life table estimates have the disadvantage of any statistics based 

on the population census and vital records. Individuals or entire households 

may be missed by the census taker or overlooked by the informant. Cross-

checking with birth and death certificates show that young children, even 

when they survive infancy, are sometimes forgotten; migratory segments 

of the population (particularly young males) are subject to marked under-

enumeration. Misstatements of age are clearly discernible in bar graphs 

of the age distribution particularly the overstatement of the ages of 

young children (followed by an understatement in the middle years), of 

persons approaching retirement age, and of the very old; in addition, a 

heaping is found for ages in multiples of five and at even ages. 
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Completeness of birth registration varies from country to country 

and must occasionally be checked. Death registration can be improved by 

the requirement that it be filed before a burial permit is issued. These 

defects in mortality data and population census have a marked effect on 

the complete life table. 

There are three other disadvantages of complete life tables that are 

more closely related to the tables themselves. (1) The data necessary for 

intervals of one year of age is frequently not available; (2) Computations 

are tedious and time-consuming when computer services are not available; 

(3) A table consisting of 85 or 95 age groups does not present a concise 

picture of the mortality experience of a population. 

These objections can be obviated by constructing an abridged rather 

than the complete life table. The computations are discussed in the following 

paragraphs. 
2. A Method of Life Table Construction 

An abridged life table contains columns similar to those described for 

the complete life table. The limits of age intervals are denoted by x., 
1 

i=O,l, •.• ,w, and the length of the interval by ni so that xi+l-x
i 

= 

Thus we have 

Column l. Age interval (xi'Xi +l ) 
A 

Column 2. Proportion dying in interval (xi,xi +l ), qi' 
Cdlumn 3. Number alive at age x. , ,Q, •• 

1 1 

Column 4. Number dying in interval (Xi'Xi +l ), d .• 
1 

n .• 
1 

Column 5. The average fraction of interval (xi,xi +l ) lived by an 

individual dying at an age included in the interval a .• 
1 

Column 6. Total number of years lived in interval (Xi'Xi +l ), L .. 
1 

Column 7. Total number of years lived beyond age x., T .• 
1 1 
A 

Column 8. Observed expectation of life age at x .• e .. 
1 1 

The present method of construcing the abridged life table was proposed 

by Chiang [1960b], [1961] and was used for the 1959-61 California 
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abridged Life Tables [Norris]. The idea and procedure involved are the same 

as those used in the construction of the complete life table described in 

Chapter 4 with differences due only to the length of intervals. The length of 

the typical interval (xi,xi +l ) in the abridged table is n i = xi+l-xi ' which 

is greater than one year (commonly, n. = 5 years, see Table 2). The essential 
1 

element here is the average fraction of the interval lived by each person 

who dies at an age included in the interval. This fraction, called the 

fraction of last age interval of life, denoted by a., is conceptually a 
1 

logical extension of the fraction of the last year of life, a'. Determination 
x 

and discussion of a. will be presented in Section 4. We use a. as the point 
1 1 

of departure. 

Starting with the values of a. we can construct the abridged life 
1 

table by following the steps in Chapter 4. Because of its importance, 

however, we repeat the previous argument to derive the formula for q., the 
1 

estimate of the probability that an individual alive at age xi will die in 

Let D. be the number of deaths occurring in the age 
1 

interval (x1,x
j
+

1
) tiurinr the calendar VC:1!" under consirler:~tinn, ~'\ tiH> 

corre:;pondin::; :lbc-speci fic death rate. 
-, 

1'0 derive a relationship het\.o;een qi 

and 'r .• \Jl' il~troducc :;., the lllPber o[ 
1 ] 

individu.:lls nlivp. at c;:;~ct :we xi' 

sncll t:lat amOI1;', t:ll.! .;. pcrsor:.s 'J wi] 1 (!ic in tilE' intervnl. Then hy, dcFini tinn 
- l i 

the rroportion dyinG in (x.,x. 1) is given hv 
1 1'+ 

;) . 
~ 1 
qi " . ~ . 

1 

(2.1) 

Trw age specific death rilte 'I is the rrItio of 11. to the total l111r:ther of 
'i 1 

'[ 
i. 

D, 
t .--.. ---------.- -----

C:.-'l.)Jl. +;} :-1 II 
(2.2) 

1 l' ii' 
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The first ten'! in the denominator of (2.2) is the numher of years lived by the (N,-D,) 
1 1 

survivors, while the second term is the number of years lived by those who die in 

Eliminating N, from (2.1) and (2.2) yields the basic 
1 

formula in the construction of an abridged life table 

n ~f 
i j 

The age-specific death rate M, may be estimated from 
1 

>1, 
1 

D 
i 

P, 
.l 

with P, bein~ tlle hild-year poru] ation. 
1 

(2.3) 

(;~.4) 

All other quantitles in the table are functions (If fl" a, and the radix 
1 ] 

The nUTTlher d, of deaths in (x"x'+l) and the numher Q"+l of 
1 1. 1 1 ~ 

survivors 

at ar,e X
i
+

l 
are computed froT:' 

d, = Q"q" 
1 1 1 

i =0,1, ... ,l,,-I, 

and 

i=O,l, .•• ,w-I, (2.6) 

respectively. The number of years liven in the interval (xi,x
i
+l ) by the Q,i 

survivors at age Xi is 

L, = n, (Q" -d,) + a, n, d , , 
1 111 111 

i=O,l, ••• ,~,,-l • 

The final age interval is asain an open interval, and \, is computed exactly 

as in the complete life table [cf., equation (3.6) in Chapter 4]: 
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\., 
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(2.8) 

where '1w is again the specific death rate for people of age xwand over. 

The total 

is the sum of 

age x. 
1 

is the 

number Ti of years remaining to all the people attaining age xi 

A 
expectation of life e. at L. for j = i , i + 1 , . . . , 'v . The 

J 

ratio T/2i' or 

_L-=i,--+_L-=i~+-=l~+_·_·_·_+_LW 
2. 

:1 

ohserved 
:1 

i=O, ••• w • (2.9) 

As an example, the abridged life table for the California 1970 total 

population is r,iven in Tables 1 and 2. The required data for constructing an 

abridged life table is the death rate (M.) and the fraction of last age interval of 
:1 

life (ai ) for each age.group. The death rate may be computed from the mid­

year population (Pi column (2) in Tahle 1) and the number of deaths (D
i

, 

column (3» of the population in question usinp, formula (2.4). For thp 

California 1970 total population, for example, the death rate HO is 

computed from 

6234 
= 340483 .018309 . (2 .4a) = 

The fraction of the last age interval of life, ai' remains relatively constant 

over time for a given age interval (xi,xi +l
). The only exception is a

O
' 

which may be computed from the readilv available published data on infant 

deaths. The value of ai' for 1-0,1, ... , have been computed for several countries 

and are given in Appendix V. They may be revised every 10 years. 

Hhen death rate (Mi ) for each age group of a population is determined, 

one uses the corresponding a
i 

and formula (2.3) to compute qi' The figures 

in other columns in the life table can be obtained by using formulas ~.5) 

through (2.9). The reader should use these formulas to verify the numerical 

values in Tables 1 and 2. 
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Table 1. 

Construction of Abridged Life Table for Total California Population, USA, 1970 

Number 
Mid-year of Fraction Probabil ity 

Age population deaths of last of dying in 
interval in interval in interval Death age interval 
(in years) (x. , x. 1) (x. , x. 1) rate interval (x. , x i +1 ~ ~+ ~ ~+ 

of life 
~ 

to x. 1 p. D. ~i • 
.-, 

x. a. qi ~ ~+ ~ ~ ~ ~ 

(1 ) (2 ) (3) (4) ( 5) (6 ) 

0- 1 340483 6234 .018309 .09 .0181 

1- 5 1302198 1049 .000806 .41 .00322 

5-10 1918117 723 .000377 .44 .00188 

10-15 1963681 735 .000374 .54 .00187 

15-20 1817379 2054 .001130 .59 .00564 

20-25 1740966 2702 .001552 .49 .00773 

25-30 1457614 2071 .001421 .51 .00708 

30-35 1219389 1964 .001611 .52 .00802 

35-40 1149999 2588 .002250 .53 .01119 

40-45 1208550 4114 .003404 .54 .01689 

45-50 1245903 6722 .005395 .53 .02664 

50-55 1083852 8948 .008256 .53 .04049 

55-60 933244 11942 .012796 .52 .06207 

60-65 770770 14309 .018565 .52 .08886 

65-70 620805 17088 .027526 .51 .12893 

70-75 484431 19149 .039529 .52 .18052 

75-80 342097 21325 .062336 .51 .27039 

80,-85 210953 20129 .095419 .50 .38521 

85+ 142691 22483 .157564 1.00000 
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Table 2. 

Abridged Life Table for Total California Population, USA, 1970 

Total 
Number number 

Probability Number Fraction of years of years Observed 
Age of dying Number dying in of last lived in lived Expectatior 

Lnterva1 in interval living at interval year of interval beyond of life 
(in years) (x. , x

Hl 
) age xi (x , x. 1) life (xi' xH1 ) age x. at age xl 

~ ~ ~+ ~ 

x. to x. q. 1'.. d. a
i L. T. e. 

~ ~+1 1. ~ ~ ~ ~ ~ 

(1) (2) (3) (4) ( 5) (6) (7) (8) 

0- 1 .01801 100000 1801 .09 98361 7195221 71.95 

1- 5 .00322 98199 316 .41 392050 7096860 72.27 

5-10 .00188 97883 184 .44 488900 6704810 68.50 

1)-15 .00187 97699 183 .54 488074 6215910 63.62 

15-20 .00564 97516 550 .59 486452 5727836 58.74 

20-25 .00773 96966 750 .49 482917 5241384 54.05 

25-30 .00708 96216 681 .51 479412 4758467 49.46 

30-35 .00802 95535 766 .52 475837 4279055 44.79 

35-40 .01119 94769 1 )60 .53 471354 3803218 40.13 

40-45 .01689 93709 1583 .54 464904 3331864 35.56 
45-50 .02664 92126 2454 .53 454863 2866960 31.12 
50-55 .04049 89672 3631 .53 439827 2412097 26.9,,) 
55-60 .06207 86041 5341 .52 417387 1972270 22.92 
60-65 .08886 80700 7171 .52 386290 1554883 19.27 
65-70 .12893 73529 9480 .51 344419 1168593 15.89 
70-75 .18052 64049 11562 .52 292496 824174 12.87 
75-80 .27039 52487 14192 .51 227665 531678 10.13 
80-85 .38521 38295 14752 .50 154595 304013 7.94 
85+ 1.00000 23543 23543 149418 149418 6.35 
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The Fraction of the Last Year of Life, a' , and the 
x 

Fraction of the Last Age Interval of Life, a. 
1 

The fraction of the last year of life, a' . 
x 

The description of life 

table construction in the preceding section clearly indicates that the main 

ingredient in the construction of complete life tables is the fraction of 

the last year of life. Computation of the fraction is quite easy when the 

necessary data are available. Since we need to know only the exact number 

of days lived past the final birthday, which may be obtained from the date 

of birth and the date of death. In the State of California, both dates are 

key punched into tabulation cards, from which a computer can make the required 

subtraction to get the number of days lived during the last year of life for 

each person who died, sum the number of days lived, divide by the number of 

deaths to obtain the average number of days lived, and divide by 365 (or 366) 

days to give the desired fraction of year lived, a' . Various statistical 
x 

tests have been performed regarding the fraction a' using 132,205 California x 

resident death records in 1960. Some of the results are briefly described 

below. 

First the hypothesis of uniform distribution of deaths was tested for each 

year of age. The number of deaths by days lived during the last year of life 

was tabulated for each race and sex group and for each year of age. The year 

was divided into 26 intervals of 14 days each, except for the first interval 

which was 15 days. A frequency distribution of the number of deaths hy 

intervals of days lived for each of the selected ages is shown in Table 5. 

The Chi-square method was used to test the uniform distribution of deaths. 

For the 10 ages shown, Chi-square values were significant for ages 0, I, and 59. 
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The distribution of the deaths in the first year of life is highly skewed 

with the first interval of 15 days accounting for almost 70 percent of the 

total 8624 deaths. The second interval of 14 days contains only about 3.5 

percent of the deaths, and this percentage decreases with the increase in 

age. The distribution of deaths in the second year also shows a decrease in 

the percentage of deaths with increasing age, although in a much smaller 

degree. No definite pattern can be ascertained for the distribution of deaths 

for age 59. 

The t-test and the F-test were also performed for the ·difference between 

the observed fraction (a') and the hypothesized value of .5, and for the 
x 

difference between sex and race groups for each year of life. The results 

show that from age 5 on, the fraction a' is invariant with respect to sex and 
x 

race and the assumed value of .5 is accepted. For the first 5 years of life, 

the data suggest the values of aO 
and a' = .49 for both sexes. 4 These 

= .43, a; = .45, a; = .47, 

values, except 

for aD' may be assumed for other countries. The value of a~, however, needs to 

be computed for each country. The data required for the computation of a~ 

are usually available in vital statistics publications. 

Computation of a~ is shown in Table 6, where the 1970 United States 

infant death data are used for illustration. The number of deaths in 

column (3) by age at death are usually available in vital statistics 

publications. The average point for each interval [Column (2)], 

takes into account the distribution of deaths in each interval. 

The product of the figures in columns (2) and (3), recorded in column (4), 

is the number of days lived by individuals who died in each interval. The 

sum of the products, appearing in the lower right hand corner (2,464,403:7 

in this case) is the total number of days lived by the (74,667) infants who 
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died during the first year of life. This total, when divided by 74,667 x 

365, gives the fraction of a~, the fraction of the year lived by an infant 

who dies during the first year of life. Since both the complete life table 

and the abridged life table begin with the age interval (0,1), a
O 

= a'. o 

3.2 The fraction of the last age interval of life, a.. This fraction is as 
1 

essential in the construction of the abridged life table as the fraction of the 

last year of life in the complete table. Conceptually, it is an extension of 

the latter. When a person dies at age 23, for example, he has lived a 

certain fraction of the age interval (20,25). The average fract ion Ii ved in 

each interval (x., x. I)' which is called the fraction of the last age interval 
1 1+ 

of life, depends on the probability of dying and the corresponding fraction 

of last year of life a' for each year of age within the interval. The 
x 

relation between a. and the probabilities q and p (= l-q ) and a' is derived 
1 x x X x 

as follows. 

Consider the age interval (I, 5) and the fraction of the interval a l 

that a person will live if he dies between ages one and five. For a person 

alive at the exact age of one year [i.e., the beginning of the interval (I, 5)], 

there is a probability ql that he will die during the year (I, 2), a probability 

(l-ql)q2 = Plq2 that he will die in (2, 3), a probability PIP2q3 of dying in 

(3, 4), and a probability PIP2P3Q4 of dying in (4, 5). The corresponding 

periods of time that he lives are ai, (l+ai)' (2+a3), and (3+a~), respectively. 

For example, if he dies during the year (2, 3), he will have lived one complete 

year (1, 2) and a fraction ai of the year (2, 3), therefore he will have lived 

a total of l+a~ years. The probability of dying at any time during the interval 

(I, 5) is 1 - PlP2P3P4' and the length of the interval is 5-1 = 4 years, 

therefore the formula for the fraction a l is 

(3.1) 
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Tahle 3 Frequency distribution of deaths by interval of days lived in the 
last year of life for selected ages, total population, California, 1960 

Interval 
(in completed 

days) Age at Death (in completed years) 

0 1 2 3 9 19 29 39 49 59 

0-14 6,091 29 20 19 5 11 14 21 50 83 
15-28 305 27 15 10 5 9 8 22 48 63 
29-42 228 33 22 11 2 9 7 23 43 63 
43-56 247 25 11 15 7 12 13 23 46 64 
57-70 233 21 16 12 3 8 9 20 44 71 

71-84 190 20 10 8 5 7 16 22 41 68 
85-98 152 31 13 13 3 4 9 32 49 87 
99-112 153 24 17 13 4 18 2 27 43 69 

113-126 152 22 13 14 3 8 12 25 42 56 
127-140 114 28 16 13 1 9 5 29 49 77 

141-154 89 25 16 9 4 8 10 27 46 93 
155-168 91 28 17 8 5 11 10 15 49 80 
169-182 61 28 16 11 7 12 10 20 50 71 
183-196 55 18 9 12 3 14 7 20 42 72 
197-210 55 11 15 9 5 9 14 33 50 84 

211-224 54 13 11 8 4 9 6 21 57 84 
225-238 47 14 12 9 6 11 13 21 43 63 
239-252 50 8 6 13 4 7 12 25 43 68 
253-266 35 12 10 9 2 7 10 24 53 74 
267-280 41 14 16 8 5 9 12 28 53 87 

281-294 36 12 14 8 4 4 14 20 55 87 
295-308 31 13 11 6 3 13 9 24 46 85 
309-322 24 28 11 9 1 5 6 26 45 95 
323-336 41 13 6 7 3 6 11 28 43 92 
337-350 28 11 10 15 3 8 14 20 54 91 
351-364 21 18 8 3 3 11 13 16 59 90 

Total 8,624 526 341 272 100 239 266 612 1,243 2,017 
Deaths 

2 97,299.5**68.4** 29.4 22.9 15.8 26.6 27.4 21.0 13.2 40.9* x 

* Significant at the 5 percent level 
** Significant at the 1 percent level 
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Table 4. Computation of the fraction aO hased on infant deaths, United 
States total population, 1970 

* 

Average 
point Number Number of 

Age interval in interval of deaths days lived 
at death (in days) in interval * (2) x (3) 

(1) (2) (3) (4) 

<1 hour .02 6,485 129.7 
1-24 hours .5 26,425 13,212.5 
1-2 days 1.5 7,944 11,916.0 
2-3 days 2.5 4,761 11,902.5 

3-4 3.5 2,163 7,570.5 
4-5 4.5 1,346 6,057.0 
5-6 5.5 984 5,412.0 
6-7 6.5 713 4,634.5 

7-14 10.0 2,722 27,220.0 
14-21 17.0 1,461 24,837.0 
21-28 24.0 1,275 30,600.0 
28-60 42.0 4,662 195,804.0 

2-3 mos. 73.0 3,561 259,953.0 
3-4 103.0 2,586 266,358.0 
4-5 134.0 1.866 250,044.0 
5-6 164.0 1,379 226,156.0 

6-7 195.0 1,065 207,675.0 
7-8 225.0 874 196,650.0 
8-9 256.0 678 173,568.0 
9-10 287.0 597 171,339.0 

10-11 318.0 565 179,670.0 
11-12 349.0 555 193,695.0 

Tdta1 74,667 2,464,403.7 

Source: U.S. Department of Health, Education and Welfare, Public Health 
Service, National Center for Health Statistics, Vital Statistics, 
of the U.S., 1970, Vol. II, Part A, pp. 2-10, 11. 

= 2,464,403.7 = 09 
aO 365x74,667 . 
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Using the established values of ai', ai ' a3 and a' , we have 
4 

.43ql + 1. 45P lq2 + 2. 47P lP2q3 + 3.49PlP2P3Q4 

a l = 4(1 - PlP2P3P4) 
(3.2) 

For a given country, the given probabilities, Ql' Q2' q3 and Q4 can be 

determined. Therefore, the fraction a l for the interval (1, 5) may be 

computed from formula (3.2). The computation of al for California 

population, 1970, is demonstrated in Table 5. 

Year 
of 

Age 

1 

1-2 

2-3 

3-4 

4-5 

Total 

Table 5. Computation of the fraction a
l 

for age interval (1, 5) 

based on California mortality data, 1970 

Conditional Probability of Dying 
in year (x, x+l) given alive 

at age 1 

2 

Q = .00113 
1 

Pl Q2 = (.99887) (.00086) = .000859 

Pl P2Q3 = (.99887)(.99914)(.00073) ~ .000729 

Pl P2P3Q4 = (.99887)(.99914)(.99927)(.00052) = 
.000519 

1 - Pl P2P3P4 = .003236 

.00534 
a l = 4x.003236 

= .41 

Expected length of time 
lived in interval 

Length of 
time lived 

(1, 5) (2: x 3) 

3 4 

.43 .000486 

1.45 .001246 

2.47 .001800 

3.49 .001810 

.00534 
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From age S to the last interval in the life table, the length of each 

age interval is S years and the fraction of last year of life for each year 

is a ' = 1/2. The formula for the fraction a. for interval (x.,x.+S) can 
XII 1 

be simplified somewhat. For age interval (S, 10) for example, we have 

since 

. 5Qs + (1+.S)PSQ6 + (2+.S)PSP6Q7 + (3+.S)PSP6P7QS + (4+.S)PSP6P7PSQg 

a 2 = 5(1 - PSP6P7PSP9) 

The values of the fraction a. for the abridged life table have heen 
1 

computed from formulas (3.2) and (3.3) for selected countries for which the 

required information is available, and are listed jn Appendix V. 

These values of a. can be used directly in constructin~ life tables for 
1 

the respective countries. 

Remark 4. Formulas (3.2) and (3.3) show that a. does not depend on 
1 

the absolute values of q or p but rather on the treni of mortality 
x x 

within the interval. For example, if qs > q6 > q7 > q6 > q9' then as < 1/2, 

regardless of the absolute values of these q IS. 
x 

Remark 5. The probabilities q and p are computed from the r:l?rtality 
x x 

data of a population in question, the value of a. represents the mortality 
1 

trend in each interval prevailing in the population. Since the mortality 

trend does not vary much over time (although death rates do), the a. values 
1 

may be regarded as constant and may be used for the construction of abridged 

life tables of the subsequent years of the population. 
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The invariant property of a i not only holds over time, but is also 

true for countries with similar mortality patterns. Tahle 8 shows a remark-

able agreement of the five sets of a. values. For countries with a similar 
1 

mortality pattern, the same set of a. values may be used. 
1 

Remark 6: The assumption that a' = 1/2 for each year of age within x 

an interval (x., x. 1) does not necessarily imply that a. = 1/2 for the 
1 1+ 1 

entire interval. As formula (3.3) shows, the value of the fraction a. 
1 

depends on the mortality pattern over an entire interval and not on the mor-

tality rate for any single year. When the mortality rate increases with age 

in an interval, the fraction a. > 1/2; then the reverse pattern prevails, 
1 

a. < 1/2. Consider, for example, the age intervals (5, 10) and (10, 15) 
1 

in 1970 California population. Although a' = 1/2 for each age in the x 

two jntervals, a 2 = .44 for interval (5, 10) and a3 = .54 for interval (10, 15) 

due to the changing mortality pattern, as shown in Table 7. 



- 106-

Table 6 

Fraction of last age interval of life, a. , 
1 

for selected populations 

-_ .....•. - .. , .... __ .. ,' ' .. " --.... -.. --~. 

Age Austria California France Finland U.S.A. 
1969 1970 1969 1968 1970 

0-1 .12 .09 .16* .09 .09 

1-5 .37 .41 .38 .38 .40 

5-10 .47 .44 .46 .49 .46 

10-15 .51 .54 .54 .52 .55 

15-20 .58 .59 .56 .53 .54 

20-25 .48 .49 .51 .51 .51 

25-30 .51 .51 .51 .51 .51 

30-35 .53 .52 .53 .52 .52 

35-40 .53 .53 .53 .54 .53 

40-45 .52 .54 .53 .55 .54 

45-50 .54 .53 .54 .53 .54 

50-55 .52 .53 .52 .54 .53 

55-60 .53 .52 .53 .53 .53 

60-65 .54 .52 .53 .53 .52 

65-70 .53 .51 .53 .52 .52 

70-75 .52 .52 .52 .52 .51 

75-80 .51 .51 .51 .51 .51 

80-85 .48 .50 .49 .47 .49 

85-90 .45 .46 

90-95 .40 .41 

*A large aO value for the France 1969 population is due to the 

fact that infants who die before 3 days old are not recorded. 

Age at death of these infants are not included in the calculation 

of a
O

. 



Age 
interval 

x to x+l 

(1) 

5-6 

6-7 

7-8 

8-9 

9-10 

10-11 

11-12 

12-13 

13-14 

14-15 
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Table 7 

Computation of a. for age intervals (5, 10) and (10, 15) 
1 

based on California population, 1970 

Fraction 
of the 

last year Proportion dying in Fraction of last 
of life age interval age interval 

a' qx a. x 1 

(2) (3) (4 ) 

.50 .00049 

.50 .00045 ~ 

.50 .00034 .4Lf 

.50 .00031 
J 

.50 .00030 

.50 .00031 ) 

.50 .00033 

.50 .00035 ~ .54 

.50 .00041 ~ 

.50 .00048 
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4 . ~~~ if ~can t Hi s t orica] Con t r ibu t i ons __ J:.C?.. ~ I:!.e_(~gps ~!,u c t i ~~o f Abr_!.d~<! 
Life Tables 

The history of life tahle construction reflects increasing refinement 

of the method. For instance, although the earliest tables (see lntroduction 

to this chapter) were hased solely on recorded deaths, Milne's tahle of 1815 

took into account population figures as well. In 1839 the English Life Tables 

were constructed using only registered births and deaths since, due to the 

influence of William Farr, census figures wen' found to be unrel iable. Other 

significant contributions and refinements followed, in particular those of 

Moore, Day, Wickens, Pell, King, Derksen, Greville. Reed-Merrell, Wiesler. 

Keyfitz, and Sirken. We shall briefly discuss some of thesp methods below. 

4.1. King's Method. This method was introduced by George King in the 

construction of the Seventh English Life Table at the turn of the century and has 

been usedby many English-speaking countries for fifty years or so. Using this 

method, data are arranged in five-year age groups. Population figures and 

the number of deaths are calculated for the central year of age (pivotal age) 

of each age group by a graduation process, yielding the values of q for the 
x 

pivotal age. Using the complement of q at pivotal ages and finite difference 
x 

formulas, the number of survivors (Q, ) are obtaineu. T. N. E. Greville adapted 
x 

this method for the 1939-41 United States Life Tables. 

4.2. Reed-Merrell Method. In the search for a relation between the probability q. 
1 

and the mortality rate, M., Lowell J. Reed and Margaret Merrell studied extensively some 
1 

thirty-three tables in J. W. Glover's ]910 series of United Statps Life Tables. 

Their findings were published in 1939 showing that the following equation describes 
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satisfactorily the entire range of observations in Clover's tables: 

'3 7 
-n

i
M.-.00811.M

i 1 1 1 qi = -e 

Many furmulas are also given to determine the L. column from the number of survivors 
1 

~i in the life table. 

4.3. Greville's Method. T.N.E. Greville used a mathematical approach to derive 

a relation between qi and Mi' 

M. 
1 

He started with the equation 

d log 1.i 
dx. 

1 

After integrating hoth sides of tIle equati0n, thus yielding L
j

, and applying the 

Euler-Maclaurin summation formula, Greville was able to express Ti in terms of a 

series of exponential functions of Mi" He then used quite skilful mathematical 

manipulations. and arrived at the formula: 

N. 
1 

qi lin. + M.[1/2 + n./12(M.-Iogc)] 
1 1 1 1 

where th~ constant c is the ronst;mt ill the t;ompertz' law of mortality: 

Grevl.lle also suggested a number of formulas to compute the life table population 
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4.4. Wies1er's Method. This method, proposed in "Une methods simple pour 

1a construction de tables de morta1ite abregees," World Population Conference, 

1954, Volume IV, United Nations, in essence uses age specific death rates M. 
1 

as the probability of dying q .. For an age interval (x.,x.+n.), let D. be 
1 111 1 

the number of deaths during a calendar year and p. be the total of living 
1 

people in the age group (x.,x.+n.). Then Weisler suggests that 
111 

D. 
1-2-

P. 
1 

or 
D. 

1 

p. 
1 

and £1' £5' £10' etc., are computed successively from 

" 
£Opo 

£1 (Pl-4) 

t
l

_
4 

, ... 

where t
l
_

4
, t

5
_

9
, etc., are assumed to be the same for all mortality tables. 

The expectation of life at xa is computed from 

e 
a 

1:. + £ a+ 1 + £ a+ 2 + ... 
2 £ 

Ci, 
• 

4.5. Sirken's Method. Monroe Sirken distinguishes the age specific death 

rate M. from a current population: 
1 

M. 
1 

D. 
1 

P. 
1 

and the rate m. defined in the life table quantities: 
1 

d. 
1 

mi L. 
1 

Using the observed death rate M., one derives q. from the equation 
1 1 



q. 
1 

n.M. 
1 1 

1+a.M. 
1 1 
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where the constant a. is assumed to be the same as in a standard table. 
1 

Using ql" one completes the columns £. and d .. 
1 1 

considers another equation 

n.m. 
1 1 

l+a.m. 
1 1 

To compute L., Sirken 
1 

Substituting q. = d.I£. and m. 
111 1 

d./L. in (B) yields 
1 1 

d. n. d./L. 
1 111 

£. l+a. d. IL. 
1 111 

Solving the last equation for L. one gets 
1 

L. n.£. - a.d. 
11111 

where the constant a. is assumed to be the same as in a standard table 
1 

but is different from a .. 
1 

(A) 

(B) 

4.6. Keyfitz's Method. This is an iterative procedure using the basic relation-

ship between the probability q. and the age-specific mortality rate m. or M. 
111 

n.M. 
1 1 

l+(n.- a.)M. 
1 n 1 1 

(A) 

where a. is the number of years lived in the age interval (x.,x.+n.) by an 
n 1 111 

individual who dies in the interval. In addition to a., Keyfitz introduces a 
n 1 . 

quantity A., the average number of years already lived within the interval 
n 1 

(x.,x.+n.) by a stationary population aged (x.,x.+n.). 
111 111 

Taking a. = n./2 on the first cycle to obtain first approximation 
n 1 1 

of q. using formula (A), then using 
1 



and 

a. 
n 1. 

L. 
1. 

A. 
n :l 

~ 112 ~ 

n. n. d.+l - d. 1 
2 1. + 2 ~ (1. d. 1=-__ ) 

1. 

n. n. L
i
+l - L

i
_ l f + 2~ (----~-) 

1 

and other formulas to arrive at a second approximation of q.. After each 
1. 

iteration, a life table is constructed and the age-specific mortality rate 

is compared with those observed, and an adjustment made for the next iteration. 

The iterative process continues until the life table age specific rates agree 

with the corresponding observed rates. 
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It has been pointed out in Section 1 of this chapter that a cohort life 

table describes the actual mortality experience of a particular group of 

individuals (the cohort) from birth to the death of the last member of the 

group. The subject involved need not be hl~an beings. Cohort life tables 

for various animal populations have appeared frequently in the literature. 

In fact, the cohort life table has been widely used for years in studies 

of animal populations, in biological control, in ecology, and in population 

dynamics. Cohort life tables have been constructed for inanimate objects 

as well. 

For simplicity of formulas, the length of age interval is assumed to be 

constant and denoted by n. The basic variables involved in a cohort life table 

are the number of survivors (~ ) at each age x, the number of deaths (d ) 
x x 

within each age interval (x,x+n). The unit of x depends on the problem in 

question. In any case, the numbers ~ and d satisfy the obvious relationship 
x x 

R. -R. = d x x+n x (5.1) 

or 

R. = R. -d x+n x x (5.2) 

The number of survivors at age x+n is equal to the number alive at the begin-

ning of the interval (x, x+n) minus those who died during the interval. 

The probability q for each interval is estimated by dividing d by R. , 
x x x 

d 
x =r 
x 

(5.3) 

" When R. , d , and q are determined, the remaining part of the life table can x x x 

be completed in exactly the same way as in the current life table in Section 1 and 2~ 

Assuming ~ = 1/2, we have x 
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1 n 
L = nQ, + ( l-? ) nd = - (Q, + Q, ) x x+n - x 2 x x+n (S.4) 

In a cohort life table, observations are usually made throughout the life span 

of subjects under study. Therefore, the values Q, , d , L and formulas 
x x x 

from (S.l) to (S.S) are all applicable to the last age interval (Q, are over). 
x 

The quantity T as before is equal to the sum of L , i.e., 
x x 

T = L + ••• + L 
x x w (S .S) 

where the symbol w indicates the beginning of the last age interval. Finally, 

the expectation of life Q, is given by 
x 

f\ 
e 

x 

T 
x =r 
x 

x = 0,1, ... ,w (S.6) 

An example of a life table for adult Drosophila Melanogaster is presented 

in Table 10 for illustration [Miller and Thomas]. A group of Q,o 270 male 

fruit flies were followed from the time they became adults. The number of 

survivors at each five day period and the number of deaths occurrin?, within 

each age interval of five days are recorded in columns (2) and (3) respectively. 
A 

Dividing d by Q, [or each age interval gives the probability of dying q x x - x 

in column (4). Using relations (S.4), (5.S), and (S.6), we computed the 
A 

quantities L , T , and e for each age, and recorded the numerical values 
x x x 

in columns (S), (6), and (7), respectively assuming ax = .OS over all intervals. 

A similar table has been constructed for female adult Drosophila. Comparison 

between the two sexes with respect to the expectation of life, the survival 

probability, or the probability of death, can easily be made with the aid of 

the corresponding standard deviations (c.f., Chapter 6). 
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Table 8 

Life Table of Adult Male Drosophila Melanogaster 

Age Number Number Probability Days Days Observed 
Interval living dying in of dying in lived in lived Expectation 

(Days) at age x (x, x+n) (x, x+n) (x, x+n) beyond of life at 

"""ag~_")("" age x 
-.,.----.-~ .. -. _. ~-.. -----.-,.--... 
(x, x+n) R, d A /'\ 

qx L T e x x x x x 
(1) (2) (3) (4 ) 

. --_ .. _._---._-
(5) (6) (7) 

0-5 270 2 .00741 1345 11660 43.2 
5-10 268 4 .01493 1330 10315 38.5 

10-15 264 3 .01136 1312 8985 34.0 
15-20 261 7 .02682 1288 7673 29.4 
20-25 254 3 .01181 1262 6385 25.1 

25-30 251 3 .01195 1248 5123 20.4 
30-35 248 16 .06452 1200 3875 15.6 
35-40 232 66 .28448 995 2675 11.5 
40-45 166 36 .21687 740 1680 10.1 
45-50 130 54 .41538 515 940 7.2 

50-55 76 42 .55263 275 425 5.6 
55-60 34 21 .61765 118 150 4.4 
60 + 13 13 1.00000 32 32 2.5 
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Table 9 

Life Table of Adult Female Drosophila Melanogaster 

Age Number Number Probabili ty Days Days Observed 
Interval living dying in of dying in lived in lived Expectation 

(Days) at age x (x, x+n) (x, x+n) (x, x+n) beyond of life at 
X age x 

--.. ---
(x, x+n) 1 d 

1\ A 

qx L T e 
x x x x x 

-~.-------

(1) (2) (3) (4) (5) (6) (7) 

0-5 275 4 .01455 1365 10303 37.5 

5-10 271 7 .02583 1338 8938 33.0 

10-15 264 3 .01136 1312 7600 28.8 

15 ... 20 261 7 .02682 1288 6288 24.1 

20-25 254 13 .05118 1238 5000 19.7 

25-30 241 22 .09129 1150 3762 15.6 

30-35 219 31 .14155 1018 2612 11.9 

35-40 188 68 .36170 770 1594 8.5 

40-45 120 51 .42500 472 824 6.9 

45-50 69 38 .55072 250 352 5.1 

50-55 31 26 .83871 90 102 3.3 

55 + 5 5 1.00000 12 12 2.5 
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Footnotes 

1/ 
ilurlng the early development of the concept of expectation of life, a 

curtate expectation of life, defined as 

was first introduced. This expectation conRiders only the cOMpleted yearR 

of life lived by survivors, whereas the complete expectation of life takes 

into account also the fractional years of life lived hy those who die in any 

year. Under the assumption that each person who dies durin~ any year of 

age lives half of the year on the Bverar,e, the complete expectation of life 

is ~iven by 

o 
e 

x e 
x 

1 
+ 2 

Since the curtate expectation is no lon~er in use, in this book the sYMhol 

e is used to denote the true expectation of life at age x. x 
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CHAPTER 6 

STATISTICAL INFERENCE REGARDING LIFE TABLE FUNCTIONS 

J. Introduction 

Each figure in a life table as described in the preceding chapters 

is an estimate of the corresponding unknown true value. Statistical inference 

regarding these unknown values may be made on the basis of the observed 

quantities. An essential element required in making statistical inference. 

as indicated in Chapter 3, is the stilndard error of the estimate. The purpose 

of this chapter is (1) to derive formulas for the sample varianceS (or their 

square roots,standard error) of the life table functions, and (2) to demonstrate 

with numerical values how to construct confidence intervals and how to test 

statistical hypotheses. Specifil'illly, inference will be made about three 

categories of parameters: (i) q., the probability of dying in an age interval 
1 

(x1,x
i
+

1
); (ii) P

ij
, the survival probability from age Xi to 

the expectation of life at age x , for a = 0,1, .. . ,w. 
et 

X. ; 
J 

and (iii) e , 
et 

2. Thc:~!obabiUty_~ __ .Q.ying qj an_d_.i!~~_'probability of ~ur~i~_:!:.~£ 1\ 

Tile probability of dying and the probability of surviving an age interval 

are complementary to one another; therefore their estimates have the same 

sampJe variance. 

we have 

2 
Denot ing the samp I e variances by Sr. and 

qi 
respectively, 

(2.1) 

In a current life table, the estimate qi is derived from the corresponding 

" mortality information, in terms of which the sample variance of qi should be 

expressed. We have found in Chapter 3, e<1uation 0.5) that 

1 
D. 

1 

(2.2) 
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and the 95% confidence interval for the probability qi: 

(2.3) 

For a given problem, q. and SA can be determined, and the two limits, 
1 q. 

1 A A 
be found. These limits are called the q. - 1. 96 SA and q. + 1.96 SA , can 

1 q. 1 q. 
1 1 

confidence limits, and the interval extending from the lower limit 

q. - 1.96 SA to the upper limit q. + 1.96 SA is the 95% confidence interval. 
1 qi 1 qi 

As an example, consider the probability of dying in the first year of 

" In the 1970 California experience, the estimate qo = .01801, 

the number of deaths, DO = 6234, and hence the standard error of qo is: 

= 

= 

(.01801)2(1-.01801) 
6234 

.000226 . 

Substituting these values in (2.3) yields the 95% confidence limits for the 

probability qO:" 
qo 1.96 SA = .01801 

qo 
1.96(.000226) = .01757 

= .01801 + 1.96(.000226) = .01845 . 

Thus we conclude with a 95% confidence that, if the California 1970 

mortality experience prevails in a population, the probability that a 

newborn will not survive to the first birthday is between .01757 and .01845. 
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The logic of the preceding statement needs some explanation. Formula 

(2.3) indicates that, before information is gathered, the chances are 95 

out of 100 that the interval (q. - 1.96 SA , q. 
1 qi 1 

+ 1.96 SA ) to he determined 
qi 

will contain the unknown quantity q.. After 
1 

the information is gathered, 

and the numerical values of the limits (.01757 and .01845) are obtained, we 

certainly have confidence in the statement that the quantity 

between .01757 and .01845; a measure of this confidence is the value of the 

probability .95. This measure of confidence (.95, in this case) is 

called the confidence coefficient. The essential point to be recognized 

b; that a probahi lj ty is a measure of likcU hoori 0+ occurrence of an event 

(death, for example) before the event tares place, whereas a confidence 

coe4='fi cient is a "leasure of confidence one has in a statement about an 

unknown quantity after the corresponding event has occurred. 

A second use of the sample variance of the estimate A 

q. is testing 
1 

a hypothesis concerning either the probability of dying in one 

age interval or the comparison of two or more probabilities. Suppose we 

want to know if the force of mortality has decreased over the past decade 

so that a new born in 1970 has a better chance of surviving the first 

year of life than that in 1960. Here we are testing the hypothesis that 

qo(1970) is the same as qO(1960) against the alternative hypothesis that 

qo(1970) is smaller than qO(1960). The statistics for the test is 

QO(1960) - QO(1970) 
Z = -------------------

S.E·[qo(1960) - QO(1970)] 

where the standard error of the difference is given by 

q~(1960)[l-qoC1960)] 
------=-~~~------- + °0(1960) 

(2.4) 

q~(1970)[1-qO(1970)] 
°0(1970) 

(2.5) 
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Using California experience again, we have the required information given 

in the following table 

Table 1 

Estimate of probability of dying in the first year of life and 
the standard error. California. 1960 and 1970 

19bO 1970 (10(1960) - (10(1970) 

A 

qo .02378 .01801 .00577 

DO 8663 6234 

2 -8 -8 -8 
S 6.3724xlO 5.l09xlO 1l.48lxlO 

S.E. 2.524xlO -4 2.260xlO -4 3.388xlO -4 

From Table 1 we compute the statistic 

Z = .00577 ------:- = 17.03 , 
-4 3.388xlO 

which is significantly greater than the 99th percentile in the standard 

normal distribution. We conclude that a newborn in California 

in 1970 has a smaller prohahility of dyin?, in the first year of life 

than that in 1960. 

Remark 1. In a cohort (generation) life table both the number living 

(£.) at age x. and the number of deaths (d.) occurring in the interval 
1 1 1 

(x., x. 1) are directly observed. The prohahili ties :lre estimated hy 
1 1+ 

IIere we have a 

is given by 

d. d. 
A 1 ... 1 q. = r.- and p. = 1 - r 1 1 

(2.6) 
1 1 

" 1\ binomial situation, so that the variance of q. (p.) 
1 1 

2 1~. ~ 2 
S" = tl q. (l-q.) = Sf' 

q. N. 1 1 Pl. 
1 1 

(2.,7) 
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The Survival Probability, p .. 
lJ 

The probability that a person of age x. will survive to age x. is 
1 J 

an important quantity in the survival analysis. It provides an 

investigator with critical information that he seeks in his study. 

This probability can be obtained directly from the life table. Since 

the survival of a person from age x. to x. means the survival of every 
1 J 

single intermediate age interval, the probability p .. is given by the 
lJ 

equation 

p .. = p. p. 1 ... p. 1 1J 1 1+ J-
(3.1 ) 

or 

p .. = (l-q.)(l-q. 1) ... (I-q. 1) 
1J 1 1 + J -

(3.2) 

i\ case of particular interest is when x. = O. Here we have the probability 
1 

of surviving from age 0 to a specified age x. 
J 

(3.3) 

To obtain the estimate of the survival probability, we only need to 

1\ 
substitute the estimates of q. in the formulas (3.2) and (3.3). When the 

1 

information is taken from a life tahle, computations can he simplified. 

For example, 

"-

POj = PO ?1 p. 1 J-

Q,l Q,2 Q" Q,. 
---L. = J = 

iO ~ iO 
, 

Q" 1 J-
0.4) 

similarly 

Q,. 
p .. = J 

1J ~ 
1 

(3.5) 
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In the current life table the individual estimates, 

h = i, ... ,j-l , (3.6) 

are based on the corresponding age-specific death rates, the sample variance 

of p .. should be expressed in terms of the sample variance of each q . 
1J h 

Since the individual estimates qh are hased on mortality information of 

separate age groups, they are statistically independent of one another. 

Using a theorem on the variance of a product of independent random variables, 

the sample variance of p .. may be determined from the formula: 
1J 

? " :z 
j -1 ,,-2 ? 

S::: r s~ (3.7) = p .. Ph c A 

p .. 1J h=i Ph 1J 

with the sample variance of Ph given in (2.2) . 

For the 1960 United States data and for the 1970 California data, 

probability POi and the corresponding sample variances and standard errors 

have heen computed. The numerical results are given in Tahle 3 and Table 4, 

respectively. The mean steps in the computation are as follows: 

(1) 

(2) 

Record the number of deaths (0.) occurring in each age interval 
1 

in the population in Column 2, and the probability of dying in 

Column 3. 
1\ 

Use formula (2.2) to compute the sample variance of q. and 
1 

enter it in Column 4. 

(3) Use formula 0.3) to compute the prohah.ility of surviving a~':e 

"-

the 

interval (O,xi ) POi' and record it in rolumn 5. POD is 1 by definition. 

(4) Use formula (3.7) or 

s; /2· -2 2 1'.-2 s~ .~ -2 2 
] = POi [PO S, + PI + ... + Pi-l s .... 

POi Po PI l'i-l 

the 
,. 

and record it in Column 6. to compute variance of POi 
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Table 2 

Abridged life table for total United States population, 1960 

--'---~"'"-"~~ .-~ ..•. --~~---~---.. ~,~ -. -"',- ."".,-

Fraction 
Proportion Number Number of Last No. Years Total No. Observed 

Age Dying in Living Dying in Age Lived in Years Lived Expectation 
Interval Interval at Age Interval Interval Interval Beyond of Life at 

(in years) (x.,x.+l) x. (x.,x.+1) of Life (xi ,xi +1) Age x. Age x. 1 1 1 1 1 1 . _. ___ ~ •.... _._l __ • 

Xi to xi +1 qi £. d. a. L. T. e. 
1 1 1 1 1 1 

--------.~-,,- .. -.•... -.,..--, ... ~.,.-.-. . -~-" .. ,--.-.~--.-------.-~-.,-.--~.-.-.-

(1) (2) (3) (4) (5) (6) (7) (8) 

0-1 .02623 100,000 2,623 .10 97,639 6,965,395 69.65 
1-5 .00436 97,377 425 .39 388,471 6,867,756 70.53 
5-10 .00245 96,952 238 .46 484,117 6,479,285 66.83 

10-15 .00219 96,714 212 .54 483,082 5,995,168 61.99 
15-20 .00458 96,502 442 .57 481,560 5,512,086 57.12 

20-25 .00616 96,060 592 .49 478,790 4,030,526 52.37 
25-30 .00652 95,468 622 .50 475,785 4,551,736 47.68 
30-35 .00800 94,846 759 .52 472,408 4,075,951 42.97 
35-40 .01159 94,087 1,090 .54 467,928 3,603,543 38.30 
40-45 .01840 92,997 1,711 .54 461,050 3,135,615 33.72 

45-50 .02902 91,286 2,649 .54 450,337 2,674,565 29.30 
50-55 .04571 88,637 4,052 .53 433,663 2,224,228 25.09 
55-60 .06577 84,585 5,563 .52 409,574 1,790,565 21.17 
60-65 .10257 79,022 8,105 .52 375,658 1,380,991 17.48 
65-70 .14763 70,917 10,469 .52 329,459 1,005,333 14.18 

70-75 .21472 60,448 12,979 .51 270,441 675,874 11.18 
75-80 .31280 47,469 14,848 .51 200,967 405,433 8.54 
80-85 .46312 32,621 15,107 .48 123,827 204,466 6.27 
85-90 .61437 17,514 10,760 .45 57,980 80,639 4.60 
90-95 .78812 6,754 5,323 .41 18,067 22,659 3.35 

95+ 1.00000 1,431 1,431 4,592 4,592 3.21 



Age 
Interval 

(x.,x· 1) 
1 1+ 

(1) 

o - 1 
1 - 5 
5 - 10 

10 - 15 
15 - 20 

20 - 25 
25 - 30 
30 - 35 
35 - 40 
40 - 45 

45 - 50 
50 - 55 
55 - 60 
60 - 65 
65 - 70 

70 - 75 
75 - 80 
80 - 85 
85 - 90 
90 - 95 

95+ 
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Table 3 

Computation of the standard error of survival probability. 
Total United States population, 1960. 

Number of Probabili ty Probability 
Deaths in of Dying in Sample of Surviving Sample 

Interval Interval Variance Interval Variance 
(x. ,x. 1) (x.,x. 1) .'\ (' ) "-of q. p. (O,x. ) of POi 1 1+ 1 1+ 1 1 1 

D. l' 8 2 ,... 8 2 
q. 10 xS.I' POi 10 xS ... 

1 1 q. POi 1 

(2) (3) (4) (5 ) (6) 

110873. 0.026230 0.60426 1.000000 0.00000 
17682. 0.004360 0.10703 0.973770 0.60426 

9163. 0.002450 0.06534 0.969520 0.70049 
7374. 0.002190 0.06489 0.967140 0.75848 

12185. 0.004580 0.17136 0.965020 0.81586 

13348. 0.006160 0.28252 0.960600 0.96799 
14214. 0.006520 0.29712 0.954680 1. 21680 
19200. 0.008000 0.33066 0.948460 1.47180 
29161. 0.011590 0.45530 0.940870 1.74580 
42942. 0.018400 0.77390 0.929970 2.10864 

64283. 0.029020 1. 27206 0.912&6U 2.70107 
90593. U.045710 2.20093 0.886370 3.60661 

116753. 0.065770 3.46131 0.845850 5.01355 
153444. 0.102570 6.15306 0.790220 6.85223 
196605. 0.147630 9.44893 0.709170 9.36099 

223707. 0.214720 16.18415 0.604480 11 .55334 
219978. U.312800 30.56591 0.474690 13.03838 
185231. 0.463120 62.16567 0.326210 13.04497 
120366. 0.614370 120.92803 0.175140 10.37583 
50278. 0.788120 261.756U1 0.067540 5.25246 

13882. 1.000000 0.00000 0.014310 1.42976 

Standard 
Error 

of POi 
. __ .. _-_._---"-

4 10 xS .. 
POi 

(7) 

0.00000 
0.77734 
0.83695 
0.87091 
0.90325 

0.98386 
1.10308 
1. 21317 
1.32128 
1. 45211 

1.64349 
1.89910 
2.23909 
2.61767 
3.05957 

3.39902 
3.61087 
3.61178 
3.22115 
2.29182 

1.19572 



Age 
Interval 

(x. ,x. 1) 
1 1+ 

_.- ..... -.. - ...... ,-._-

(1) 

0- 1 
1 - 5 
5 - 10 

10 - 15 
15 - 20 

20 - 25 
25 - 30 
30 - 35 
35 - 40 
40 - 45 

45 - 50 
50 - 55 
55 - 60 
60 - 65 
65 - 70 

70 - 75 
75 - 80 
80 - 85 
85+ 
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Table 4 

Computation of standard error of survival probability. 
Total California population, 1970. 

Number of Probability Prohability 
Deaths in of Dying in Sample of Surviving Sample 

Interval Interval Variance Interval Variance 
q. (p.) 1\ 

(x.,x· 1) (x. ,x. 1) of (0, x. ) of POi 1 1+ 1 1+ 1 1 1 

"- 8 2 8 2 
D. q. 10 xS," Phi 10 xS, •. 

1 1 q. POi 1 
.... _ .....• __ ... - ". 

(2) (3) (4 ) (5) (6) 

6234. 0.018010 5.10937 1.000000 0.00000 
1049. 0.003220 0.98522 0.981990 5.10937 

723. 0.001880 0.48793 0.978830 6.02660 
735. 0.001870 0.47487 0.976990 6.47146 

2054. 0.005640 1.53993 0.975160 6.90051 

2702. 0.007730 2.19433 0.969660 R.28727 
2071. 0.007080 2.40325 0.962160 10.22275 
1964. 0.008020 3.24870 0.955350 12.30338 
2588. 0.011190 4.78419 0.947690 15.07196 
4114. 0.016890 6.81706 0.937090 19.03349 

6722. 0.026640 10.27645 0.921260 24.38215 
8948. 0.040490 17.58000 0.896720 31.82238 

11942. 0.062070 30.25915 0.880410 43.43359 
14309. 0.088860 50.27921 0.807000 60.60944 
17088. 0.128930 84.73635 0.735290 83.06080 

19149. 0.180520 139.45783 0.640490 108.83660 
21325. 0.270390 250.13991 0.524870 130.29900 
20129. 0.385210 453.21022 0.382950 138.27254 
22843. 1.000000 0.00000 0.235430 118.72215 

Standard 
Error 

f i\ 
o POi 

"-".,--"._----
4 10 xS", 

POi 
. ~ .. -- .. --.-.------.---

(7) 

0.00000 
2.26039 
2.45491 
2.54390 
2.62688 

2.87876 
3.19730 
3.50761 
3.88226 
4.36273 

4.93782 
5.64113 
6.59041 
7.78520 
9.11377 

10.43247 
11.41485 
11.75893 
10.89596 
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(5) Take the square root of the variance to ohtain the standard 
... 

error of POi and record it in Column 7. 

Statistical inference ahout the unknown survi val probahil i ty 

(POi) can now be made using the standard errors in Table 3 and Table 4. 

For example, the estimate of the probability of surviving from birth to age 20 

is ~O,20 = .96060 for the total United States population, 1960, and PO,20 = 

.96811 for the total Cali forni a population, 1970. To test for the signi fi-

cance of difference between these two prohahilHies, we compute the critical 

ratio 

Z = 
,. I' 

Po 20(U'S.) - Po 20(Ca1.) , , 
S.E.(diff.) 

(3.8 ) 

The standard error of the difference is given by 

S.E.(diff.) 
/ [l = / (.96799xlC- l) + (8.2R727xlO-O) 

(3.9 ) 

A 

Substituting the numerical values of PO,20 and (3.8) in (3.7), 

Z = .96060 - .96966 
I -4 1.0w22 x10 

= -29.78 . 

= -.00906 
-4 

3.0i..22x10 

Based on the above findings, we conclude that a newborn who is suhject 

to California 1970 mortality experience has a greater prohahility of 

surviving to age 20 than one who is subject to United States 1960 experience. 

The converse is true, however, for the probahi1ity of surviving from 

age 20 to age 40. Table 5 shows that P20,40(U'S') > P20,40(Cal.) and 



P20 40(IJ·S.) - P20 40(Cal.) 
--~'--~~~~~~'~----- = S.E.(diff.) 
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.96811 - .96641 

3.6487xlO-4 
= 4.59 . 

Remark 2. The formula for the estimate 1\ 
p .. in (3.5) applies 

1J 

to both the current life tahle and the cohort life table. However, the 

formula for the variance of ~ .. assumes different forms in the two cases . . 1J 

In a cohort life table, £. is the number of survivors at x. of £. individuals 
J J 1 

1\ 
living at x., with p .. being the proportion of surviving the interval 

1 1J 

(x., x.). Therefore, p .. = £./£. is a hinomial proportion with a sample 
1 J 1J J 1. 

variance given by 

2 1 A " 

SA =y-p .. (l-p .. ). 
Pij i 1J 1J 

(3.10) 

Formula (3.10) for the sample variance of p .. is equal to (3.7) in the 
1] 

cohort life table, where the sample variance of the proportion for each 
A 

age interval Ph is computed from 

(3 .11) 

for a cohort life table, then formula 0.7) will be reduced to formula 

(3.10). Substituting Pij = £j/£i' Ph = £h+l/£h and (3.11) in (3.6), we 

have 

S~ [~~r 
j -1 [~r ~ ~+I [I ~IJ = r p .. h=i Rn+l -it Rn 1J 

[~r 
j -1 1 [I ~IJ = 1: 

R.h+l n=i 

1 £. [I 1j] _ ~ ~ _A J (3.12) = r- r - r £ P .. (1 P .. ) 
. . 1J 1J 

1 1 1 1 

is required to be shown. 



Age 
Interval 

(x.,x.) 
1 ) 

(1) 

(0, 20) 

(20, 40) 
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Table 5 

Statistical test for the significance of difference between 
survival probabilities of United States population, 1960, 
and California population, 1970. 

United States Cal i fornia 
1960 1970 Difference * ._------.. _----_.-

" 4 104SI\ (2)-(4) 104s. E. (diff.) p .. 10 SA p .. 
1) p .. 1J p .. 

1J 1J ------_. '---'-"'-
(2) (3) (4) (5) (6) (7) 

.96060 .9g38b .96966 1.87876 -.00906 3.0422 

.96811 1.14104 .96641 3.4657 +.00170 3.6487 

1\ 1\ 
*Formu1a for the standard error of the difference, p .. (U.S.) - p .. (Ca1.): 

1J 1J 

S.E.(diff.) =/ Sp~ .. (u.s.) + S~ ( ) p .. Cal. 
1J 1J 
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4. Expectation of Life at Age x , e 
a a 

Expectation of life at a given age is the mean future lifetime 

beyond this age. In the life table, there are ta individuals living 

at age x . 
a Let the lifetime beyond xa of these individuals be denoted 

by Yak' for k=l, ••• ,ta • Their mean value 

ta 
y = 1 r 
a tn k=l 

(4.1) 

is approximately normally distributed, with an expected value of ea' This 

sample mean Va is equal to the observed expectation of life ea , or 

(4.2) 

We now show that equation (4.2) is indeed true. 

As any continuous random variable, lifetime of an individual is not 

accurately measured. In fact, the values of the t values are not a 

individually recorded in the life table, but grouped in the form of a frequency 

distribution in which the ages x. and x. 1 are the lower and upper limits 
1 1+ 

for the interval i, and the deaths, di , are the corresponding frequencies 

for i = a, a+l, ••• ,w. The sum of the frequencies equals the number of 

survivors at age xa ' or 

+ ... +d .R. 
w a (4 .3) 

The total number of years remaining to the R. survivors depends on the 
a 

exact age at which death occurs, that is, on the distribution of deaths 

within each age interval. Suppose that the distribution of death in the 

interval (x., x. 1) is such that, on the average, each of the d
1
. 1 1+ 

individuals lives a fraction a
i 

of the interval, or ain
i 

years in the 

interval (since x. I-x. • ni is the interval length). Eacb thus lives 1+ 1 
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x. + a.n. years, or x.-x + a.n. years after age x , and the sample mean 
111 1 a 1 1 a 

is given by 

w 
V =-1.. 1: (x. -x + a.n.) d. 

a 1 i=a 1 a. 1 1 1 
a 

w 

=i- ~~a (x. -x ) d. + 1: a. n. di ] 1 a 1 
i=a. a. 

By definition 

hence 

x.-x = n +n 1 + ••• + n. I = 
1 a a 0.+ 1-

w w 
1: (x.-x) d

1
. = 1: 

1• --a. 1 a. . 1=0. 

\iT-I 

[
i-l 1 1: n. 
j=a. . J 

w 
= 1: n. 1: 

i=j+l j=a. J 

1 1 

i-I 
1: n. 

j=a. J 

d. 
1 

d. 
1 

( 4.4) 

(4.5) 

( 4.6) 

Since the number of individuals living at age x. will all eventually die, 
J 

1
J
• = d. + d. I + ••• + d 

J J+ W 

or 

1.-d. = d. I 
J J J+ 

+ ••• + d = w 

Therefore (4.6) may be rewritten 

w 
1: 

i=j+l 

w 
1: 

i=a. 
(x.-x) d. 

1 a. 1 

w-l 
= 1: 

j=a. 
n. (1. -d.) 

J J J 

Substituting (4.9) in (4.4) gives 

d. • 
1 

(4.7) 

(4.8) 

(4.9) 
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Y = f- f~l n.(t.-d.) + ~ a.n. 
a. a. U=o. J J J i=o. 1 1 

[:-1 = -J- E {no (i. -d.) + 
"". 1 1 1 a. 1=0. 

a.n. 
1 1 

d. } 
1 

The quantity inside the braces, for i = o., ... ,w-l, 

(4.10) 

n. (i.-d.) + a.n. d. = L. (4.11) 
1111111 

is the number of years lived by the i. individuals in the interval (x., x. 1). 
1 1 1+ 

Also we let 

L = and = a n "w w w w w w w (4.12) 

be the number of years lived by io. beyond a~e xw. Using (4.11) and (4.12) 

we rewrite (4.10) is 

L + L 1 + ••• + L - a. 0.+ w Y = --.......;~---__ 
a. i 

a. 

which, of course, is e , the observed expectation of life at age x , 
a. a. 

proving (4.2). 

(4 .13) 

4.1 Formula for the variance of the expectation of life. Once the 

equality "-between the observed expectation of life e and the sample mean 
a. 

future lifetime Y is established, the sample variance of; can easily be computed. 
a. a. 

We may visualize the age and death columns in a cohort life 

table as a frequency distribution, with x.-x+ain. being the 
1 1 

average value and d i the corresponding frequency so that the 

sample variance of Yo. is given by 
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,.. 2 
[(x.-x + a.n.) - e] d .• 

1 (l 1 1 (l 1 
(4.14) 

,.. 
Consequently, we have the formula for the sample variance of V (or eCl) 

(l 

2 2 1 
S,.. = S- = n-
e Y '" cl a (l 

or, by substitution of (4.14), 

w 
1: 

i=Cl 

,.. 2 
[(x.-x +a.n.) - e] d. 

1 cl 1 1 a 1 

(4.15) 

(4.16) 

In formula (4.14), a., n., e , d. and 1 are all given in a life table; the 
1 1 ex 1 a 

sample variance of e can be determined. 
cl 

Formula (4.14), however, is not applicable for the current life table 

for a number of reasons. First of all, figures d. and ~ are dependent upon 
1 (l 

the choice of the radix 1
0

, and therefore are not meaningful quantities when 

they appear without reference to 10 . Secondly, basic variables in a 

1\ 
current life table are the qi. Therefore, the sample variance estimates 

of e should be expressed in terms of the variance of q .. a 1 

Formula (4.10) for the observed expectation of life, with the sub-

or 

" 1 e .-a 1 
a 

Now we let 

~
-1 
E {n.t

j 
1 + a.n.(1.-t. I)} + 

J + J J J J+ 
an dl w w wI 

-a 

fa n 1 + L a a (l 

w 
r 

j-a+ l 
[(I-a. l)n. 1 + a.n.] 

J- J- J J 

(4.15) 

(4.16) 

(4.17) 



and write 

'" e = a n 
a a a 

or, since ~./~ 
J a 

'" e = a n + a a a 
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c 1 ~ 1 + ••• + cwo + a+ a+ "'W 

= p . 
aJ 

w 

~ 
a 

(4 .18) 

(4.19) 

Thus, the observed expectation of life e is a linear function of p ., 
a ~J 

which in the current life table is computed from 

'" p. 1 J-
j = a+l, ... , w . 

Clearly, the derivatives of p . with respect to p. is given by 
aJ 1 

0 '" '" 

dp. Paj = Pai Pi +1,j 
1 

for a < i < j 

= 0 otherwise 

Hence, from (4.19) 

a w a '" ea = r c. Paj ... J '" ap. j=a:+l op. 
1 1 

W 

= r c. Pai Pi+l,j j=i+l J 

[Ci +1 

w 

Pi+l. i ] 
= Pai + r c. 

j=i+2 .J 

Using relation (4.19), or 

(4 .20) 

(4.21) 

(4.22) 
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W 
A 

e. 1 = a. In. 1 + r 1+ 1+ 1+ j=i+2 

and 

C
1
' +1 = (I-a. In. + a. 1 n. 1 

~ 1 1+ 1+ 

we rewrite the derivative in (4.22) as follows 

a 
ap. 

1 

; = p",. [(l-a.)n. +;.1] • a ... 1 1 1 1+ 

(4.23) 

(4.24) 

(4.25) 

Because of (4.21), the derivative (4.25) vanishes when i = w. Now the 

estimated probabilities (p.) for two nonoverlapping age intervals are based 
1 

on mortality e~perience of two distinct groups of people, and therefore 

are not correlated. Consequently, the variance of the expectation of 

life may be computed from the following 

{ 1
2 

2 w-l a A 

SA = r -. - e e . .A a 
a ~=a ap. 

~ 

S~ 
p. 
~ 

(4.26) 

Substituting (4.25) in (4.26) yields the desired formula for the sample 

" variance of ea : 

where the 

S; = p. 
1 

w-l 
r 

i=a 

A2 "2 2 
Pal· [(I-a. In. + e. 1] SA 

1 1 1+ p. 
1 

variance of p. is given in (2. 2) • 
1 

A2 " q. (l-q.) 
1 1 

D. 
1 

(4.27) 

(2.2) 

4.2 Computation of the variance of the expectation of life in a 

corrent life table. Formula (4.27), which holds true for any age x in a 

the life ta'le, contains terms that appear repeatedly for different values of a. 

Therefore, the variances of e for all ages x in the life table can be a a 
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calculated by a single computation program. Using formula (4.27) and 

referring to Table 6, the essential steps in the computation of the sample 

variance of ;a are as follows. 

1. Designate age interval in Column 1. 

2. Record the length of age interval n. in Column 2, and the fraction 
1 

of last age interval of life a. in Column 3. 
1 

3. Compute the sample variance of p. (q.) from formula (2.~) and 
. 1 1 

record it in Column 4. 

4. Compute for each age interval the quantity 

2 A 2 S~ 1. [(l-a.)n. + e. 1] .. 
1 1 1 1+ p. 

1 

and record it in Column 5. 

5. Sum the products in Column 5 from the bottom of the table up to 

xa and enter the sum in Column 6. 

6. Divide the sum in Column 6 by 1~ to obtain the sample variance 

of the observed expectation of life in Column 7. 

7. Take the square root of the sample variance to obtain the sample 

standard error of the observed expectation of life, as shown in Column 8. 

4.3 Statistical inference about expectation of life. An observed 

expectation of life, as shown earlier in this section, is a sample mean 

of future lifetime. Therefore, statistical tests based on normal 

distribution may be used in making inference regarding expectation of life 

at a particular age, or in comparing expectation of life of two or more 

populations. In Table 7 the expectations of life for the United States 

1960 population are compared with those for the California 1970 population. 

F~r each age the expectation of life and the standard errors are recorded 

in Columns 2 through 5. The difference of the expectations is given in Column 6. 
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The standard error of the difference computed from 

S.E.(dHf.) - S~ (Cal.) + S~ (U.S.) e
i 

e
i

, 
(4.28) 

is recorded in Column (7). The ratio of the difference to the corre.poDdinS 

standard error is recorded in Column 8. 

The critical ratio for each age far exceeds the critical value of 2.33 

in the normal distribution corresponding to the one percent level of significance. 

This means that a person of any age, who is subject to the California 1970 

mortality experience, has a greater expectation of life than one who is subject 

to the United States 1960 experience. 
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Table 6 

Computation of the sample variance of the observed expectation of life 

Total U.S. Popu1atio~1960 
-Fractior 

Age Length of last - 1 
Sample Sample .:Jdrr:?~e ~ interval of age varianCE N<~ 

variance Standard tf.l 
(1n years) interval interval of Pi N of l!i Error 

of life ,......, ...., ...., 
of ei 

..-l ~ N<~ 

+ ..-.. tf.l 
'H 'r; 

<~ ctS N . 
I ,......, 

~ ..-l ..-l 

I ~ - + ..-.. ~ 'r; 
~ < CII 

ctS N 'r; 
I co< + 

108S~ 
..-l 

10452 to xi+1 - 'H 
S~ xi n1 -1 ~ W AI 

Pi N 'H ~ ~i co< i 

(1) (2) (3) (4) (5) (6) (7) (8) 

0-1 1 .10 .6043 308,328.66 1,384,473.52 1.3845 .012 
1-5 4 .39 .1070 48,684.08 1,076,144.86 1.1349 .011 
5-10 5 .46 .0653 25,686.27 1,027,460.78 1. 0931 .010 

10-:-15 5 .54 .0649 21,433.28 1,001,774.51 1.0710 .010 
15-20 5 .57 .1714 47,445.51 980,3[11.23 1. 0527 .010 

20-25 5 .49 .2825 65,770.32 932,895.72 1.0110 .010 
25-30 5 .50 .2971 55,984.55 867,125.40 .9514 .010 
30-35 5 .52 .3307 49,278.91 811,140.85 .9017 .009 
35-40 5 .54 .4553 52,293.09 761,861. 94 .8606 .'009 
40-45 5 .54 .7739 66,833.91 709,568.85 .8205 .009 

45-50 5 .54 1.2721 79,526.83 642,734.94 .7713 .009 
50-55 5 .53 2.2009 95,654.42 563,208.11 .7169 • .008 
55-60 5 .52 3.4613 97,872.06 467,553.69 .6535 .008 
60-65 5 .52 6.1531 105,623.14 369,681.63 .5920 .008 
65-70 5 .52 9.4489 87,635.79 264,058.49 .5250 .007 

70-75 5 .51 16.1842 71,425.04 I 176,422.70 .4828 .007 
75-80 5 .51 30.5659 52,370.93 104,997.66 .4660 .007 
80-85 5 .48 62.1657 34,293.39 52,626.73 .4946 .007 
85-90 5 .45 120.9280 13,802.48 18,333.34 .5977 .008 
90-95 5 .41 261. 7560 4,530.86 4,530.86 .9932 .010 



Table 7 

Expectation of life and the standard error, total United States Population, 1960, and total 
California popu1atio~1970. 

United States California Difference Critical Ratio * 
Age e. (Ca1.)-e.(U.S.) 

] ] 

Interval ~.(Ca1.)-&.(U.S.) S.E.(diff.) S.E.(diff.) 
(xi ,xi +1) " s" " S" 

1 1 e. e. (4)-(2) (6) f (7) 1 e. 1 e. 
1 1 

(1) (2) (3) (4) (5) (6) (7) (8) 

0-1 69.65 .012 71.95 .037 2.30 .039 59.0 
1-5 70.53 .011 72.27 .034 1. 74 .036 48.3 
5-10 66.83 .010 68.50 .033 1.67 .035 47.7 

10-15 61.99 .010 63.62 .033 1.63 .035 46.6 
15-20 57.12 .010 58.74 .033 1.62 .035 46.3 

20-25 52.37 .010 54.05 .032 1.68 .034 49.4 
25-30 47.68 .010 49.46 .032 1. 78 .033 53.9 
30-35 42.97 .009 44.79 .031 1.82 .033 55.2 
35-40 38.30 .009 40.13 .030 1.83 .032 57.2 
40-45 33.72 .009 35.56 .030 1.84 .031 59.4 

45-50 29.30 .009 31.12 .030 1.82 .030 60.7 
50-55 25.09 .008 26.90 .029 1.81 .029 62.4 
55-60 21.17 .008 22.92 .028 1. 75 .028 62.5 
60-65 17.48 .008 19.27 .027 1. 79 .027 66.3 
65-70 14.18 .007 15.89 .026 1.71 .026 65.8 

70-75 11.18 .007 12.87 .024 1.69 .024 70.4 
75-80 8.54 .007 10.13 .023 1.59 .023 69.1 
80-85 6.27 .007 7.94 .021 1.69 .020 84.5 

- --

*Formula for the standard error of the difference e.(Cal.) - e.(U.S.) 
1 1 

S.E. (diff.) " 2 2 = • S + S 
I ei(Cal.) ei(U.S.) 

-"" o 
I 
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CHAPTER 7 

MULTIPLE DECREMENT TABLE FOR A CURRENT POPULATION 

1. Introduction 

The multiple decrement table is not only a useful means 

of summarizing mortality experience of a defined population subject to 

several risks of dying, but also a powerful analytical tool for the study 

of decrement data. The concept of multiple decrement eriginates in the 

investigation of component causes of death; however, it has applications in 

many research fields. In the actuarial sciences, for example, disability 

and mortality are distinct causes of claim, and the effects of exposure 

to both causes and their interaction must be analyzed in.a meaningful 

way. Dissolution of a marriage may be because of death occurring to 

either one of the partners or because of divorce. Here there are three 

forces of decrement: death to the male, death to the female and divorce. 

Similarly, survival of an enterprise is subject to many forces of decrement 

and their interacting effects. In spite of numerous applications of this 

methodology, the most important use of multiple decrement tables still 

re~ains to be in the study of mortality. 

The multiple decrenent table is directly related to the theory of 

competing risks presented in Appendix tIl. The theory has been developed 

to evaluate the forces of mortality of competing risks under investigation. 

,'\ccording to the theory, there are three types of· prohahility of death 

~~ith respect to a pa!ticular risk OT risks. 

1.1. Crude prohahility: The probability of death from a specific 

cause in the presence of competition of all other risks acting in a 

population. 
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1.2. Net probability: The probability of death if a specific risk 

is the only risk in effect in the population or, conversely, the prohahility 

of death if a specific risk is eli'11inated from the population. 

1. 3. Partial crude prohability: Th~ prohahility of death from :'t 

specific cause when another risk (or risks) is eliminated from the 

population. 

Detailed discussion of these prohabilities is presented in Appendix 

III. Clarification should he made of the terms "risk" and "cause." Both 

terms may refer to the same condition but arc different on the time scale 

relative to the occurrence of death. Prior to death the condition in 

question is a risk; after death the concH tion is a cause (provided, of 

course, this is the condition from which an individual dies). We shall 

take up this point again in I\ppendix III. 

An ordinary multiple decrement table contains only the crude probability 

of death for selected causes covering the entire life span of a well 

defined population. For easy cOMparison, the probability of death q. 
1 

without referring to causes is often included. Let t1io be the 'Prohahility 

that an individual alive at exact age x. will die in interval (x. ,x. 1) 
1 1 1+ 

from cause Ro in the presence of all other competing ri.sks, for i = O,l, •. .,w; 

<5 = l, .•• ,r. A typical decrement tah1e is given in Table 1 on page 5-3. 

There are two types of multiple decrement tables for the analysis of 

human mortality: The cohort multiple decrement table and the current 

multiple decrement table. As in the case of the life table, a cohort 

multiple decrement table records the mortality experience of a well-defined 

cohort of people from the birth of each person to the death of the last 

person of the group. When a cohort of people is subject to a number of 

risks of dying, there will be deaths from each of these risks within every 

age interval of life. The number of deaths from a specific cause (.5ay Ro) 

in an interval (Xi' xi +l ) divided by the number of individuals alive at the 



:'\ge 
Interval 
(x. ,x. 1) 

1 1+ 

0-1 

1-5 

x. -x. 1 
1 1+ 

x & over 
w 
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Table 1 

Hu1tip1e Decrement Table - The r.rude Probahility 

of Dying ('1ic ) from a specific cause (Ro) in Age 

Interval (x. ,x. 1) 
1 1+ 

Probabi Ii ty Cnuses of Death 
of Dying 

in Interval 
~1 R2 R 

ex. ,x. 1) 
1 1.+ 

r 

qo Q01 
Q02 

Qor 

q1 

q. 
1 

°11 

(). 1 
'1 

o 1 'w 

Q12 

0'2 '1 

() 
'w2 

Q1r 
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beginning of the interval is an estimate of the (crude) probability of 
AI 

dying from cause R~, denoted by Qi~' This estimate is simply the proportion 

of individuals dying from a specific cause in a defined age interval. An 

aggregate of these proportions for different causes of death over all age 

intervals forms a cohort multiple decrement table. A detailed discussion 

and theoretical aspects of the table may be found in Appendix IV of this 

manual. 

A current multiple decrement table, which is more useful for practical 

purposes, is theenederived from the mortality experience of a population 

of all ages over a short period of time, such as one year. The appearance 

of this table is exactly the same as the cohort multiple decrement table, 

but differs from the latter in the basic information from which the table 

is constructed. Specifically, the data for the current decrement taolt= tare 

the number of deaths from different causes and the corresponding mid-year 

population for each age group over the entire life span of a current population, 

from which age-and-cause specific death rates are computed. These rates in 

turn are then used to compute the estimate of the (crude) probability of 
1\ 

dying (Qi~) from each cause R~. A brief description is presented below. 
l\ 

2. Computation of the Crude Probability, Qio 

Let us first reintroduce the symbols used in Chapter 3. For age interval 

(Xl" x. 1) we let n. = x. I-x. be the length of the interval, P. the midyear 
1+ 1 1+ 1 1 

populltion, D. the number of deaths occurring during the calendar year, a. 
1 1 

the fraction of the last age interval lived by each of the D. individuals, 
1 

and N. the number of people alive at x. among whom D. deaths occur. The age-
l 1 1 

specific death rate is defined by the ratio of Di to the ~umber of years lived 

by the N. people in the interval (x., x. 1)' or 
1 1 1+ 

D. 
M. • 1 

1 (Ni - D.)n. + a. n. D. 
1 1 111 

(2.1) 



-145 -

When the denominator is estimated with the mid-year population, P., 
1 

we have 

(N.-D.)n. + a. n. D. = P. 
111 111 1 

D. 
1 M. =-

1 P. 
1 

The probability of dying in the interval (x., x. 1) is estimated by 
1 1+ 

" Di q. = 
1 N. 

1 

where N. can be derived from (2.2), or 
1 

1 
N. = P. [1 + (I-a.)n. M.] 

1 n. 1 1 1 1 
1 

Substituting (2.2a) in (2.4) Rives 

A n.M. 
s' 1 1 
q. = ( 

1 1 + I-a )n. M. 
ill 

(2.2) 

(2.3) 

(2.4) 

(2.2a) 

(2.5) 

The Di deaths are now further divided according to cause with Dia 

dying from cause Ra' a = I, ... ,r, and 

so that 

Dia 
M =-
ia P. 

1 

(2.6) 

, eS = 1, ... ,r, (2.7) 

are age-cause-specific death rates. The estimate of the crude probability 

of dying from ReS in the presence of competing risks is obviously 

(2.8) 

Substituting (2.2a) in (2.8) gives the formula for the crude probability 

" n.M . .1' .\ 1 lu 
Ql·.1' = ~=-.-..;;;.,;;..---­

u l+(l-a. )n.H. 
III 

• (2.9) 
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We see from (2.4) and (2.8) that Qio can be computed also from 

" Dio i\ 
Ql'l' • - q. u D. 1 

(2.9a) 
1 

It is easy to show that Qio in (2.9a) and qi in (2.4) satisfy the relationship 

A A 

+ ••• + Q = q ir i 
(2.10) 

A 

The formula for the sample variance of the estimator Qio can be 

derived from 

(2.11) 

A 

by substituting QiO for Qio and using (2.8): 

(2.12) 

A 

The standard deviation of Qio is the square root of the variance in (2.12). 

The steps involved in constructing a multiple decrement table may he 

summarized as follows: 

2.1. Information needed from a current population. 

(a) 

(b) 

(c) 

Number of deaths in each age interval (x., x, 1) from 
1 1+ 

each cause Ro' Dio ' and the total number of deaths 0i' with 

O. = 0'1 + 
1 1 

+ O. lr 
(2.6) 

Mid-year population for each age interval (x., x. 1)' P. 
1 1+ 1 

The fraction of the last age interval of life, ai' as given 

in Appendix V. 
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2.2. Computation of rates and probabilities 

(a) Age-cause-specific death rate : 

(2.7) 

for each age and each cause; and the age'- specific death rate: 

D. 
1 f\1. = -

1 P. 
1 

(b) The probability of dying 

n. ~1. 
1 1 q . = -:;----;:-:-=--=.,,-~ 

1 1 + (l-a.)n. M. 
111 

(2.3) 

(2.5) 

and the crllife probability of dying from R~ for age interval (xi' x
i
+

1
): 

DiO 
A = D q. (2.9a) \~io i 1. 

2.3. Computation of the standard deviation: 

(2.l3) 

and 

'" 01
" " ~.D.(q.)= -q? (l-q.) 

1 O. 1 1 
1. 

(2.14) 
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To illustrate the computation, let us consider as an example the competin~ risks 

of death: cardiovascular diseases (R
l
), cancer all forms (R2), all accidents (R3), 

infectious diseases (R4), respiratory diseases (R
5

),motor vehicle accidents (R6), and 

all other causes (R
7

) in the Sweden population age group (1,5), 1967 in 

Table 2. During 1967 there were a total of Dl = 250 deaths occurring in the 

Sweden population between age one and five; and a Tllid-year population of 

PI = 471,119. The number of deaths, [)l = 250, is entered in column (2) to 

the right of "all causes". Dividing [)l by the mid-year population PI = tl7l,119 gives 

the age specific death rate HI = . 000531 entered in column (3) on the same 

line. The fraction of last age interval of life is a 1 = .43 in this case 

and the age interval is T} = 4 years. 1\'i th these values. we 

compute the probability of elyin!! for this age interval as before from 

'\ 
q. = 

1 

n.M. 
1 1 

l+(1-a.)n M. 
III 

A 4(.000531) 
ql = 1+(1-.43)4(.000531) = .002121 

which is recorded in column (4). The number of deaths are then identified 

by cause, with Dll = 4 deaths from cardiovascular diseases, etc. These nunbers 

are entered in column (2). Dividing each of these values by the mid-year 

popUlation PI' we obtain the death rate specific for the caUse in question as 

shown in column (3). The crude probability of dying from a specific cause 

when all other competing Causes are acting may be computed from the corresponding 

death rate. But it is more convenient to use the relation 

D io .'\ 
= -,)- q. 

. 1 
1 

for 0 = 1,2, ... ,r (2.9a) 
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Thus, for R2: cancer all forms, for example, 

These crude probabilities are shown in column (4). 

The standard errors of these prohai1ilities are cOT'1puted from 

= .0001340 (2.14) 1\ jrl 1\2 " S. D. (q.) = - q. (l-q.) 
1 n. 1 1 

1 

and 

(2.13) 

for 0 = 1,2, ... ,7. The numerical values are recorded in column (6) of 

Table 2. 

Such computations, which can be carried out easily with computers, are 

needed for each age group. The basic data, the mid-year population and the 

number of deaths by age interval and cause, for Sweden and Australia are given 

in Tables 3 and 4 respectively. 
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Table 2 

Computation of the cnlde probahility of dying from a specific cause 
and the corresponding standard error. Sweden population, a~e interval 
(1, 5), 1967 

-

Cause of Number of Cause 
deaths 1 

r.rude Standard deviatio 3 
n 

-

death 

-
Ro 

(1) 

4 
All causes 

R
l

: Cardio-
vascular 
diseases 

~2 : Cancer 
all forms 

R3: All 
accidents 

R
4

: Infectious 
diseases 

R5: Respiratory 
diseases 

R6: ~Iotor 

vehicle 
accidents 

R7: All other 
causes 

1/ 1\ q. 
1 

Specific 
Death 
nate 

D18 M10 
-, 

(2) (3) 

250 .000531 

4 .000008 

46 .000098 

68 .000144 

14 . ()00030 

37 .000079 

19 .000040 

81 .000172 

n.H. 
1 1 ,= --' ---

1+ (I-a. )n.tvt. 
111 

Prohahil ltv 
of dying 2' 

!\ 

0\ 
,,- S.D. (Oln) , 

Q10 
"~ '"' -

(4 ) ( 5) 

.002121 .0001340 
-

.000034 .0000169 

.000390 .0000575 

.000577 .0000700 

.0001,19 .0000318 

.000314 .0000516 

.000161 .0000369 

2/ " 
DiO ~ 

Qi8 = 0.- q. 
1 

1 

Ii./ 
Dl = 250 

~1 = 0.002121 



Table 3 

Mid-year population and deaths by age and cause 
Sweden, 1967 

--~---~-" --------
Cause of Death --------" -- ---.----.---

All 
Af!,e Population Total Fraction CVD Cancer All Infect. Respirat. Hotor veh. Other 

Deaths of last ag Accidents Diseases Diseases Accidents Causes 
interval 

R1 R2 R
j R4 R5 R6 R7 of life 

(:{ 0 , Y 0 +" 0 ) Po Do a o DOl D02 D03 Di4 Di5 D D 
~_ 1. 1. 1. 1. 1. 1. 1. 1. i6 _~L_ ._-------_._-,"--------

0-1 120905 1560 0.08 7 12 26 14 54 4 1447 

1-5 471119 250 0.43 4 46 68 14 37 19 81 

';. -, Cl 522261 171 0.45 5 31 80 3 7 39 45 

10-15 534756 148 0.52 8 29 57 2 7 38 45 

15-20 589158 318 0.56 22 21 187 8 1 1 135 69 ..... 
U1 

2D--25 656338 508 .050 23 53 226 6 10 136 190 

::'5·· 30 510785 476 0.52 27 65 146 4 7 61 227 

30-35 445412 517 0.53 47 89 128 6 8 52 239 

35-40 462977 683 0.53 95 143 149 13 16 54 267 

L}O-45 506480 1157 0.53 228 313 143 22 27 42 !! 24 

45-50 543670 1853 0.54 482 559 197 25 57 62 533 

50-55 516154 2724 0.54 912 828 229 32 78 68 645 

55-60 511489 4266 0.53 1742 1305 220 59 119 85 821 

60-65 446800 6189 0.53 2905 1809 235 54 201 98 985 

65-70 373773 8770 0.54 4625 2236 210 72 376 84 1251 

70-75 286391 11339 0.53 6501 2463 198 75 646 71 1456 

75-80 196498 l3715 0.52 8225 2376 272 74 1019 70 1749 

80-85 113212 12766 0.50 8042 1669 278 73 1197 28 1507 

85+ 59753 12373 8086 1036 351 48 1375 10 1477 

_. ---- ---



Table 4 

Mid-year population and deaths by age and cause - AUHtra1ia, 1967 

"-----1-=--~=---=-==--=~====~-=~ c~~~YfDeath-------=--=-~~~----- --.------
All 

Age Population Total Fraction CVD Cancer All Infect. Respirat. Motor veh. Other 
Deaths of last ag Accidents Diseases Diseases Accidents Causes 

R3 R4 R5 R6 R7 
._-------_._----------- ~--------

(x. ,x. +n.) P. 
1 1 1 1 Di a i Oil Di4 Di4 DiS Dj6 Di7 ---_.. -~-~-~-~.--

________ o_ittlj;:l j-_R_1 _____ R_.2 

----. --_.,_._---------- -------- '---
On 
140 

292 

194 

171 

64] 

655 

379 

278 

322 

404 

357 

359 

378 

321 

294 

315 

357 

------------------------------ --.--.. ---

0-1 

1-5 

5 .. ·10 

10-J5 

LJ<:n 

20-25 

25-30 

30-35 

~r-f:,J 

1+0-45 

1:5-50 

50-- 5 '; 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85+ 

225600 

925500 

1198500 

1110100 

1051500 

930500 

773000 

705800 

754200 

778300 

701300 

648300 

560300 

446400 

161400 

277700 

200700 

105300 

55800 

.. ------------

4187 

845 

457 

364 

962 

1081 

871 

903 

1393 

2461 

3543 

5184 

7239 

9086 

11368 

13495 

15116 

12585 

1154L: 

0.12 

0.49 

0.41 

0.48 

0.42 

0.43 

0.47 

0.35 

0.48 

0.53 

0.56 

0.52 

0.54 

0.54 

0.54 

0.54 

0.53 

0.54 

18 

10 

10 

20 

33 

51 

90 

140 

334 

811 

1570 

2501 

3881 

5170 

6753 

8472 

9843 

8556 

7949 

17 

75 

94 

57 

80 

78 

84 

140 

257 

511 

753 

1271 

1622 

2011 

2270 

2295 

2176 

1450 

928 

345 

3% 

56 

46 

13 

7 

10 

7 

8 

6 

13 

26 

24 

36 

59 

56 

74 

96 

59 

29 

26 

401 

115 

33 

8 

23 

22 

24 

23 

44 

90 

125 

186 

333 

486 

703 

902 

1119 

1010 

1153 

18 

116 

117 

91 

501 

504 

256 

156 

168 

195 

183 

186 

176 

157 

149 

122 

134 

74 

31 

3555 

307 

113 

101 

175 

268 

206 

316 

423 

619 

714 

831 

966 

1042 

1274 

1415 

1562 

1195 

1090 

Vl 
t-) 

I 
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Two multiple decrement tables have been computed for the Australian 

population, 1967, and the Swedish population, 1967 [Tables 5 and 6). The 

selected causes are cardiovascular diseases (R
l
), cancer all forms (R

2
), all 

accidents (R3), infectious diseases (R4), respiratory diseases (R
S
)' motor 

vehicle accidents (R
6

) and all other causes (R
7
). The crude probability of 

dying from each specific cause has been computed for every age interval. 

,~ 

In addition, the probability of dying q. without reference to cause of death 
1 

is included in the tables so that the magnitude of the probability GiG 

for each risk Ro relative to the total probability qi can be determined. 

For example, the ratio 6.x/~. will give the proportionate mortality due 
lu 1 

to a specific risk Ro' 

" It may be noted that if Q. S is computed for every risk, then the sum 
H 

A 

of the probabilities Qio overall possible risks Ro will be equal to qi 

t. 
[c.L, equation (2.10)]. 'I'hp ~lIm of n ... over only selected risks is less 

1.\) 

'" than q.; 

For the purpose of testing for significance between the probabilities 

or making other statistical inferences, the standard deviations of the 

probabilities are also included in the tables. 
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Table 5 

Multiple Decrement Table for Selected Causes of Death and the Standard Error 
of the Crude Probability of Dying 

Sweden population. 1967 

Crude Probability of Dying 
in Interval (x. , xi+l) 

Probability 1 

Age of dying in Cardiovascular Cancer All 
Interval interval Diseases All Forms Accidents 

(in years) (xi,xi+l) Rl R2 R3 
(xi ,xi+l) 

1\ 1\ 
SI\ 

1\ SI\ 1\ SI\ qi s/\ Q
il Qi2 QiJ qi Qi1 Qi2 QiJ 

(1) (2) (3) (4) (5) (6) (7) (8) ( 9) 

0- 1 .01275 .000321 .0001 .000022 • 0001 .000028 .0002. .000042 

1- 5 .OO~12 .000134 .0000 .000017 .0004 .000058 .0006 .00007'0 

5-10 .00164 .00012~ .0000 .000021 • 0003 .000053 .0008 .000086 

10-15 .00138 .000114 .0001 .000026 .0003 .000050 .0005 .000071 

1 '5- 2 0 .00270 .000151 .0002 .000040 .0002 .000039 .0016 .000116 

20-25 .00.366 .0001 71 .0002 .000036 .0004 .000055 .0!)17 .000114 

25-30 .004£ 5 .000213 .0003 .000051 .0006 .000079 .0,)14- .000118 

30-.15 .00579 .0002"54 .0Oo!:' .000077 .0010 .000106 .0014 .000127 

35-40 .00735 .000280 .0010 .000105 • Oat 5 .000129 .0016 .000131 

40-40 .01136 .000332 .0022 .00014ots .0031 .000173 .0014 .000117 

4 s- ~)O .016Ql .000389 .0044 .000200 .0051 .000215 .0018 .000128 

50-55 .02f.07.000493 .0087 .000288 .0079 .000274 .OO2~ .000145 

5:j -60 .04090 .000613 .0167 .000397 .0125 .000344- .0021 .000142 

60-65 .O(:70H .000824 .0315 .000575 .0196 .000456 .0025 .000166 

t 5-70 .11131 .001120 .0587 .000837 .0284 .000592 .0027 .000184 

70- 7 5 .18111 .001539 .103A .00l219 .0393 .000777 .OQ32 .000224 

7:'>-80 .295,1 .002137 .P793 .001791 .0518 .001031+ .0059 .000358 

HQ-t5 .43'<82 .002913 .2771 .002627 .0575 .001366 .0096' .000572 
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Table 5 (con't) 

Multiple Decrement Table for Selected Causes of Death and the Standard Error 
of the Crude Probability of Dying 

Age 
Interval 

(in years) 
(Xi' xi+l) 

(1) 

0- 1 

1 - ~ 

5-1G 

10-15 

1 ':1-20 

20-2t.> 

2':>-30 

30-35 

.i:5-40 

40-40 

45-50 

50-;)5 

5~'-(A 0 

hO-C;;; 

65-70 

70-7'5 

75-130 

.~ :)-b!:) 

" Qi4 

(10) 

.0001 

.0001 

.0000 

.0000 

.0001 

.0000 

.0000 

.COOI 

.0001 

.0002 

.0002 

.0003 

.0006 

.0005 

.00 O~ 

.0012 

.0010 

.002:> 

Sweden population, 1967 

Crude Probability of Dying in Interval (xi' x i +1) 

Infectious Respiratory Motor All 
Diseases Diseases Vehicle Other 

Accidents Causes 
R4 Rs R6 R7 

1\ 
CU\ 

.1\ 1\ 

. Q
i4 

Qis S .1\ " SA Qi7 
SI\ 

Qis 'i6 Qi6 Qi7 

(11) (12) (13) (14) (15) (16) (17) 

.000031 .0004 • () CO C (, () .0000 .000016 .01 1 a .00030 q 

.0000.J2 .e 0 03 .O,)CC52 .0002 • u 00037 .\J007 .000016 

.000017 • 'J 001 .OOCC,;!5 .0004- .000060 .0004 .000064-

.0·')0013 • ,) O!) 1 .CI)G02~ .0004- .000059 .0004- .0000,,3 

.000024 • ':} 0 01 .0,)0028 .0011 • 0 0009!~ .0006 .000070 

.000019 .000 1 .00(,,024 .0010 .000099 .0014 .000105 

.000020 • ,) OJ 1 .O·)()O26 .0006 .000076 .0022 .000147 

.000027 .0 CO 1 .COO032 .0006 .0000:31 .0021 .00017.3 

.000039 .0002 .000C43 .0000 .00007Q • 002~ .UOOI76 

.000046 .0003 .OOCO"I • 0004 .000064 .0042 .')iJ0202 

.Ot)004c .0005 .OOOCh9 .0006 .000072 .0049 .000210 

.01) 0054 .OC07 .000084 .0007 .000079 .006~ .000242 

.0000 7 4 .0011 .000105 .0008 .000088 .0079 .000274 

.OOOOAO .0022 .O(J0153 .0011 .000107 .0107 .00033~ 

.000108 .) (H >3 .C00246 .0011 .000116 .0159 .0 OO~4 5 

.OJOI3~ .:)1:)3 .000404 .0011 .000135 .0233 .fJOO'>02 

.000187 .',)22.2 .OOCtPA .0015 .000192 .0381 .OO03~4 

.':>00294 .0412 .001167 .0010 .0001A2 .0519 .001302 
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Table 6 

~ultiple Decrement Table for Selected Causes of Death and the Standard Error of 
the Crude Probability of Dying 

Age 
Interval 

(in years) 
(xi ,xi+l) 

(1) 

0- t 

I- S 

5-10 

10-15 

15-20 

~U-25 

25-30 

30-35 

.)5-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

Australia Population, 1961 

Probability 
of dying in 

interval 
(xi' x i + l ) 

1\ 

qi SI\ 
qi 

(2) (3) 

001826 .000280 

.00365 .000125 

.00190 .0000t39 

.00164 • COC08b 

.O(')/~C;6 .000147 

000579 .001.1176 

.00562 .00019U 

.OU6rl .000211 

• 0091 C; .000245 

.01569 • ·")00314 

.02493 .00041'+ 

.03923 .000534 

.06274 .000714 

.09722 .OOC9b9 

.14667 .001271 

.21855 .001063 

.31995 .002146 

.4nijf3 .00304:::: 

Crude Probability of Dying 
in Interval (xi' x i +l ) 

Cardiovascular 
Diseases 

Rl 

1\ 
Q
il 

C'I\ 
• Q

il 

Cancer 
All "Forms 

R2 

1\ 
Qi2 S'" 

Qi2 

All 
Accidents 

R3 

A 

Qi3 S" 
Qi3 

------------------------------------------------------------- ----

(4) (5) (6) (7) (8) (9) 

.0001 .000019 .0001 .000018 • (nOt; .0·)0052 

.0000 .000014 .0003 .000037 .0013 .000074 

.0000 .00001.$ .0004 .UIJu040 00,)08 .OOO05b 

• 0001 .000020 .0003 .00U034 .0008 .0000!S9 

.0002 .000027 .OU04 .000042 .0030 .000120 

.OOOJ .000038 .0004 .000047 .0035 .000137 

.OOO€- .000061 .0005 .0000Sq .0<)2':' .000125 

.0010 • 000083 .0010 • 000083 .002U .000118 

.0022 .000120 • vOl 7 .000106 .0021 .000118 

.0052 .000181 .0033 .000144 .0026 .OOO12M 

.01 11 .OO027:::i .0053 .000193 .0025 .000133 

.0189 .000375 .0096 .000268 .0027 .00U143 

• 0330 .000531 .0141 .1.100347 .0033 .000108 

.0:5!:53 .()OO748 .0215 .000475 • 00 3~ .000191 

.OdT1 .001013 • 02~;j .000606 .0038 .000221 

.1372 .001385 .0372 .000761 .O()51 .000287 

.2u83 .001868 .0401 • 00 0~64 ~0076 .000398 

.3107 • :)021144 • :)54 C .001379 .012'3 .000687 
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Table 6 (can't) 

Multiple Decrement Table for Selected Causes of Death and the Standard Error 
of the Crude Probability of Dying 

Australia Population, 10(,( 

Crude Probability of Dying in Interval (xi' x i +1) 

Age Infectious Respiatory Motor All 

Interval Diseases Diseases' Vehicle Other 

(in years) Accidents Causes 

(x. , xi+l) R4 RS R6 R7 
1 

----~--

1\ 1\ 1\ i\. 
Qi4 

sl\ QiS SA Qi6 Sl\ Qi7 
S'\ 

Qi4 QiS Qi6 Qi7 

(1) (10) (11) (12) (13) (ILl) (15) (16) (17) 

0- 1 .U002 .000033 .0017 .000087 • 0001 .00001g .015:3 .000~'38 

1- 5 .00 02 .000029 .0005 .000046 • 0005 .000046 .0013 .000076 

5-10 .0001 .OJOO15 .,0001 0000 02'+ .0005 .000045 .0005 .000044 

10-15 .0000 .000012 .0000 .000013 .0004 .000043 .0005 .000045 

15-20 .0000 .000015 .00·)1 .000023 .0024 .000106 .0008 .000063 

20-25 .0000 .000014 .0001 .00002'.5 .0027 .000120 .OUI4 .ooooa@ 

25-30 .00 01 .000018 .00O,~ .000032 .0017 .000103 .0Olti .000109 

30-35 .0000 .000017 .0002 .0000.311 .0011 .0aOOaR .0022 .000125 

3'5-4:0 .0001 .000024 .00()3 .000044 .0011 .000085 .OO2A .,)00136 

!+0-45 .0002 .000033 .0006 .000060 .0012 .<JOO09:f .0039 .000138 

45-50 .00 02 .000035 .0009 .000079 • CO'13 .000095 .0050 .0001813 

50-5'5 .0003 .000045 ~OO14 .00010.3 .0014 .000103 .0063 .000217 

5'5-60 .000;;; .000067 .0029 .000158 .0015 .00011'5 .0084 .000268 

'00-65 • CO 06 .000080 • t) U~2 .000235 .0017 .000130+ • v 1 11 .000343 

65-70 • UU 10 .000111 .0091 d)OO 341 .0019 .000l57 .0164 .0004'57 

70-75 .0016 .000159 .0146 .000483 .0020 .000179 .C~29 .000 00 ~ 

75-80 .00'12 .000162 .02]7 .000700 .0028 .000245 .0331 .000823 

80-85 .0011 .000200 .03 7 6 .001161 .002g .000320 .04 .. 5 .001259 
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4. Inter"retntion of :J. :fultiple ')ecreM.ent 'T'.1.hl e 

A multiple decrement tahl e, such as those presented ir T~hles 5 and 6, 

can serve many useful purposes. Significant points include the follO\dn(~: 

1. 
A 

Each probahility '1io represents FI measure of risk of dyino; from FI 

specific cause ta \vhich a person is sllhj ect in a real pOpt! lation where 

other competing risks are also acting. For example, in Tahle 5, (alumn (4), 
1\ 

age interval (60,65), we found 060 1 = .0315. This figure suggests that , 

if the forces of mortality onerating in the Swecijsh population, 1967, 

preva il, the f1robabi Ii ty is over three percent that a person of 60 years of age 

will die from car<liov(1scular d isense witJd n five yeFlrs. 

2. " The entire array of prohahi Ii ties ()io over all the age groups gives 

a profile of risk of dying from a specific cause during a person's life 

time. Thus the risk of dying from cardiovascular disease is ne~Iigible 

among young people, hut incre~ses with advancement of age. "ccor(linr~ to 

the Swedish, E 167, experiences, these diseases are the most serious cause 

of death for persons beyond age 50, and the chance is hetter than one in 

four (.2771) that a person of a:.;e gO ....,Ul die fraT'] cardiovascular riisease 

in the follmdng five years despite cO"lpetition fron other causes. Below 

age 40, ho ... !ever, cardiovascular clisease is negligible as a cause of death, 

and hetween ages 1 and 10, the risk of death from these diseases is 

almost nonexistent. I\lternatively, the risl; of death fro"" cancer all forms 

is more evenly spread over the age intervals but is less evenly spread than 

the risk of death from all accidents. 

3. \\'hen viewed across several causes of death, the l:ml tiple decrement 

table shows relative risk of death either for a specific age group or for 

the entire life span. It is evident from these tables that among the leading 

causes of death, cardiovascular disease is a dominate cause, cancer all forms runs 

a poor second, while all accidents is a distant third. However, in age 40-50 
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cancer all forms is thf' most menacing disease in Sweden in 1967 and is 

a 'significant cause of rleat l 1 even helow age 40. Within the latter age 

hracket, however, all accidents aSSlmes the leading role as cause of 

death. 

A 
4. Each proba~dlity o.~, when expressed in terms of the prohahility 

III 

of rlyin,; Aq ., dves t 11e urol1ortionate l"1('1rtalitv for each cause. This in . 1 - ~ J • 

turn provides the information as to what proportion of mortality in each 

age group may he attrihuted to sTleci fic causes. 

5. t\ comprehensive cnmT)rtrison nf cause specific mortality exnerience 

may he made among different countries, or of a country over time. Between 

Sweden and Australia, for examnle, the general mortality pattern is similar, 

hut details vary. According to 1967 experience, the A.ustrrtlian population 

is S11hj ect to higher ris1.s of deatr thaT" the Swedish population in almost 

every age group and for each caUSe considered in this exa'llple. The only 

exceptions occur in the very old aqe hrackets for a few causes. Beyond 

a~e 70 cancer all forms is a More emi.nent cause in Sweden tl,an in 

Australia. A similar statement can he made for respiratory disease 

beyond age 80, anJ infectious diseases beyond age 75, although the 

magnitude of the prohabilities for the latter case is quite small. It 

may also he noted that, while in Sweden, 1967, cardiovascular disease was 

the most serious caw:;e of death from age 50 on, in Australia these 

diseases assume this role heginning in the early 30's. 

(). Statistical inference about these rates can he readily made with 

the aid of the standard deviations listed. For example, hypotheses can be 

tested regarding the probability of dying ~rom a specific cause between 

Sweden and Australia. Is the prohahility of dying from cardiovascular 

disease for age group (45,50) greater in Australia than Sweden? To answer 

this question, we compute the critical ratio (cf., Chapter 4). 
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(4.1) 

which has a norMal distribution with a mean zero and a variance one, if 

in fact Q45 1 (A) = Q45 1(5). The numerical value is , , 

.0111 - .0044 Z = Ie. 00027R) 2 + (. 0()0200) 2 

= 19.6 

which is highly significant, as the corresponding probability is less than 

1 in 10,000. In other words, if the probability of dying from cardiovascular 

diseases in Australia was equal to that in Sweden for a person of age 45-50, 

then the chances are less than 1 in 10,000 that a difference as ~reat or 

greater than the one observed would occur. Based on the above findings 

we conclude that cardiovascular diseases werea more serious cause of death 

in Australia than it was in Sweden for the age group under consideration. 

7. Caution should be ohserved in comparing the crude prohabil Hies 

of dying from different causes in the same population and the same age 

group. In a particular age p,roup, various causes are competing with one 

another for the life of an individual and the estimated 

statistically dependent. Between any two probabilities 

probahil i ties 
1\ 

(say, 0'1 and . 1 

are 

there is a ~o-variance, which must be taken into account in making inference 
1\ 1\ 

about these probabilities. The co-variance between Qil and Qi2 , for example, 

is given by 

= - = - (4.2) 
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A similar formula holds for any two orohahilities. How the covariance can 

be incorporated in statistical infer~nce is demonstrated below. Sunnose we 

want to compare two causes ~l: cardiovascular diseases and R~: ... cancer all 

forms for peonle of age 55-60 in the Sweden population, 1967. From column (4) 

A A 
and (6), we founu Q55,1 = .0167 and Q55,2 = .0125, with a difference 

.0042 (4.3) 

Is this difference significantly greater than zero or can it he exnlained hy 

chance? (iere we are testing the hypothesi s that Q
55 

,1 = Q55, 2 against the alterna­

tive hypothesis that Q55,1 > Q55,2. To test the hypothesis, we express the 
J\ /' 

difference Q
55 

1 - Q55 2 in terms of its standard deviation, which is given by , , 

/~~ + s~ 
'ili2 

where the covariance can be comnuted as follows: 

f\ 1\ 

Cov (Q'l ,Q,?) 
1 1 ~ 

~ A 
Cov(Q55 1'~5 2) :: -.O()()000002 , , 

(4.4) 

which is a very small number. Now the standard deviation can be computed 

A " 
S.D. (Q 55, 1-Q 55, 2) = ~(.000397)2 + (.000344)2 + 2(.000000002) 

= 0.00053 



- 162-

The statistic used to test the hynothesis is a~ajn the normal deviate 

A A 
Q55 I - Q55 2 

Z = 'A A. 
S.D.(Q I-Q 2) 

55, 55, 

(4.5) 

and compare the numerical value of" Z with the standard normal distrihution. 

In this case we have 

which is highly significant. Thus according to Sweden 1967 experience, the 

probability of dying from cardiovascular disease is ~reater than cancer all 

forms for age interval (55,60). 

In conclusion, the multiple decrement tahle presents a mortality 

profile over ages and causes of death for a population under study. It shows 

the relative, as well as the absolute, importance of various diseases and their 

variation over age and sex. With the information provided in the tahle, 

one can easily detect and determine the area of concern, the degree of 

seriousness of various diseases, and the type and amount of medical care and 

health services needed hy persons in different age and sex categories. 
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CHAPTER S 

THE LIFE TABLE WHEN A PARTICULAR CAUSE IS ELIMINATED 

1. Introduction 

InAppendix ITT on competing risks, several types of probabilities 

of dying with respect to a particular cause have been discussed. Corres-

ponding to each of these probabilities, a life table may be constructed 

to serve a specific purpose using the probability in question in place 

1\ 
of q.. The procedure of construction is exactly the same as that of an 1 

ordinary life table described in Chapter 4, though the collwns have 

different meanings. 
,.. 

A life table derived from q. l' the probability 
1. 

of dying when a cause RI (e.g., cardiovascular-renal disease) is eliminated 

as a cause of death, for example, may be used to evaluate the effect of 

the cardiovascular-renal diseases on the longevity of a human population 

in terms of the expectation of life or chance of survival. Generally, 

the event involved need not be survival or death and the subject is not 

limited to human beings. In a study of the effect of divorce on the longevity 

of marriage, for example, the event is the dissolution of marriage. If 

divorce (Rl ) had been removed as a cause, how long is a marriage expected 

to last before death occurred to either one of the spouses? Application to 

other problems is possible wherever the concept of competing risks applies. 

We shall in this chapter describe two tables: (1) the life table when a 

specific cause is eliminated, and (2) the life table when a specific risk 

is the only risk operating. Empirical data will be used for illustration. 

2. Computation of the Net Probability, ~. 1 
1. 

The life table in this chapter is derived from q ,the net probability of dying 
1.1 

when a particular cause R1 is eliminated. This is one of the most important 
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applications of the competing risks theory. Such a table may be constructed 

either for a cohort population or for a current population. In either 

case, the basic formula is (cf., Equation (2.29) in Appendix III) 

(2.1) 

where q. is the probability of dying in interval (x., x. 1) and Q1'1 is 
1 1 1+ 

the crude probability of dying from Rl during the same interval in the 

presence of other competing risks. To avoid repetition, only the life 

table derived from mortality data of a current population will be discussed. 

Let us consider, as an example, cardiovascular-renal diseases and the effect 

of their presence on the probability of dying and the expectation of life. 

For a typical age interval (Xi' x. l)' with x. 1 - x. = n. being the interval 
1+ 1+ 1 1 

length, let D. be the number of deaths occurring in age interval (x. , x. l) 
1 1 1+ 

during a calendar year, among them Dil dying from Rl • Let P. be the 
1 

corresponding mid-year population, and a. the fraction of last age interval 
1 

~f life. The age-specific death rate is computed as before from 

D. 
1 M. =-

1 P. 
1 

(2.2) 

and death rate specific for cause Rl , (CVR diseases) is computed from 

Dil 
Mil = r 

1 

(2.3) 

Using the results in preceding chapters, we have the estimate of the probability 

[cf., Equation (4.3), Chapter 3] 

n. M. 
" 1 1 
q1' = 1 + (I-a.) n. M. 

111 

(2.4) 
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and of the crude probability [cf., equation (2.9), Chapter 1] 

n. M.
l 1 1 

1 + (I-a.) n. M. 
111 

(2.5) 

Substituting (2.4) and (2.5) in (2.1) yields the required estimate of the 

probability q. 1: 
1. 

(2.6) 

,.. 
With reference to formulas (2.1) through (2.6) above, computation of qi.1 

is summarized in Table 1. For each age interval (x., x. 1)' the data 
1 1+ 

required are midyear population P. (Column 2), number of deaths from all 
1 

causes D. (Column 3), and number of deaths from the cause under study 
1 

(in this case, cardiovascular-renal diseases) Dil (Column 4). These figures, 

which are available in population and vital statistics publications, are 

used to compute death rate M. (Column 5) and cause-specific death rate 
1 

Mil (Column 6). 

(7) is given in 

The fraction of last age interval of life, a., in Column 
1 

Appendix V. Using formulas (2.4), (2.5) and (2.6) 

the probabilities qi' Qil' and finally 4i . l , are computed and recorded in 

ColumBs (8), (9), and (10), respectively. 

For age interval (0, 1), for example, we have the midyear popUlation 

Po = 1,794,784, the number of deaths DO = 48,063, deaths from cardiovascular 

diseases DOl = 228, and aO = .10. With these values, we compute the death 

rate from all causes using formula (2): 

48,063 = 
1,794,784 

or 26.78 per 1,000, 

.026779 

(2.2a) 

and the death rate from cardiovascular-renal diseases using formula (2.3): 
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001 228 
• -. ~~~."..-:- = .000127 or Po 1,794,784 

.13 per 1,000 . (2.3a) 

The probability of dying, ~o' is computed from formula (2.4) which is the 

same as in the ordinary life table in Chapter 3, namely 

A MO 

qo = 1 + (l-aO) MO 

.026779 
= ~1-+--:"(":""1-:"';;.;';:;1-=-0)~.~0':"26::-::7::7:':"9 

= .02615 (2.4a) 

and the crude probability of dying from cardiovascular-renal diseases is 

computed from 

.000127 
= ""'l-+~(""'l-:"';;.-!-l-:"O)~. ~02~6=7--7 9"'-

• .000124 (2.5a) 

and finally, the net probability qO.l 

1 
• (.02615 - .000124)(1 + 2 .000124) 

•• 026028 • (2.6a) 

For age interval (I, 5), nl • 5-1 = 4, the rates and probabilities are 

successively computed as follows: 

M • 01 • 7,409 
1 PI 7,063,044 

•• 001049 or 1.049 per 1,000 (2.2a) 



Table 1. 
I 

Computation of the net probability of dying, q. l' when cardiovascular-renal 
1. 

(CVR) diseases (R1) are eliminated as a cause of death, white males, 
United States, 1960. 

Age Hid-year Deaths Deaths Death Death Fraction Probabil ity Crude Net 
Interval Populations from all from rate rate of last od dying Probability Probability 

(in years) (a) causes Cardio from all from CVR Age of dying of dying 
(b) Vascular causes Interval ".. from CVR when CVR is 

Xi to x i+1 Pi D. renal H. Mil of Life qi Q
il 

eliminated 
1 1 diseases (3)/(2) (4)/(2) a

i qil 
(c,d) 

Dil 

(1) (2) (3) (4) ( 5) (6) (7) (8) (9) (10) 

0- 1 1794784 48063 228 .026779 .000127 .10 .02615 .000124 .02603 
1- 5 7063044 7409 153 .001049 .000022 .39 .00419 .000088 .00410 
5-10 8191158 4408 177 .000538 .000024 .46 .00269 .000108 .00258 ;;: 10-15 7488562 3847 208 .000514 .000028 .54 .00257 .000139 .00243 -.I 

15-20 5893946 7308 355 .001240 .000060 .57 .00618 .000300 .00588 

20-25 4657470 7755 481 .001665 .000103 .49 .00829 .000514 .00778 
25-30 4725480 7182 768 .001-520 .000163 .50 .00757 .000810 .00676 
30-35 5216424 9039 1808 .001733 .000347 .52 .00863 .001726 .00691 
35-40 5461528 13803 4444 .002527 .000814 .54 .01256 .004045 .00854 
40-45 5094821 21336 9125 .004188 .001791 .54 .02074 .008870 .01192 

45-50 4850486 34247 16796 .007061 .003463 .54 .03474 .017037 .01785 
50-55 4314976 50716 26812 .011753 .006214 .53 .05719 .030233 .02737 
55-60 3714623 66540 36907 .017628 .009778 .52 .08456 .046904 .03858 
60-65 3100045 85890 49649 .027706 .016016 .52 .12989 .075085 .05702 
65-70 2631044 108726 65609 .041230 .024880 .52 .18759 .113198 .07908 

70-15 1972941 119269 15371 .060452 .038202 .51 .26327 .166370 .10636 
15-80 1214517 109193 73051 .089902 .060150 .51 .36837 .246465 .14106 
80-85 591251 83885 58113 .141817 .099303 .48 .51822 .362716 .19679 85-90 235566 49502 36133 .210141 .153388 .45 .66589 .486055 .25627 
90-95 56704 18253 13604 .321900 .239913 .41 .82555 .615285 .35901 
9S+ 12333 4219 3116 .342090 .254217 1.00000 1.00000 

TerrAL 18347769 860857d 473640d .010988 .006045 



a. US Census of Population 1960, US Surnmar;y", Detailed Characteristics Table 156. Bureau of the 
Census, US Department of Commerce. 

b. Vital Statistics of the US 1960, Vol. II, Part A, Table 5 - 11, National Centre for Health 
Statistics, US Department of Health, ;:':ducation and :'lelfare. 

c. Category Number 330 - 3)4, 400 - 468, &~d 592 - 594 of the 1955 Revision of the International 
Classification of Diseases, Injuries, and Causes of Death, world Health 8rganization, 1957. 

d. Including those age not stated, 267 and 106, respectively. 

-0\ 
00 

I 
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D11 153 
= ~ = 7,063,044 

= .000022 or .022 per 1,000 C2.3a) 

4~11 4(.001049) 
q - -;----::-:--=--.:~:-:-- = "--=-~"';":"~~~-=-:-.,,..... 

1 - 1 + (I-a1) 4HI 1 + (1-.39) 4(.001049) 

= .00419 C2.4a} 

4MII 4(.000022) = = ~~~-=~~-=~~~ 1 + (I-a1) 4~I 1 + (1-.39) 4(.001049) 

= .000088 C2.5a) 

and 

I = (.00419 - .000088) (1 + 2 .000088) - .004102. 

C2.6a) 

3. Constructipn of the Life Table 

When all the values of q. 1 are computed, the columns in the life 
1. 

table can be obtained following the procedure described in Chapter 3. 

Beginning with a radix 10 . 1 = 100,000, we compute the number of deaths 

in (0, 1)*, 

= 100,000 x .02603 = 2603 C3.1) 

the number living at age I 

= 100,000 - 2603 = 97397 (3.2) 

" *A notation .1 is added in the subscript of t. l' d. l' T. 1 and e. 1 
. d· h R ell· mI· nated • 1 • 1 • 1 • 1. to In lcate t at 1 is 
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and the number of years lived in (0, 1), 

• 97397 + .1 x 2603 = 97657 , (3.3) 

Other figures in these columns for the subsequent age intervals (except 

for the last interval) can be computed in exactly the same way. 

The computations for the last age interval (e.g., 95 and over) have 

been described in Chapter 3 [cf., Equations (3.10) to (3.12) in Chapter 3]. 

For easy reference, they are restated below. The 'number living at age 

95, 195:1 = 21564, is the survivors of interval (90, 95). The expectation 

of life e95 . l is computed directly from the death rate from causes other 

than cardiovascular-renal disease in the current population. Using the 

inverse relationship between the expectation and the death rate (cf. 

equation (3.7 ) in Chapter 3) 

1\ 
e 95 . 1 = 4219 - 3136 

12333 = 

,. 11.3878 years • 0.4) 

Since 

0.5) 

we have 
,., 

T95 •l • 195 •1 e95 ' 1 

• 21564 x 11.3878 

• 245,67 • 
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The remaining quantities in the last age interval may be derived from the 

obvious relationships, thus 

d95 ' 1 .. 195'1 .. 21,564 

and 
"-

q95'1 .. 1.00000 

With Lg5 ' 1 and all other Li •l determined, we proceed to compute Ti . l 

from 

For convenience, T. 1 are computed successively from the highest age 
1. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

group, beginning with Tg5 •l .. 245,567. For age 90, TgO.l is computed 

from 

.. 132,580 + 245,567 - 378,147 , 

and TSS.l from 

and so on. In general, 

T. 1 .. L. 1 + T. 1 1 1. 1. 1+ • 
(3.10) 

" The expectation of life (except for e9S •l ) is then obtained from 

.... TLI 
eLl .. ~ 

for each i. For example, 

(3.11) 



Table 2. 

Abridged Life Table when Cardiovascular Renal Diseases are eliminated as a 
cause of death for white males, United States, 1960. 

Age Probability Number Number Fraction Number Total Expectation 
Interval of dying living at dying of last age of years number of of life at 

(in years) in interval age xi in interval interval of lived in years lived age x. 
(xi' x i +1) (x. ,x. 1) life interval beyond age 1 

1 1+ 
(x. ,x. 1) 1 1+ Xi 

A. )~ 
d. 1 L. 1 T. 1 

-. 
xi to xi+1 q1.1 a. e. 1 1.1 1. 1 1. 1. 1. 

(1) (2) (3) (4) (5) (6 ) (7) (8) 

0- 1 .02603 100000 2603 .10 97657 7894729 78.95 
1- 5 .00410 97397 399 .39 388614 7797072 80.05 
5-10 .00258 96998 250 .46 484315 7408458 76.38 

10-15 .00243 96748 235 .54 483199 6924143 71. 57 -.I 
N 

15-20 .00588 96513 567 .57 481346 6440944 66.74 

20-25 .00778 95946 746 .49 477828 5959598 62.11 
25-30 .00676 95200 644 .50 474390 5481770 57.58 
30-35 .00691 94556 653 .52 471213 5007380 52.96 
35-40 .00854 93903 802 .54 467670 4536167 48.31 
40-45 .01192 93101 1110 .54 462952 4068497 43.70 

45-50 .01785 91991 1643 .54 456178 3605545 39.19 
50-55 .02737 90349 2473 .53 445933 3149367 34.86 
55-60 .03858 87876 3390 .52 431244 2703434 30.76 
60-65 .05702 84486 4817 .52 410869 2272190 26.89 
65-70 .07908 79669 6300 .52 383225 1861321 23.36 

70-75 .10636 73369 7804 .51 347725 1478096 20.15 
75-80 .14106 65565 9249 .51 305165 1130371 17.24 
80-85 .19679 56316 11082 .48 252767 825206 14.65 
85-90 .25627 45234 11592 .45 194292 572439 12.66 
90-95 .35901 33642 12078 .41 132580 378147 11.24 

95+ 1.00000 21564 21564 245567 245567 11.39 



Age 
Interval 

(in years) 

Xj to xi+l 

(1) 

TABL;:;: 3. 

Abridged Lifp Table when Cardiovascular Rpnal JiseasEs are ~1iminat0d as a 
caus~ of death for white females, United States, 1960. 

Probabili ty Number Numbpr Fraction l'iumber Total 
of dying in living at dying of last age of years number of 

interval age xi in intprval interval of lived in years lived 
(xi' xi+l) (xi' Xi+l) lifE interval beyond age 

xi 
.... t d{ , 1, , qLl a 1.1 J... •• ' i 

; • .L -. .' .• 1. 

(2) (3) (4) (5) (6) (7) 
....• ------... -- •..... ,- .. ,'. .... ..-.- ._--_ .. __ .-- -.-.-.-.-.. --~----- ... ---- - -----_ .. ------- ... ~-.-- . ---_.--------------------_._._---.- .. __ .•. ,-- .-.-

C - 1 .01959 1000"(" 1959 .10 98237 8676848- ... 

1 - 5 .00334 98841 327 .39 391366 8578611 
5 - 10 • os 184 97714 180 .46 488084 8187245 

10 - 15 .00140 97531; 137 .54 487355 7699161 

15 - 20 .00227 97397 221 .57 486510 -7211806 

20 - 25 .00259 97176 252 .49 485237 6725296 
25 - 30 .00295 96W!4 286 .50 483905 6240059 
30 - 35 .08395 96638 382 .52 482273 5756154 
35 - 40 .n0583 96256 561 .54 479990 5273881 
40 - 45 .00881 95695 843 .54 476536 4793891 

45 - 50 .01282 94852 1216 .54 471463 4317355 
5f; - 55 .01775 93636 1662 .53 464274 3845892 
55 - 60 .02287 9197 4 2103 .52 454823 3381618 
60 -.65 .03241 89r:71 2913 .52 442364 2926795 
65 - 70 .04416 86958 3840 .52 425574 2484431 

70 - 75 .06179 83118 5136 .51 403007 2058857 
75 - 80 .08920 7798.2 6956 .51 372868 1655850 
80 - 85 .13492 71026 9583 .48 330214 1282982 
85 - 90 .19040 6144 3 11699 .45 275043 952768 
90 - 95 .29170 49744 14510 .41 205915 ,677725 

95 + 1.00000 35234 35234 471810 471810 

~C:xgectat.ion of 
life at age xi 

eLl 

(8) 
... - --- ------.--

86.77 
87.5'": 
t'3.7~) 

78.9~ 
74."5 ..-

-....] 

w 
69.21 I 

6~ .38 
59.56 
54.7lJ 
5:=: .10 

45.52 
41.:::7 
36.77 
32.57 
28.57 

24.77 
21.23 
18 .~:6 
15.51 
1).62 

13.39 
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,.. TgO.l 
e90 . l = 

190 . 1 

= 378,147 
33,642 

= 11.24 

This completes the procedure of constructing life tables. 

We have used the 1960 liS white male population as an example to 

illustrate the high force of mortality from cardiovascular-renal disease. 

For purposes of comparison, a tahle for the liS white female 19fiO popUlation 

has also been constructed anci is reproduced here. 

4. Interpretation of Findings 

Cardiovascular-renal (CVR) diseases have caused more deaths in the 

human population than any other disease. As a group, they are responsih1e 

for over 55 percent of all deaths in the United States in recent years. 

E~ually impressive figures, but to a somewhat lesser extent, have been 

reported in the European countries. To evaluate the impact of these 

diseases on human lDngevity, we can compare the mortality and survival 

experience of the current population with the hypothetical experience of 

the same population under the condition that would exist if CVR diseases 

were removed as causes of death. The life table and the theory of competing 

risks provide the most convenient methods for the analysis of such a problem. 

In Tables 4 to 6, the probability of dying, the survival probability, and 

the expectation of life are given with and without the presence of CVR, 
. 

each reflecting in a different way the effect these diseases have on the 

mortality of the population in question. A brief discussion on these 

findings follows. 



Age 

interval 

(in years) 

Xi - x i +1 

0- 1 
1- 5 
5-10 

10-105 
15-20 

20-25 
25-30 
30-35 
35-40 
40-45 

45-SO 
SO-55 
55-60 
60-65 
65-70 

70-75 
75-80 
80-85 
85-90 
90-95 

95+ 

(1) 

Table 4. 

Probability of dying and the effect of eliminating CVR diseases as a 
cause of death in each age interval, white males and females, U.S.,1960 

CVR 
present 

<ii 

(2) 

.02615 

.00419 

.00269 

.00257 

.00618 

.00829 

.00757 

.00863 

.01256 

.02074 

.03474 

.05719 

.08456 

.12989 

.18759 

.26327 

.36837 

.51822 

.66589 

.82555 

1.00000 

White males 

CVR 
eliminated 

,.. 
qi.1 

(3) 

.02603 

.00410 

.00258 

.00243 

.00588 

.00778 

.00676 

.00691 

.00854 

.01192 

.01785 

.02737 

.03858 

.05702 

.07908 

.106)6 

.14106 

.19679 

.25627 

.35901 

1.00000 

Difference 

A -~. 1 'ii 1.. 

(4) 

.00012 

.00009 

.00011 

.00014 

.00030 

.00051 

.00081 

.00172 

.00402 

.00882 

.01689 

.02982 

.04598 

.07287 

.10851 

.15691 

.22731 

.32143 

.40962 

.46654 

o 

q·-~1· 1 1 • 

CI i 

(5) 

0.5% 
2.1 
4.1 
5.4 
4.9 

6.2 
10.7 
19.9 
32.0 
42.5 

48.6 
52.1 
54.4 
56.1 
57.8 

59.6 
61. 7 
62.0 
61.5 
56.5 

o 

CVR 
present 

,.. 
qi 

(6 ) 

.01967 

.00341 

.00191 

.00154 

.00251 

.00302 

.00357 

.00484 

.00733 

.01185 

.01816 

.02732 

.0)978 

.06613 

.10321 

.16682 

.26990 

.42950 

.59498 

.78586 

1.00000 

White females 

CVR 
eliminated 

" qi.l 

(7) 

.01959 

.00334 

.00184 

.00140 

.00227 

.00259 

.00295 

.00395 

.00583 

.00881 

.01282 

.01775 

.02287 

.03241 

.04416 

.06179 

.08920 

.13492 

.19040 

.29170 

1.00000 

Difference 

Ci i -Cii. 1 

(8) 

.00008 

.00007 

.00007 

.00014 

.00024 

.00043 

.00062 

.00089 

.00150 

.00304 

.00534 

.00957 

.01691 

.03372 

.05905 

.10503 

.18070 

.29458 

.40458 

.49416 

o 

q.-q. 1 
1 1. 

<ii 

(9) 

0.4% 
2.1 
3.7 
9.1 
9.6 

14.2 
17.4 
18.4 
20.5 
25.7 

29.4 
35.0 
42.5 
51.0 
57.2 

63.0 
67.0 
68.6 
68.0 
62.9 

o 

,.... 
-.J 
Vl 



Table 5 

Probability of survival and the effect of eliminating CVR diseases as a 
cause of death, white males and females, U.S., 1960 

Age White males White females 

interval CVR CVR Difference CVR CVR Difference 
(in years) present eliminated present eliminated 

A 1\ A " 1\ " ~ " " A 1\ 
~ - xi+1 POi POi•l POi.l-POi POLl-POi POi POi •l POLl-POi POLl-POi 

". 
POi POi 

(1) ( 2) (3) (4) (5) ( 6) ( 7) ( 8) (9) 

0-1 1.00000 1.00000 .00000 0;0 % 1.00000 1.00000 1.00000 0.0 % 
1 - 5 .97385 .97397 .00012 0.0 .98033 .98041 .00008 0.0 
5 - 10 .96977 .96998 .00021 0.0 .97699 .97714 .00015 0.0 

10 - 15 .96716 .967l.~8 .00032 0.0 .97512 • 9753L~ .00022 0.0 
15 - 20 .96h67 .96513 .00046 0.0 .97362 .97397 .00035 0.0 ..-

-.l 
0\ 

20 - 25 .95871 .95946 .00075 .97118 .97176 .00058 
I 

0.1 0.1 
25 - )0 .95076 .95200 .00124 0.1 .96325 .96924 .00099 0.1 
30 - 35 .94356 .9L1556 .00200 0.2 .96479 .96638 .00159 0.2 
35 - 40 , .93542 .93903 .00361 0.4 .96012 .96256 .00244 0.3 
40 - 45 

I 
.92361 .93101 .00734 0.8 .95308 .95695 .00387 0.4 

45 - 50 .90451 .91991 . .01540 1.7 .94179 .94852 .00673 0.7 
50 - 55 i .87309 .90349 .03040 3.5 .92469 ~'93636 .01167 1.3 i 
55 - 60 ! .82316 .87876 .05560 6.8 .89943 .91974 .02031 2.3 j 

60 - 65 I .75355 .84486 .09131 12.1 .86365 .89871 .03506 4.1 J 

65 - 70 I .65567 .79669 .14102 21.5 .80654 .86958 .06304 7.8 , 
I 

.53267 .73369 .83118 .10188 14.9 70 - 75 i .20102 37.7 .72330 
75 - 80 

I 
.39243 .65565 .26322 67.1 .60264 .77982 .17718 29.4 i 

I 

80 - 85 ! .24787 .56316 .• 31529 127.2 .43999 .71026 .27027 61.4 ! 
85 - 90 i .11942 .45234 .33292 278.8 .25101 .61443 .36342 144.8 
90 - 95 I .03990 .336h2 .29652 743.2 .10166 .49744 .39578 389.3 

l 
1 

95+ I .00696 .21564 .20868 2998.3 .02177 .35234 .33057 1518.5 ! 
i 



Table 6 

Expectation of life and the effect of eliminating CVR diseases 
as a cause of death, white males and females, U.S., 1960 

Age White males White females 

interval CVR CVR Difference CVR CVR Difference 

present eliminated present eliminated 

... ... " ... " " A " 
,.. #0- ,.. ,.. 

~ - xi+1 e. ei ' l e. l - e. ei . l - ei e. e. 1 ei •l - ei e. 1- e. J. J.' J. J. J.' J.' J. 
c itt. e. 

J. J. 

(1) (2) (3) (4) (5) (6) ( 7) ( 8) ( 9) 

o - 1 67.27 78.95 11.68 17.4 % 74.01 86.77 12.76 17.2 % 
1 ';' 5 68.08 80.05 11.97 17.6 74.50 87.50 13.00 17.4 
5 - 10 64.36 76.38 12.02 18.7 70.75 83.79 13.04 18.4 

10 - 15 59.52 71.57 12.05 20.2 65.88 78.94 13.06 19.8 --.I 
15 - 20 54.67 66.74 12.07 22.1 60.97 74.05 13.08 21.5 -.I 

I 

20 - 25 49.99 62.11 12.12 24.2 56.12 69.21 13.09 23.3 
25 - 30 45.39 57.58 12.19 26.9 51.28 64.38 13.10 25.5 
30 - 35 40.72 52.96 12.24 30.1 46.h6 59.56 13.10 28.2 
35 - 40 36.05 48.31 12.26 3h.o 41.67 54.79 13.12 31.5 
40 - 45 31.47 43.70 12.23 38.9 36.96 50.10 13.14 35.6 

45 - 50 27.08 39.19 12.11 44.7 32.37 45.52 13.15 40.6 
50 - 55 22.96 34.86 11.90 51.8 21.92 41.07 13.15 47.1 
55 - 60 19.19 30.76 11.57 60.3 23.63 36.17 13.14 55.6 
60 - 65 15.73 26.89 11.16 70.9 19.50 32.57 13.07 67.0 
65 - 70 12.69 23.36 10.61 84.1 15.70 28.57 12.87 82.0 

70 - 75 10.01 20.15 10.14 101.3 12.20 24.77 12.,7 103.0 
75 - 80 7.68 17.24 9.56 12L.5 9.13 21.23 12.10 132.5 
60 - 85 5.67 14.65 8.98 158.4 6.57 18.06 11.49 174.9 
85 - 90 4.20 12.66 8.46 201.4 4.71 15.51 10.80 229.3 
90 - 95 3.07 11.24 8.17 266.1 3.32 13.62 10.30 310.2 

95+ 2.92 11.39 8.47 290.1 2.98 13.39 10.41 349.3 
-__ ~ _____ J ___ ~, __ ," .. 

'_,_,_---.,~_.,._'_._-...... ,_"'-_' __ r"". 
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" ,.. 
Table 4 gives a comparison between q. and q. l' The difference, 

1 1. 

" " qi - qi.l' is the reduction in the probability of dying in age interval 

(xi' xi +}) if CVR diseases were eliminated as a risk of death, or, alternatively, 

the excess probability of dying due to the presence of these diseases. This 

difference, while not pronounced below age 30, advances with age at an 

accelerated rate: from .00012 (0.5%) for the first year of life to .46654 (56.5%) 

for age interval 90 to 95 in white males, U.S., 1960. If the effect of CVR diseases 

were removed, the reduction in the probability of dying for white males is 32% 

of the existing probability for age interval 35 to 40, over 50% for interval 

50 to 55, and about 60% for interval 70 to 75. This general mortality pattern 

" " holds also for white females. The estimated probabilities q. and q. I' 
1 1. 

" " and their difference q. - q. 1 are lower for females than for males up to age 90. 
1 1. 

The relative reduction in the probability of dying is for females about 20% for age 

interval 35 to 40, 35\ for interval SO to 55, and 63% for interval 70 to 

75. In fact from age 30 to age 70, the relative reduction in the probability 

of dying is lower for females than for males, but the reverse is true for 

other ages. Thus, relatively speaking, from age 70 on cardiovascular-

~enal diseases have a larger impact on white females than white males, 

although in absolute terms these diseases contribute more deaths in the 

white male population than in the white female population almost throughout 

life. 

The impact of CVR diseases on the probability of survival is shown 

in Table 5, where POi • li110 is taken from the life table of the entire white 

population for each sex, and POi.l • l i •l /l0•1 is from Tables 2 and 3. 

Although the impact on the probability of survival is less pronounced than 

the probability of dying in the younger ages, it is much more alarming in 

the older age groups. From age 30 on for males, and from age 40 on for 
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females, the relative reduction in the survival probahility due to the 

prC'scnce of C\,R has heen donbled over every:; year age interval. 

'faille: 6 ,>!lOWS that these di seases cnllse an avcral~t-> loss of 12 )'e~rs 

in the expectation of life for ,,-hite males 1\T~der 3?,C 50 and 13 ye~lrs for 

females under al~e 65. ;\t older ages, the loss j n the expectat ion of 1 i fe' 

decreases slightly in alJsolute value btlt il~crt''lses spectacularly relative 

to the existing life expectll.ncy. If eVR disenses were eli'TIinil.tcd as:1 

risk of deat]l, a male could expect an 10% incrense of lenRth of life over 

the present life expectancy at :W years of age, 5:)~v 3t ar~e 50 and lOn~o 

at age 70. Comparable percentages of increased lengths of 1 ife that could 

he expected at these a_t~es (28 n
" ~lt age 30, ;1 n at age 50 3n(I 103°, at age 

70) are found for a female. 

11.1 Comparison of inpac:: on human morta~ltv of three Major callses 
of deaths: All-3ccident~~cer all forms, and ca~i0vascular-rena1 
diseases 

I)i fferent di seases have defi ni te effects on human mortal i ty and 

longevity. Concerted efforts are heiJ:p made through the World lfealth 

Organization and health programs of individual countries to reduce mortality 

due to speci fic diseases. Relative importance of diseases as causes of 

death playa significant role in determining the priority in overall health 

planning. The purpose of tllis section is to show how some leading causes 

of death may be compared using the life tahle and competing risk methodology. 

Tables 7, 8 and 9, are the life tables of the Federal qepuhlic of Germany 

1970 population when cardiovascular-renal diseases (~l)' cancer all forms 

CR
2
), and all accidents (R_) respectively. are eliminated as causes of 

,1 

death. Each table shows a hypothetical pattern that would exist in the 

Federal Republic of Germany if the corresponding diseases \-rere elimjnated. 



Age 
Interval 
(in years) 

X. to x i +1 1 

(1) 

0- 1 

I- S 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85+ 
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Table 7. 

Life Table of the Federal Republic of Germany population, 1970 
when cardiovascular diseases (R

1
) are eliminated as a cause of 

death. 

Probabil ity Number Number Fraction Number Total 
of dying in living at dying of last age of years number of 
interval age xi in interval interval of lived in years lived 

(xi' xi+1) (xi' xi+1) life interval beyond age 
x. 

1 

,. L 
d1.1 L. 1 T. 1 q1.1 a. 1.1 1 1. 1. 

(2) (3) (4) (5) (6 ) (7) 

.02117 100000 2117 .10 98095 7749467 

.00374 97883 366 .39 390639 7651372 

.00257 97517 251 .46 486907 7260733 

.00201 97266 196 .52 485860 6773826 

.00505 97070 490 .57 484296 6287966 

.00573 96580 553 .52 481573 5803670 

.00511 96027 491 .51 478932 5322097 

.00633 95536 605 .52 476228 4843165 

.00832 94931 790 .54 472838 4366937 

.01138 94141 1071 .53 468188 3894099 

.01630 93070 1517 .51 461633 3425911 

.02481 91553 2271 .58 452996 2964278 

.03529 89282 3151 .54 439163 2511282 

.05576 86131 4803 .54 419608 2072119 

.08802 81328 7158 .52 389461 1652511 

.12736 74170 9446 .52 348180 1263050 

.18092 64724 11710 .51 294930 914870 

.25626 53014 13585 .49 230428 6t9940 

1.00000 39429 39429 389512 389512 

Observed 
Expectation 

of life 
at age xi 

"-e. 1 1. 

(8) 

77 .49 

78.17 

74.46 

69.64 

64.78 

60.09 

55.42 

50.69 

46.00 

41.36 

36.81 

32.38 

28.13 

24.06 

20.32 

17.03 

14.13 

11.69 

9.88 



Age 
Interval 
(in years) 

to x. 1 x. 
~ ~+ 

(1) 

0- 1 

1- 5 

5-10 

lO-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85+ 
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Table 8. 

Life Table of the Federal Republic of Germany population, 1970 
when cancer all forms (R

2
) is eliminated as a cause of death. 

Probability Number Number Fraction Number Total 
of dying in living at dying of last age of years number of 
interval age x. in interval interval of lived in years lived 
(x. , x. 1) 

~ 
(x. , x. 1) life interval beyond age 

~ ~+ ~ ~+ xi ,t. " d. 2 a. L. 2 T. 2 q. 2 
~. 1.2 ~. ~ ~. ~. 

(2) (3) (4) (5) (6 ) (7) 

.02117 100000 2117 .lO 98095 7323376 

.00343 97883 336 .39 390712 7225281 

.00227 97547 221 .46 487138 6834569 

.00182 97326 177 .52 486205 6347431 

.00481 97149 467 .57 484741 5861226 

.00553 96682 535 .52 482126 5376485 

.00485 96147 466 .51 479593 4894359 

.00603 95681 577 .52 477020 4414766 

.00808 95104 768 .54 473754 3937746 

.01116 94336 1053 .53 469205 3463992 

.01595 93283 1488 .51 462769 2994787 

.02433 91795 2233 .58 454286 2532018 

.03681 89562 3297 .54 440227 2077732 

.06501 86265 5608 .54 418427 1637505 

.11328 80657 9137 .52 381356 1219078 

.18512 71520 13240 .52 325824 837722 

.29308 58280 17081 .51 249552 511898 

.44942 41199 18516 .49 158779 262346 

1.00000 22683 22683 103567 103567 

Observed 
Expectation 

of life 
at age xi 

" e. 2 
~. 

(8) 

73.23 

73.82 

70.06 

65.22 

60.33 

55.61 

50.90 

46.14 

41.40 

36.72 

32.10 

27.58 

23.20 

18.98 

15.11 

11. 71 

8.78 

6.37 

4.57 



Age 
Interval 
(in years) 

x. to x i +1 ~ 

(1) 

0- 1 

1- 5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85+ 
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Table 9. 

Life Table of the Federal Republic of Germany population, 1970 
when all accidents (R

3
) are eliminated as a cause of death. 

Probabil ity Number Number Fraction Number Total 
of dying in living at dying of last age of years number of 
interval age x. in interval interval of lived in years lived 
(x. , xi+1) 

~ (x. x. 1) life interval beyond age 
~ ~, ~+ 

x. 
~ 

L T. q. 3 d. 3 a. L. 3 
~. i.3 ~. ~ ~. L3 

(2) (3) (4) ( 5) (6 ) (7~ 

.02054 100000 2)54 .10 98151 7195696 

.00253 97946 248 .39 391179 7097545 

.00123 97698 120 .46 488166 6706366 

.00112 97578 109 .52 487628 6218200 

.00203 97469 198 .57 486919 5730572 

.00271 97271 264 .52 485721 5243653 

.00334 97007 324 .51 484241 4757932 

.00505 96683 488 .52 482244 4273691 

.00790 96195 760 .54 479227 3791447 

.01287 95435 1228 .53 474289 3312220 

.02048 94207 . 1929 .51 466309 2837931 

.03297 92278 3042 .58 455002 2371622 

.05051 89236 4507 .54 435814 1916620 

.08632 84729 7314 .54 406823 1480806 

.14551 77415 11265 .52 360039 1073983 

.22526 66150 14901 .52 294988 713944 

.:.13585 51249 17212 .51 214076 418956 

.48554 34037 16526 .49 128044 204880 

1.00000 17511 17511 76836 76836 

Observed 
Expectation 

of life 
at age x. 

~ 

" e 
i.3 

(8) 

71. 96 

72.46 

68.64 

63.73 

58.79 

53.91 

49.05 

44.20 

39.41 

34.71 

30.12 

25.70 

21. 48 

17.48 

13.87 

10.79 

8.17 

6.02 

4.39 
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rOr cOr.1parison, Tahle:; lCC:l <'lnd lOb are rroduced 

1\ 1\ 1\ I, 
to 5hO\, the di fferences qi - '1i. l' '1i - qj. 2 and 

1\ 
'1. 

1 

from the life tables 

A 
- q. 3' for each age 

1. 

Q,roup. These differences represent the increase in prohahj I ltv of dyin,g 

due to the presence of thp corresponding disease. Table lOb shows that the 

contril,utioll of accident.,; to the prok~hiljty of dyirW is quite uniform 

uver most of the 1 i. fe sran \d th the except ion of verv old a~es \,l\ere some 

increase has taken plan'. Iln the other hand, the differenc(>sin probability 

of dying for call\.:cr all fo}'ms antI cardiovascular-renal (liseases are not 

significant for ages less than 30 years, but they 

increase rapicJly witl, the adv:mcement nf ape. ThE' differences arE.' hipllt'r 

for callcer than cardiovascular-renal diseases for a)((' ,groups helow .1'. 

Illit the reverse is tr1le for older :lP(,S. Fnr (l!~e ,l~roup RO to 85, the 

difference for cardinvascII1ar-rerwl diseases is Morc than four tiMes as 

lar~:(' :IS tllat for all CaTl('('r-;. Since the IJrohahility of dvinf' in old 

c8rdiov;lsculay'-

The relative im;)act of these three C<ltlS('c:; of death on hllman lonf'('vi tv 

hCCOl!leS quite clear in Tablc 11. In this Table, the eXl1ectation of life 

~ 

e
i 

at each age when all risks arc one-ratin? is hein~' comnared with the 

A ~ A 

expectation of life (c. l' e. ')' anJ c. 7) \·;l1en one of the causes is 
1 • J • ~ 1 •. J 

eliminated. \':e see that c;lflliov;tscular diseases are hv far the mo:;t 

important causes of death. (:anccr all forms runs a distant secolld, and 

r. 

all accidents a poor third. Tlte difference ei.l - c j is quite constant 

thrOll\~llOtit the life span. The fi!~1\res show that the presence of cardio-

\':1sClllar-renal diseases has t on the average, cost the people in the 

Federal r<'epublic of CerManv :!hout 7 vears loss of life. 1'hr corresponding 

difference for cancer decreases as a,I~C increases, \\'i th the lar?est 

di ffercnce of 2.58 years at age 1-5 and the smallest of .39 years 
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Table lOa. 

Proba~ility of dying when cardiovascular diseases (R
l
), 

cancer all forms (R
2
), or all accidents (R

3
) are eliminated 

as a cause of death. 

(The Federal Republic of Germany, 1970) 

Probability Probability of Dying When A 
of dying is Eliminated 

in interval Cancer 
in years) (xi' xi+l) Cardiovascular All Forms 

(R
l

) (R
2

) 

i' xi+l) 
,. ,. .... 
qi q. 1 q. 2 

~. ~. 

0) (2) (3) (4) 

0- 1 .02123 .02117 .02117 

1- 5 .00379 .00374 .003'.3 

5-10 .00260 .00257 .00227 

10-15 .00208 .00201 .00182 

15-20 .00516 .00505 .00481 

20-25 .00598 .00573 .00553 

25-30 .00548 .00511 .00485 

30-35 .00707 .00633 .00603 

35-40 .0099l .00832 .00808 

40-45 .01471 .01138 .01116 

45-50 .02224 .01630 .01595 

50-55 .03499 .02481 .02433 

55-60 .05275 .03529 .03681 

60-65 .08915 .05576 .06501 

65-70 .14877 .08802 .11328 

70-75 .23005 .12736 .18512 

75-80 .34382 .18092 .29308 

80-85 .49841 .25626 .44942 

85+ 1.00000 1.00000 1.00000 

Cause 

All 
Accidents 

(R
3

) 
".. 

qi.3 

(5) 

.• 02054 

.00253 

.00123 

.00112 

.00203 

.00271 

.00334 

.00505 

.00790 

.01287 

.02048 

.03297 

.05051 

.08632 

.14551 

.. 22526 

.33585 

.48554 

1.00000 



Interval 

xi to x i +1 

(1) 

o - 1 

1 - 5 

5 - 10 

10 - 15 

15 - 20 

20 - 25 

25 - 30 

30 - 35 

35 - 40 

40 - 45 

45 - 50 

50 - 55 

55 - 60 

60 - 65 

65 - 70 

70 - 75 

75 - 80 

80 - 85 

85 + 
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TABLE lOb 

Probability of dying and the effect of eliminating 
cardiovascular diseases (R

1
), cancer all forms (R2) , 

or all accidents (R
3

) as a cause of death in each 
age interval. 

(The Federal Republic of Germany, 1970). 

Cardiovascular Cancer all All accidents, 
diseases, R1 . forms, R2 · R3·. 

'" '" '" '" '" '" 
qi-qi.1 qi-qi. 2 qi-qi. 3 

'" '" -.-- ,.. 
'" '" '" '" ,.. 

qi-qi. 1 qi qi-qi. 2 qi qi-qi. 3 
x 
qi 

(2) (3) (4) (5) (6) (7) 

.00006 0.3% .00006 0.3% .00069 3.3% 

.00005 1. 3% .00036 9.5% .00126 33.2% 

.00003 1.2% .00033 12.7% .00137 52.7% 

.00005 2.4% .00024 11.7% .00094 45.6% 

.00011 2.1% .00035 6.8% .00313 60.7% 

.00025 4.2% .00045 7.;" % .00327 54.7% 

.00037 6.8% .00063 11. 5% .00214 39.1% 

.00074 10.5% .00104 14.7% .00202 28.6% 

.00159 16.0% .00183 18.5% .00201 20.3% 

.00333 22.6% .00355 24.1% .00184 12.5% 

.00594 26.7% .00629 28.3% .00176 7.9% 

.01018 29.1% .01066 30.5% .00202 5.8% 

.01746 33.1% .01594 30.2% .00224 4.2% 

.03339 37.5% .02414 27.1% .00283 3.2% 

.06075 40.8% .03549 23.9% .00326 2.2% 

.10269 44.6% .04493 19.5% .00479 2.1% 

.16290 47.4% .05074 14.8% .00797 2.3% 

.24215 48.6% .04899 9.8% .01287 2.6% 

- - -.; 
\ 

~ 



Age 
Interval 

(x. to 
~ 

x. 1) 
~+ 

0) 

0- 1 

I- S 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

Lr5-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85+ 

I 

I 
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Table 11. 

Expectation of life and the effect of elimination of 
cardiovascular diseases (R

1
), Cancer all forms (R

2
), or 

all accidents (R
3

) as a cause of death in each age interval. 

Observed 
Expec­
tation 
of 1 ife 

" e. 
~ 

(2) 

70.71 

71. 24 

67.51 

62.68 

57.80 

53.09 

48.39 

43.64 

38.94 

34.30 

29.77 

25.39 

21. 21 

17.24 

13 .66 

10.59 

7.98 

5.82 

4.18 

(The Federal Republic of Germany, 1970). 

IExpectation of life with elimination as calise of death 

I 

Cardiovascular 
Diseases 1. 

(3) 

77 .49 

78.17 

74.46 

69.64 

64.78 

60.09 

55.42 

50.69 

46.00 

41. 36 

36.81 

32.38 

28.13 

24.06 

20.32 

17.03 

14.13 

11. 69 

9.88 

~ -~ 
i.l i 

(4) 

6.78 

6.93 

6.95 

6.96 

6.98 

7.00 

7.03 

7.05 

7.06 

7.06 

7.04 

6.99 

6.92 

6.82 

6.66 

6.44 

6.15 

5.87 

5.70 

Cancer all forms 
2. 

(5 ) (6 ) 

73.23 2.52 

73.82 2.58 

70.06 2.55 

65.22 2.54 

60.33 2.53 

55.61 2.52 

50.90 2.51 

46.14 2.50 

41.40 2.46 

36.72 2.42 

32.10 2.33 

27.58 2.19 

23.20 1. 99 

18.98 1. 74 

15.11 1. 45 

11. 71 1.12 

8.78 0.80 

6.37 0.55 

4.57 0.39 

, All accidents 
3. 

e. 3 e. 3-e. 
~. ~. ~ 

(7) (8) 

71. 96 1. 25 

72.46 1. 22 

68.64 1.13 

63.73 1.05 

58.79 0.99 

53.91 0.82 

49.05 0.66 

44.20 C.56 

39.41 0.47 

34.71 0.41 

30.12 0.35 

25.70 0.31 

21.48 0.27 

17.48 0.24 

13.87 0.21 

10.79 0.20 

8.17 0.19 

6.02 0.20 

4.39 0.21 

1. Cardiovascular diseases (A80-A88) 
2. Cancer all forms (A45-A60~ 
3. All accidents (AE138-AE146 ) 



In 
(in 

(}: . 
1 

1. 
1 

2 
3 
] 

4 
4 

5 
'i 
fi 
C 
7 

7 
8 

Age 
terval 
years) 

, xi +1) 

( 1) 

1-'i 
5-1r) 
0-15 
5--20 
0-25 

5--W 
n-35 
5-40 
0-45 
5-5D 

0-55 
'i-60 
(;-65 
')--70 
1)-75 

5-dO 
O-gS 

---
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Table 12. 

Probability of dying and the effect of eliminating cancer all forms (RZ) 
as a cause of death 

(Canada 1968 and France 1969) 

-
Canada France 

dale Female '1a1e Female 
-- -1------

~ "- " A A A A A 

-

qi -qi. 2 qi -qi. 2 q.-q. Z 
1. 1 .• qi-qi.2 

.... " )< ..... A ----..--- A "- - P' A A x 
qi-qi. 2 q. Qi-Qi.2 q. 

.1 1. 
(j.-q. ,., 

1 1.,,- qi qi -qi. 2 qi 

.. . . .... -.. -~ ."._ .. ". 

(2) (3) (4) (5) (6) (7) (8) (9) 

.-- ----

.GOO19 4.7% .00022 6.8% .00029 7. 8~~ .00025 8.2% 

.00033 11.1 .00019 9.n .00037 16.2 .00034 20.5 

.00015 5.8 .00013 8.4 .00062 25.8 .00033 22.9 

.00048 7.5 .00014 13.n .00126 20.8 .00058 Z1.3 

.00030 3.3 .00042 14.9 .00097 12.1 .00017 5.2 

.00077 10.3 .(1)058 18.2 .00123 15.3 .0(1)50 13.7 

.00106 13 .2 .00058 13.6 .00141 14.4 .00057 12.4 

.00171 15.5 .00244 37.6 .00313 21.3 .00182 25.1 

.00206 12.0 .00422 41.6 .00520 23.2 .00378 34.2 

.00506 17.8 .00703 44.0 .00367 25.3 .00662 39.1 

.00849 18.6 .01037 42.1 .01534 29.0 .00913 36.5 

.01614 22.0 .01432 37.8 .02429 29.8 .01405 39.1 

.02326 20.8 .01801 31. 3 .03925 31.2 .01922 34.9 

.03685 22.2 .02348 26.0 .05564 29.9 .02799 31.3 

.04801 20.7 .03010 21.4 .07125 26.9 .04070 26.6 

.04930 14.8 .03325 ]4.7 .08024 21.4 .05281 20.8 

.06147 13 .1 .0381(5 10.3 .07075 13.5 .05234 13.0 



Age 
Interval 

(xi' xi +1) 
." ,-"_.-".,, 

(1) 

0-1 
1-5 

.5-10 
10-15 
15-20 

20-25 
25-30 
30-35 
35-40 
40-45 

45-50 
50-55 
55-60 
60-65 
65-70 

70-75 
75-80 
80-85 

85+ 
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Table 13. 

Expectation of life and the effect of eliminating 
cancer all forms (R2) as a cause of death 

(Canada 1968 and France 1969) 

Canada France 

Male Female Male Female 

'" '" 
,.. ,.. 

'" 
,.. 

'" 
,.. ,.. 

" '" " ei ei.2-ei e
i ei.2-ei ei ei. 2-e i e

i ei.2-e i 
""-" .. -,~ .. ,,- .~ --~----~-

(2) (3) (4) (5) (6) (7) (8) (9) 

69.04 2.37 75.69 2.75 67.82 3.58 75.38 3.12 
69.66 2.47 76.09 2.87 68.11 3.66 75.50 3.15 
65.93 2.47 72.33 2.87 64.36 3.65 71. 73 3.14 
61.12 2.45 67.47 2.86 59.50 3.64 66.84 3.12 
56.27 2.45 62.57 2.85 54.64 3.61 61.93 3.11 

51.61 2.44 57.72 2.84 49.96 3.56 57.09 3.08 
47.07 2.45 52.88 2.82 45.34 3.54 52.27 3.08 
42.41 2.42 48.04 2.80 40.69 3.51 47.45 3.07 
37.73 2.40 43.23 2.77 36.06 3.49 42.66 3.05 
33.12 2.36 38.50 2.68 31.56 3.42 37.95 3.00 

28.65 2.33 33.86 2.54 27.23 3.32 33.35 2.88 
24.41 2.25 29.37 2.34 23.10 3.18 28.88 2.69 
20.45 2.14 25.05 2.08 19.24 2.96 24.55 2.49 
16.86 1.93 20.92 1.80 15.71 2.68 20.37 2.22 
13.65 1.71 17.04 1.50 12.60 2.28 16.40 1.93 

10.85 1.41 13.46 1.22 9.88 1.83 12.74 1.61 
8.36 1.07 10.24 .94 7.53 1.37 9.56 1.28 
6.25 .88 7.46 .78 5.54 1.01 6.93 .99 

4.61 .73 5.37 .76 4.01 .91 4.90 .93 
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at age 85. The average loss of length of life due to cancer is about 2.0 

years. The length of life lost due to all accidents also decreases with 

the advancement of age. At age 0, the loss is 1.25, while at age 75, 

.19 years. On the average the loss due to all accidents is less than one 

year. 

It may be noted that, in comparison with the findings in Table 6, 

cardiovascular-renal diseases are a more serious cause of death in 

the United States than they are in the Federal Republic of Germany. 

4.2. Cancer all forms 

Cancer all forms is next only to heart disease as a major cause of death. 

It claimed about 17 percent of all deaths in the United States in recent 

years. In spite of immeasurable amounts of scientific research effort, the 

cause of the disease is still unknown, and effective treatment is yet to 

be found. Concern has been expressed regarding the susceptibility to the 

disease as a function of age, sex, race, socio-economic status and others. 

To show how these diseases affect longevity of people of different ages, 

sex, and locality, we have computed the probability of dying ~. 2 when cancer 
1. 

all forms is eliminated as a risk of death and the corresponding expecta­

tion of life ~. 2 for the populations of Canada and France. The findings are 
1. 

recorded in Tables 12 and 13. For both the Canadian and French males (age 25-80) 

• II. 1\ the dIfference q.-q. 2 increases as age advances, although the effect on 
1 1. 

French males is more pronounced. The reverse pattern holds for females 

between ages 20 and 60, where the Canadian females are more affected than 

the French females. In the age interval from 35 to 55 in Canada, the difference 

between the two probabilities is greater for females than for males. 

This may be attributable to the prevalence of breast cancer among women. 



- 190 

The number of years of life lost due to cancer all forms is greater 

for the French population than for the Canadian population for both 

sexes and all age categories. In France, the males would gain more years 

of life than females if cancer all forms was eliminated as a risk of 

death, while in Canada females would gain more years of life than males 

up to age 55. 

5. The Life Table when a Particular Cause Alone is Operating in a Population 

The procedure in constructing a life table when a particular 

risk is the only risk operating in a population is also the same as that 

described in Section 2 of this Chapter, except for the difference in the 

basic quantities. As an example, let us consider the net probability of 

dying, qil' when risk Rl is the only risk acting. Since qil cannot he 

estimated directly, we make use of the result in the competing risks and 

estimate qil from the formula (cf., Equation (2.21a) in Appendix III), 

(5.1) 

When a life table is for a current population, q. and Q.l are estimated, 
1 1 

as in Section 2, from 

n. 111. 
1 1 q. = 

1 1 + (I-a. ) n. ~f. 
1 1 1 

(2.4) 

and 

A 
n. r.1. 

1 1 
Qil = 1 + (I-a. ) n. ~1. 

1 1 1 

(2.5) 

and hence, 

A 1 1\ I\. 

qil = Qil [1 + - (q. -Q·l)] 2 1 1 
(15.2) 
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For the last age interval, e.g., 85 and over, QS5,1 = 1. When all the qil 

have been computed, we assume a radix ~Ol = 100,000 and proceed to con-

struct the rest of the table in the same way as before. We shall not 

repeat the description. 
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CHAPTER 9 

MEDICAL FOLLOW-UP STUDIES 

1. Introduction 

Statistical studies in the general category of medical follow-up 

and life testing have as their common immediate objective the 

est~.mation of life expectancy and survival rates for a defined 

population at risk. Such studies usually must be terminated before 

all survival information is complete and are therefore said to be 

truncated. The nature of the problem in an investigation concerned wita 

the medical follow-up of patients is the same as in the life testing 

of el~ctric bulbs, although differenc~in sample size may req~ire 

different approaches. For illustration, we use cancer survival data 

of a large sample and therefore our terminology is the same as that of 

the medical follow-up study. 

In a typical follow-up study, a group of individuals with some 

common morbidity experience is followed from a· well-defined zero 

point, such as date of hospital admission. The purpose of the study 

might be to evaluate a certain therapeutic measure by comparing the 

expectation of life and survival rates of treated patients with those 

of untreated patients, or by comparing the expectation of life of 

treated and prf!sumably cured patients with that of the general 

population. When the period of observation ends. there will usually 

remain a number of individuals for whom the mortality data is Ulcomplete. 

First, some patients will still" be alive at the close of the study. 
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Second, some patier.ts will have Gied from causes other than those und~r 

stUGY, so that the chance of dyiuZ frem the specific cause cannot be 

determine1 dirutly. Finally, patients will be "lost" to the study 

because of follow-up failure. These three sources of incomplete 

information have created interesting statistical problems in the 

estimation of the expectation of life and survival rates. Many 

contributions have been made to methods of analysis of follow-up data. 

They include the studies of Gree~wood [1925], Frost [1933J, Berkson and 

Gage [1952J, Fix and NeYi'iar, [ISSl], Boag [1949], Elveback [1958] ,Armitage [1959], 

Kaplan and Meier [1958 J, Dorn [1950], and Littell {l952]. For the material 

~resented in this chapter, reference may be made to Chiang [19613]. 

The purpose or this ch;1.pter is to adapt the life table metbodology 

and competing risk theory, presented in Appendix II and III, to the 

special conditions of follow-up studies. Section 2 is concerned with 

tile general type cf study which investigates mortality experience 

without reference to cause of death. The maximum likelihood estimator 

('.f tlw pn,I).lhllit\· of dvin~~ I,', derivf'd,.1nd;i Jllct!1nd is suggesten for 

lumputinl; the "]'sf"'v(><\ ('X;)('ct.1t1or, o! life in sllch studies. 

Section 3 extends the discussion to follow~up studies with the 

consideration of competing risks, and presents formulas for the estimators 

of the net, crude, and part~al crude probabilities. The problem of lost 

cases is treA.h'd in Sect.ion 4, where po no,tient's zl.bsence is considfcred 2.5 -t 

tl::,niric(~l d::.t:: of . follow-uo study of ~:ervical C'lnc(~r r;tct..ients. 
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2. Estima~ion of Probability of Survival 

and EA~ectation of Life 

Consider a follow-up program conducted over a period of y 

years. A total of NO patients are admitted to the program at any 

time during the study period and observed until death or until 

termination of the study, whichever comes first. The time of admission 

is taken as the common point of origin for all NO patients; thus 

NO is the number of patients with which the study begins, or the 

number alive at time zero. The time axis refers to the time of 

follow-up since admission, and x denotes the exact number of years 

of follow-up. A constant time interval of one year will be used 

for simplicity of notation, with the typical interval denoted by 

(x, x+l), for x=O,l,···,y-l. The symbol will be used to 

denote the probability that a patient alive at time x will survive 

the interval (x, x+l), and qx the probability that he will die 

during the interval, with p +q = 1. x x 

2.1. Basic random variables and likelihood functions. For each 

interval (x, x+l) let N be the number of patients alive at the 
x 

beginning of the interval. Clearly, N is also the number of 
x 

survivors of those who entered the study at least Y- years before 
1/ 

the closing date.- The number N x will decrease as x increases 

because of deaths and withdrawal of patients due·to termination of 

the study. The decrease in N is ~ystematically described below 
x 

with reference to Table 1. 
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Table 1 

Distribution of N patients according to withdrawal status x 
and survival status in the interval (x,X+l) 

Survival status Withdrawal status in the interval 

Total 

Survivors 

Deaths 

Total 
number 

of 
patients 

N 
x 

s+w x x 

Number 
to be observed 

for the 
entire interval*· 

m 
x 

s 
x 

d 
x 

Number 
due to 

withdraw during 
the interval** 

n 
x 

w 
x 

d' 
x 

* Survivors among those admitted to the study .more than 
(x+l) years before closing date for individual patients. 

** Survivors among those 
(x+l) years but more than 
individual patients. 

admitted to the study less than 
x years before closing date for 

The N individuals who begin the interval (x, x+l) comprise x 

two mutually exclusive groups differentiated according to their date 

of entrance into the program. A group of m 
x 

patients who entered 

the program more than x+l years before the closing date will be 

observed for the entire interval; a second group of n x patients who 

entered the program.less than x+l years before its termination is 

due to withdraw in the interval because the closing date ~recedes 

their (x+l)th anniversa~y date. Of the m patients d will die x x 
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in the interval and s will survive to the end of the interval and 
x 

become Nx+ 1 ; of the n patients d' will die before the closing 
x x 

date and w will survive to the closing date of the study. The sum 
x 

d +d' :: D is the total number of deaths in the interval. Thus 
x x x 

s , d , w, and d' are the basic random variables and will be used 
x x x x 

to estimate the probability px that a patient alive at x will 

survive the interval (x, x+l), and its complement ~. 

Consider first the group of m 
x 

individuals each of whom has a 

constant probability px of surviving and q = l-p of dying in 
XX 

the interval (x, x+l). Thus, the random variable has 

the b1noaial distribution: 

(2.1) 

where Cl is the binomial coefficient. The expected number of surviviors 

and the expected nUliber of death. are liven by 

E(s 1m ) :: m p x x x x 
and E(d 1m ) = m (l-p ) x x x x 

respectively. 

The distribution of the random variables in the group of 

patients depend s upon the time of withdra\val. A plausible 

n 
x 

assumption is that the withdrawals take place at random during the 

(2.2 ) 
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interval (x, x+l). Under this assumption the probability that a 

patient will survive to the closing date is 

(2.3) 

which is approximately equal to p~ 
x 

or 

-(l-p )/In p = p ~ 
x x x 

(2.4 ) 

since the probability Px of surviving the interval is almost always 

large. rhe quantities on both sides of (2.4) have been computed for selected 

values of Px' and the results shown in Table 2 justify the approximation. 

.10 

.75 

.80 

.85 

.90 

.95 

T-able 2 

Comparison between 

p~ 
x 

.837 

.866 

.894 

.922 

.949 

.975 

p~ and 
x 

-(1-p ) / In p 
x x 

.841 

.869 

.896 

.923 

.949 

.975 
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Consequently, ~ Px is taken as the probability of surviving to the 

closing date and (l-p~) as the probability of dying before the 

time of withdrawal. Thus the probability distribution of the random 

variabl~ Wx in the group of nx patients due to withdraw is also binomial: 

d' 
c_ p ~x(l-p~) x 
-l x x (2.5) 

where C
2 

is the binomial coefficient. The expected number of survivors 

and the expected number of deaths are given by 

E(w In ) x x 

respectively. 

and E(d'in ) x x 

Since the N individuals comprise two indepenaent groups 
x 

according to their withdrmval status, the likelihood! function of 

all the random variables is the product of the two probability 

functions (2.1) and (2.5), or 

(s -P-1W ) d 1- d' 
L 

x 
= C x x (l-p ) x(l_p~) x 

px x x 

x=O,l,··· ,y-l. 

(2.6) 

(2.7) 

where C stands for the product of the combinatorial factors in (2.1) and (2.5). 
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2.2. Maximum likelihood estimators of the probabilities p and 
x--

q • The maximum likelihood estimators of the probability p is a 
x x 

value of p at which the function L in (2.7) attains a maximum. x x 

The estimator is given by 

,.. 
p = 

x 

with the complement 

2 

"~d'2 + 4(N -~ )(s + ~ ) x x x x x 

2(N - ~ ) 
x x 

x=O,l,···,y-l. 

(2.8) 

(2.9) 

The maximum likelihood estimator (2.14) is not unbiased, but is 

consistent in the sense of Fisher. When the random variables s , w x x' 
and d~ are replaced with their respective expectations as given by 

(2.5) a~d (2.9), the resulting expression is identical with the 

probab iIi ty p • 
x 

The exact foraula for the variance of the •• tt.Ator p in (2.8) is 
x 

unknown, but an approximate formula is stated below for practical 

applications. 

where 

- M 
x 

M .. m + n (l~~)-l 
x x x 'Yx 

(2.10) 
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Formula (2.10) is quite similar to the variance of a binomial 

proportion e_xcept that M 
x 

inst:ead of N x is in the denominator. 

However, M is the more logical choice, since a patient who is to 
x 

be observed for a fraction of the period (x, x+l) should be weighted 

less than one who is to be observed for the entire period. According 

to equaticn (2.11), the experience of each of the til 
X 

patients is counted 

as a whole "trial," whereas the experience of each of the n patients 
x 

due to withdraw is counted as a fraction (1+P~)-1 of a "tria1." The 
x 

fraction is dependent upon the probability Px of survival. The 

smaller the probability Px' the larger will be the fraction. When 

P =0 
x ' 

M =m+n· x x x' 
when P =1 x ' 

M .. m -t~n x x x 

2.3. Estimation of survival probability. A life table 

for follow-up subjects can be readily constructed once and 

have been determined from (2.,) and (2. 9) for each interval of the 

study. The procedure is the same as for the current life table. 

Because of their practical importance, we shall consider only the 

x-year survival rate and the expectation of life. 

The x-year survival rate is an estimate of the probability that a 

patient will survive from the time of admission to the xth anniversary 

it is computed from 

x=1,2,··· ,y. (2.12 ) 
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The sample variance of 
A 

POx has the same form as that given in 

equation (2.7 ) of Chapter 3. 

x-l 
A 2 '\ A -2 SA 2 
POx L Pu 

u=O Pu 
(2.13) 

2.4. Estimation of the expectation of life. To avoid confusion in 

notation, let us denote by a a fixed number and by e the observed 
a 

expectation of life at time 
. 2/ 

a computed from the follow1ng formula- : 

(2.14) 

In a study covering a period of y years, if no survivors remain from 

the patients who entered the program in its first year, will be 

zero, and e a can be computed from (2. 14 ). However, usually there 

will be w 
y-l 

survivors who were admitted in the first year of the 

program and are still living at the closing date. In such cases 

(2.B) shows that Py-l is greater than zero, and the values of 

A A 

Py' Py+l'··· are not observed within the time limits of the study. 

Consequently, e cannot be obtained from equation (2. 1~. a 

if 

e 
a 

w 

where 

Nevertheless, 
A 

e may be computed with a certain degree of accuracy a 

y-l 
is small. Suppose we rewrite equation (2.14) in the form 

+ p~ + P~P~+l + ••• + p p •.• p + pA (~ 
~ ~ ~ a a+l y-l ay Py + p y p y+ 1 + ... ), ( 2 . 15) 

is written for p P tl···· P l' a a- y- The problem is to determine 

Py,Py+l'··· in the last term, $ince the preceding terms can be 

computed from the data available, 
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Consider a typical interval (z. z+l) beyond time y with the 

survival probability of p • for z=y. y+l.... If the force of mortality 
z 

is constant beyond y. the probability of surviving the interval (z. z+l) 

becomes independent of z. or 

z = y. y+1 •••• (2.16) 

Under this assumption. we may replace the last term of (2.15) with 

"(p"~2 ) " Pay 'Y + •••• which converges to p p/(l-p). or ay 

" (A ,,2 Pay p+p + ..• ) = Px 
l-p 

(2.17) 

As a result. we have 

(2.18 ) 

Clearly. p may be set equal to 
A 

Py-l if the force of ~ortality 

is assumed to be constant beginning with time (y-l) instead of time 

y. In order to have small sample variation, however, the estimate of 

P should be based on as large a sample as possible. Suppose there 

exists a time t, fer t<y, such that are approximately 

equal, thus indicating a constant force of mortality after time t. 

Then, p may be set equal to and we have the formula for the 

observed expectation of life, 

e 
a 

~ + pA + P P + ••• + pA P ••• p + p (Pt ) 
a a a+l a a+l y-l ay l-pt 

( 2.19) 

for a·O ••.•• y-l. 
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Although formula (2.19) holds for a=O,···,y-l, it is apparent 

that the smaller the value of a, the smaller the value of 

When is small, the error in assuming a constant force of 

mortality beyond y and in the choice of 

effect on the value of 
A 

e • 
a 

will have but little 

2.5. Sample variance of the observed expectation of life. In Appendix 

II we prove that the estimated probabilities of surviving any 

two non-overlapping intervals have a zero covariance; hence, the 

sample variance of the observed expectation of life may be computed 

from 

2 
SA .. 

e a 

The derivatives, taken at the observed point 

by 

1 a A} A [A 1 ] lapx e a "" Pax e~+l + ~ , 

where 

and 

A 

P x>a 
x' -' 

x#t 

< 
a=t 

(2.20) 

are given 

(2.21) 

(2.22) 

A 

For t<a, the factors Pa , Pa+l , ... , P
y

- 1 and Pay in (2.19) do not contain 

P
t

; hence the derivative 

_d_ ~ = _d_ p Pt ]= A 

dP a A ay A Pay 
t dP 1-p 

t t 

1 (2.22a) 
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Substituting (2.21), (2.22) and (2.22a) in (2.20) gives the sample variance of 

s~ 
e 

a 

and 

= 

a>t. 

The value of and the sample variance of 
A 

Px are obtained from 

formulas (2.8) and (2.10), respectively. 

When the first term in formula (2.23) or (2.24) is taken out 

of the summation sign, we have a recursive equation 

for af=t 

(2.23) 

(2.25) 

Therefore, the variance of ea may be computed successively beginninr with the 

largest value of a. 

2.6 An eXaaple of life table construction for a follow-up population. 

Application of the methods developed in this section is illustrated with 

data collected by the Tumor Registry of the California State Department 

·of Public Health. The material selected consists of 5,982 white female 

patients admitted to certain California hospitals and clinics between 

January 1, 1942, and December 31, 1954, with a diagnosis of cervical cancer. 

For the purpose of this illustration, the closing date is December 31, 1954, 
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and the date of entrance to follow-up for each patient is the date of 

hospital admission. Each patient was observed until death or until the 

closing date. whichever came first. 

The first step is to construct a table similar to Table 3, 

showing the survival experience of the patients grouped according to 

their withdrawal status for each time period of follow-up. The 

interval length selected (column 1) will depend upon the nature of the 

investigation; generally a fixed length of one year is used. The 

total number of patients admitted to the study is entered as NO in the 

first line of column 2. which is 5,982. Among them there were mO=5,3l7 

patients (column 3), observed for the entire interval (0,1). Of the 

mO patients, So (4,030, column 4) survived to their first anniversary 

and dO (1,287. column 5) died during the first year of follow-up. 

In addition, there were nO (665. column 6) patients due to withdraw in 

the interval (0,1), of which wo (576. column 7) survived to the closing 

date and dO (89, column 8) died before the closing date. The second 

interval began with the So = 4,030 survivors from the first interval, 

which is entered as Nl in column 2 of line 2. The Nl patients were 

again divided successively by withdrawal and survival status. Of the 

Nl patients, m
l 

(3,489, column 3) were the survivors of those admitted 

prior to January 1. 1953, and hence were observed for the entire 

interval (1. 2); n
l 

(541, column 8) were the survivors of those admitted 
.L 

during the year 1953 and hence were due to withdraw during the interval. 

At the beginning of the final interval (12, 13) there were N12 = 72 

survivors of the patients admitted in 1942; all were due to withdraw 

during the last interval, or n
12 

= 72 (last line, column 8). Of the 72 

patients, w
l2 

= 72 (column 7) were alive at the closing date. ThiE 

means that P12 is greater than zero, and Pz for z > 12 cannot be ooserved. 



Table 3 

SURVIVAL EXPERIENCE FOLLOWING DIAGNOSIS OF CANCER OF THE CERVIX UTERI 
CASES INITIALLY DIAGNOSED 1942-1954 

CALIFORNIA, U. S .A. 

Number to be observed for entire Number due for withdrawal in 
interval (x, X+1)* 

Number 
Interval living at Number Number 
since beginning surviving dying 

diagnosis of interval Total the in the 
(in years) (x, X+1) number interval interval 

(x, x+1) N m s d 
x x x x 

(1) (2) (3) (4) (5) 

0-1 5982 5317 4030 1287 
1-2 4030 3489 2845 644 
2-3 2845 2367 2117 250 
3-4 2117 1724 1573 151 
4-5 1573 1263 1176 87 
5-6 1176 918 861 57 
6-7 861 692 660 32 
7-8 660 496 474 22 
8-9 474 356 344 12 
'-10 344 256 245 11 

10-11 245 164 158 6 
11-12 158 76 72 4 
12-13 72 0 0 0 

*Survivors of those admitted more than x+1 years prior to closing date. 
**Survivors of those admitted between x and x+1 years prior to closing date. 

interval (x, X+l)** 

Number 
Total living 

due for at time of 
withdrawal withdrawal 

n w 
x x 

(6) (7) 

665 576 
541 501 
478 459 
393 379 
310 306 
258 254 
169 167 
164 161 
118 116 

88 85 
81 78 
82 80 
72 72 

Source: California Tumor Registry, Department of Public Health, State of California 

Number 
dying 
before 

withdrawal 

d' 
x 

(8) 

39 
40 
19 
14 

4 
4 
2 
3 
2 
3 
3 
2 
0 

t--.l 
o 
--J 
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This material has been used to construct a life table for the 

cervical cancer patients. The steps involved are similar to those described 

in the construction of current life tables in Chapter 3. For easy 

reference, but at the expense of repetition, they are stated below: 

(1) 

(2) 

(3) 

(4) 

,'\ 1\ 
P and q • For each x x interval (x, x+l), use formulas 

(2.8) and (2.9) of this chapter to compute 1\ 1\ 
p and q 

x x 

d and 1 • Assume 10 • 100,000, 1\ 1\ 
use qo ' ql'··· to x x 

obtain d and 1 from x x 
/\ 

d - 1 q and 1x+l • 1 - d x x x x x 

for x • 0,1,···,12. 

a and L • The fraction of last year of life is assumed x x 

to be a • .5, which is quite appropriate for such studies. x 

The quantity L is computed from 
x 

L -1x+l+a d x x x 

or since ax • .5 and dx - 1x -1x+l, 

for x - 0,1,···,12. 

A 
T and e beyond the observation period. x x Information 

derived fro. a follow-up study is inca.plete for the 

construction of a life table iaa-..cb as it is lia1ted 

to the study period (13 years in this e~le). Therefore, 

some device needs to be developed for the ca.putation of 

~ beyond the last year of study, that is ~13in the present case. 

Here we make use of equation (2.19) of this chapter and 
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write 

1\ 
Estimating Pt with P11' 

1\ 1\ i\ 

Pt • P11 • 1-q11 • 1-.05106 • .94894 

gives required value 

1\ 1 + .94894 
e13 - 2 1 _ .94894 • 19.0848 

Using this figure we compute 

1\ 
T13 - t 13 e13 • 34,277 x 19.0848 654,170 

(2.19 a) 

(5) A ~ 
T and e • The quantities ~ and e for other intervals how 

x x x x 

can be obtained by simple computations. For example, 

In general 

for x • 0,1,···,12, 

and ~x (except for ;13) is COllputed fro.).l 

A T 
e • x x -y-

x 

for x· 0,1,···,12. 

The results of the computations are given in Table 4. 

For comparison between survival experience of different study groups or 

for .. king other statistical inferences, we computed the standard deviations 

of the survival rate [eq. (2.13)], of probability of death [eq. (2.10)], 

and of the expectation of life [eqs. (2.23), (2.24) and (2.25)] for each x. 

Numerical values of the standard errors and the main life table functions are 

shown in Table 5. 
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For example. at x=2, the calculations for S~ 
q2 

x 

SA .00003537 
q2 

calculate SA from 
P03 

AJ.~ -] 
m +n (l+p ) 

x x x 

2367 + 478(1+.H967~)-l 

.00595 S 
P2 

S~ A2 x-I -2 2 
POx i: Pu 

S/, : 
POx u=] P u 

(.30930)[.00015891 = .00004915 

S 1.00004915 .00701 
P03 

calculate SA from S? A2 s3 [e + J.;]2 Pa + 
e3 e ea+ l 

0,+1 < 

cx 

S* A2 2 
[e 4 + .5] 2 ,.,2 

P3 
SA + ;:,,, 

e f' P3 3 4 

were as follows: 

2,612.495 

s3 
Pet 

0-.10303)2 5.09
2 + 2 2 

[ 19 . 31+.5 J (.00595) 

20.84!+SO + .0l389 20.8584 

SA 120.8584 4.567 
e

3 



Table 4 

LIFE TABLE OF PATIENTS DIAGNOSED AS HAVING CANCER OF THE CERVIX UTERI 

CASES INITIALLY DIAGNOSED 1942 - 1954 
CALIFORNIA. U. S.A. 

Ob served 
Interval Number Probability Number Fraction Number Number Expectation 
since living of dying dying of last of years of years of 

diagnosis at time in interval in interval year lived in lived beyond life at 
(years) x (x. X+1) (x. x+1) of life interval (x. x+l) x x 

R. " /\. 
x. x+1 qx d a L T e 

x x x x x x 

(1) (2) (3) (4) (5) (6) (7) (8) 
,J 

0-1 100.000 .24254 24.254 .5 87.873 1,289,575 12.90 
1-2 75.746 .18143 13.743 .5 68.875 1,201,702 15.86 
2-3 62.003 .10303 6.388 .5 58.809 1,132,827 18.27 
3-4 55.615 .08576 4.770 .5 53.230 1,074,018 19.31 
4-5 50.845 .06~13 3.261 .5 49.215 1,020,788 20.08 
5-6 47.584 .05820 2.769 .5 46.200 971,573 20.42 
6-7 44.815 .04376 1,961 .5 43,835 925,373 20.65 
7-8 42,854 .04320 1.851 .5 41,929 881,538 20.57 
8-9 41,003 .03369 1,381 .5 40.313 839,609 20.48 
9-10 39,622 .04655 1,844 .5 38,700 799,296 20.17 

10-11 37.778 .04385 1,657 .5 36.950 760,596 20.13 
11-12 36.121 .05106 1,844 .5 35,199 723,646 20.03 
12-13 34.277 .00000 0 .5 34.277 688,447 20.08 

13 34.277 654,170 19.08* 

* For computation of e
13 

and T13 see text (2.19a) 



Interval 
since 

Table 5 
SURVIVAL EXPERIENCE AFrER DIAGNOSIS OF CANCER OF THE CERVIX UTERI 

CASES INITIALLY DIAGNOSED 1942-1954 
CALIFORNIA, U.S.A. 

THE MAIN LIFE TABLE FUNCTIONS AND THEIR STANDARD ERRORS 

Estimated probability Observei 
diagnoses x-year survival rate of death in interval ,Expectat on a/ 
(years) " (x, ri1) of life at x-POx 

(x, ri1) 1000 POx 1000 S" 1000 q 1000 S" 
POx x q 

x 

(1) (2) (3) (4) (5) 

0-1 1000.00 0.00 242.54 5.69 
1-2 757.46 5.80 181.43 6.26 
2-3 620.03 6.65 103.03 5.95 
3-4 556.15 7.01 85.76 6.38 
4-5 508.45 7.33 64.13 6.50 
5-6 475.84 7.61 58.20 7.23 
6-7 448.15 7.95 43.76 7.34 
7-8 428.54 8.29 43.20 8.45 
8-9 410.03 8.71 33.69 8.85 
9-10 396.22 9.17 46.55 12.15 

10-11 377.78 9.98 43.85 14.30 
11-12 361.21 10.97 51.06 20.30 
12-13 342.77 12.73 00.00 00.00 
13 342.77 12.73 ----- ----

- --- -----~.-- - .. ----- ----

Source: California Tumor Registry, Department of Public Health, State of California, U.S.A. 
a/ 
- t = 11 

" e x 

(6) 

12.90 
15.86 
18.27 
19.31 
20.08 
20.42 
20.65 
20.57 
20.48 
20.17 
20.13 
20.03 
20.08 
19.08 

S" e x 

(7) 

2.83 
3.74 
4.57 
5.09 
5.56 
5.94 
6.31 
6.60 
6.89 
7.13 
7.47 
7.81 
7.79. 
7.79 

. ..) 

. .) 
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3. ~Qn~ider~n of Co~petipg Risks 

Most follmV'-up studies are conducted to determine the survival 

rates of patients affected with a specific disease. These pat{ents 

are also exposed to other risks of death from which some of them may 

eventually die. In a study determining the effectiveness of radiation 

as a treatment for cancer, for example, some patients may die from 

heart disease. In such cases, the theory of competing risks is 

indispensible, and the crude, net, and partial crude probabilities 

all play important roles. 

Let us assume, as in Appendix III, that r risks, denoted by 

RI,···,R
r

, are acting simultaneously on each patient in the study. 

For risk Ro there is a corresponding force of mortality ~(T;6), . 

6-l,···,r, and the sum 

~(T;l) + ... + ~(T~r) = ~(T) (3.1) 

is the total force of mortality. Within the time interval (x, X+l) 

we assume a constant force of mortality for each risk, ~(T;6) - ~(x;6), 

which depends only on the interval (x, X+l) and the risk R
6

; for all 

risks, ~(T) = ~(x) for X<T< X+l. 

Consider a subinterval (x, x+t), and let Qx6 (t) be the crude 

probability that an individual alive at time x will die prior 

to X+t, O<t<l, from R6 in the presence of all other risks in the 

population. It follows directly from equation (2.8) in Mathematical Appendix III 

that 

O<t<l; 6-1,··· ,r. (3.2) 
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From (3.1) we see that the sum of the crude probabilities in (3.2) is 

equal to the complement of px(t), or 

O<t<l. (3.3 ) 

For t=l, we abbreviate ~o(l) to ~o' etc. When t =~, we have 

the subinterval (x, x~~) and the corresponding crude probabilities 

o ~ (~) = II (x; 0) [1 _ pi- ] 
~IJ lJ (x) x I ~ ]-1 

= ~o 1 + Px ' o=l,···,r. (3.4 ) 

Equation (3.3) implies that 

x=O,l,···, y-l. 

The net and nartl:tl crwlc !')ro~!lhi lities M:1V ~e r.()MnlltP'; froM the 

fol101-Tin~ approximate relati ons. The corrpsnon;linr. f'Xi'lct forMulas 

!lTe ~iven in Sect~on 2, ~!')nendix TTT. T~e net nrohnhility of de!lth i~ 

interva1 (x,x+l) ,-,hen [~~ is the onlv ris: oper!lting i:1 ,'1 !')()p'l1.'1tion 
I, 

is given hy 

O. h) 

t 11e net nroh!lhilitv of deClt 1, i f i.~ is eliMin:1tca ;]5 :l risl: of rlf':lth is 

given hv 

(3.5 ) 
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('I -n ,) r 1 -!- In " + -?:- (\ _,' (0 +0 e)1 • 0= l, ... , r , 
y :-::' y'~ O)}. ' X xc' 

,1nd tIlE' nnrtial cru,!e nrn!Jnhilitv hv 

() "r 1 + l-n +} () (n +n ) 1 
y" 'Xl,) xl x xl 

For A: = 2, ••• ,r; x () • 1 , •••• ':-1 • 

Our immediate problem is to estimate ~o' Px' and q. ·x 

(1.7) 

3.1. Basic random variables and likelihood functions. Identification 

of the random variables in the present case follows directly from the 

discussion in Section 2.1, except that deaths are further divided by 

cause, as shown in Table 6. 
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Table 6 

Distribution of N x 
patients according to withdrawal status, 

survival status, and cause of death in the interval (x, x+l) 

Total 

Survivors 

Deaths, all causes 

Deaths due to cause 

R 
r 

Withdrawal status in the interval 

Total number 
of patients 

N 
x 

s +w 
x x 

D 
x 

D xr 

Number to be 
observed for 
the entire 
interval* 

m x 

s 
x 

d x 

d xr 

Number due to 
withdraw during 
the interval** 

n x 

w 
x 

d' 
x 

d' xl 

d' 
xr 

* Survivors among those admitted to the study more than (x+l) 
years before closing date. 

** Survivors among those 
years but more than x 

admitted to the study less than 
years before closing date. 

(x+l) 

The m patients to be observed for the entire interval (x, x+l) 
x 

will be divided into r+l mutually exclusive groups, with s x surviving 

the interval and dXQ dying from cause RQ in the interval, o=l,···,r. 

Since the sum. of the corresponding probabilities is equal to unity 



(eq. (3.3) 
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the random variables s , d •• • d have a multinomial x xl' , xr 

distribution: 

d 
Q xl 
xl 

• •• Q 
xr 

d xr (3.10) 

where s + d + ••• +d .. m, and c 1 is the combinatorial factor. The 
x xl xr x 

expected numbers are given by 

and E(d ~Im) = m Q ~ xu x x xu 
(3.11) 

respectively. 

In the group of n patients due to withdraw in interval (x, x+l), 
x 

Wx will be alive at the closing date of the study and d~o will die 

from Ro before the closing date. Each of 

survival probability pi- [Cf. eq.( 2.4)]and 
x 

the n individuals has the 
x 

the probability of dying from 

risk Ro before the closing date 

0=1, ••• , r. 

Since p* and the probabilities in (3.12) add to unity, as shown in 
x 

(3.5), the random variables w , d
xl
' , ... , d' also have a multinomial x xr 

distribution: 

two r [ 
C
2 

Px x IT Q 
0=1 xo 

where w + d' +. .. + d' = n 
x xl xr x' 

and c
2 

is a combinatorial factor. 

(3.12) 

(3.13) 
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The expected numbers are 

E(w In ) = n p + x x x x and 
...l. 

E(d' In ) = n Q x(l+P 2)-1 
xo x x xu x 

(3.14) 

respectively. Because of the independence of the two groups. the 

likelihood function of all the random variables in Table 6 is the product 

of (3.10) and (3.13): 

IT Q xO Q (1+P t)-1 xO r d ~ ~d' 
0=1 xO xO x 

(3.15) 

where c stands for the product of the combinatorial factors in (3.10) and 

(3.13). Equation (3.l5) may be simplified to give the final form of the 

likelihood function 

L = c 
x 

-d' 
(l+p t) x 

x 

r 
IT 

0=1 

D 
Q xO 

xO 

3.2 Estimation of crude, net, and partial crude probabiities. We 

again use the maximum likelihood principle to obtain the estimators 

(3.16) 

of the probabilities p Q ..• Q 
x· xl' • xr· 

The estimator of px is the same as 

that obtained in Section 2; namely 

(3.17) 

r i------------ ------ ~ 

[

-id' +Vtd: + 4 (N -in ) (s +iw ) 2 P = x x x x x x 

x 2 (N -tn ) J 
x x 

• x=0.1.··· .y-l. 

Therefore q (=l-p) also will have the same values as Chat in Section x x 

2. The estimators of the crude probabilities are given by 

D xc 
D 

x 6=1.2.···.r. 
x=O.l.···.y-l. (3.18) 
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"f' nov l1SI? ('3.17) rmd n.]'l) in f(w:'1u1as (J.n) to 0.9) to ol,t.'lin 

'1 (1.1 'l) 

,-, ,. ... ,r , (3.20 ) 

Ii ,f1 + 'n + (l (n -I-n )] 
';:'\ . X . ~ '{ 1 'v: xl 

~' 2, ... ,r: 

r),l •••. ,'1-1 (3.21 ) 

T"esr' ::r .. ,'}~~n !I:~xi",'.l~ Hh>lihoocl estiJ11.;).tors arrl consistent in !'isher'3 

:3Cllse. in for:--:ul:: (3.21) 

nrovinr 
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3,3, An Example, The survival experience of cerv-lcal cancer 

patients presented 10 Table 3 in Section 2.6 is used once again to 

illustrate the application of the· theory in this section. For easy 

l'eference, the cervic.al cancer patients data is reproduced in Table 

1, except that the nl3ber of deaths, d and d' are furthe~ divided 
x It 

according to cause. In this example only two causes are constdered, 

cancer of the cervix and other carJ.ses. Therefore, we have for each interval 

(x, x+l), 

d - d + d_" x xl Ah 
and d' - d' + d' 

It xl x2 

During the first year of follow-up, for example, there were dO - 1,287 

deaths occurring among those to be observed for the entire interval, 

and dO - 89 deaths 8mong those due for withdrawal in the interval. These 

nt®bers are divided py causes: 

1,287 - 1~105 + 182 and 89 - 70 + 19 

1\ 
lUth the numerical values of the probability of survival (px) and the 

'\ 
probability of dying (~) obtained in Section 2, simple application of 

A. 
formulas (3.18) and (3.19) yield the crude probability ~6 and 

the net probability Since only two causes of death are studied, 

1\ 
the probability qx2 is equal to 

1\ 
qx-l; the probability of dying when 

c8nce:rof the cervix uteri is d lmill'ltl;d is the same as the probability 

of dying from other causes when the other causes are the only causes 

acting. Tdble 8 shows the estimated probability of surviving each interval, 

and the ('rude and net probabilities of dt~ath from cancer of the cervix 

uteri (~) and all other causes of death (~). 



Table 7 

SURVIVAL EXPERIENCE FOLLOWING DIAGNOSIS OF CANCER OF THE CERVIX UTERI 
CASES INITIALLY DIAGNOSED 1942-1954 

CALIFORNIA, U.S.A. 

Number to be observed during the Number due for withdrawal in 
entire interval (x x+1)* interval (x, X+1) 

Number dying in Number dying before 
Number the interval . 

Interval living at Number Number 
withdrawal 

since beginning Total not surviving Cancer Total living Cancer 
diagnosis of interval due for the of the Other due for at time of of the Other 

(in years) (x, X+1) withdrawal interval Total cervix causes withdrawal withdrawal Total cervix causes 

(x, X+1) N m s d dxl dx2 
n d' d' d' x x x x x w 

x x xl x2 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

0-1 5982 5317 4030 1287 1105 182 665 576 89 70 19 1-2 4030 3489 2845 644 557 87 541 501 40 31 9 2-3 2845 2367 2117 250 206 44 478 459 19 15 4 3-4 2117 1724 1573 151 113 38 393 379 14 8 6 4-5 1573 1263 1176 87 61 26 310 306 4 2 2 5-6 1176 918 861 57 24 33 258 254 4 3 1 6-7 861 692 660 32 16 16 169 167 2 2 0 7-8 660 496 474 22 11 11 164 161 3 2 1 8-9 474 356 344 12 5 7 118 116 2 1 1 9-10 344 256 245 11 7 4 88 85 3 2 1 10-11 245 164 158 6 4 2 81 78 3 1 2 11-12 158 76 72 4 1 3 82 80 2 1 1 12-13 72 0 0 0 0 0 72 72 0 0 0 

-----

* Survivors of those admitted more than x+1 years prior to closing date. 
** Survivors of those admitted between x and x+1 years prior to closing date. 
Source: California Tumor Registry, Department of Public Health, State of California, U.S.A. 

N 
N 



Interval Probability 
since of surviving 

diagnosis interval 
(years) (x, x+1) 

(x, X+1) 1000 p x 

(1) (2) 

0-1 757.46 
1-2 818.57 
2-3 896.97 
3-4 914.24 
4-5 935,87 
5-6 941.80 
6-7 956.24 
7-8 956.80 
~-9 966.31 
9-10 953.45 

10-11 956.15 
11-12 948.94 
12-13 1000.00 

Table 8 

SURVIVAL EXPERIENCE AFTER DIAGNOSIS OF CANCER OF THE CERVIX UTERI 
CASES INITIALLY DIAGNOSED 1942-1954 

CALIFORNIA, U. S. A. 

ESTIMATED CRUDE AND NET PROBABILITIES OF DEATH FROM CANCER 
OF THE CERVIX UTERI AND FROM OTHER CAUSES 

Crude probabilities of death Net probabilities of death 
in interval in interval 
(x, X+1) from (x, X+1) when 

Cervix Other Cervix Cancer Cervix Cancer 
cancer causes Ac ting Alone Eliminated 

" " 1000 «Ix! 1000 «Ix2 1000 Qx1 
1000 Qx2 

(3) (4) (5) (6) 

207.11 35.43 211.17 39.77 
155.97 25.46 158.11 27.71 
84.65 18.38 85.46 19.22 
62.89 22.87 63.63 23.63 
44.40 19.73 44.85 20.19 
25.76 32.44 26.19 32.87 
23.17 20.59 23.41 20.84 
22.47 20.73 22.70 20.97 
14.44 19.25 14.58 19.39 
29.93 16.62 30.18 16.88 
24.36 19.49 24.60 19.73 
17.02 34.04 17.32 34.34 

Source: California Tumor Registry, Department of Public Health, State of California, U.S.A. 

t~ 
t~ 
t~ 
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4. Lost Cases 

Every patient in a medical follow-up is exposed not only to the 

risk of dying,but also to the risk of being lost to the study because 

of follow-up failure. Untraceable patients have caused difficulties 

in determining survival rates, as have patients withdrawing due to 

the termination of a study. However, lost cases and withdrawals 

belong to entirely different categories. In a group of N patients x 

beginning the interval (x, x+l), for example, everyone is exposed 

to the risk of being lost, but only n patients are subject to 
x 

withdrawal in the interval. Therefore, it is incorrect to treat lost 

cases and withdrawals equally in estimating probabilities of survival 

or death. For the purpose of determining the probability of dying 

from a specific cause, patients lost due to follow-up failure are not 

different from those dying of causes unrelated to the study. Being 

lost, therefore, should be considered as a competing risk, and the 

survival experience of lost cases should be evaluated by using the 

methods discussed in the preceding section. In this approach to the 

problem all formulas in Section 3 will remain intact, the solution 

requiring only a different interpretation of the symbols. 

Suppose we let 

element (T, T+~) 

R 
r 

denote the risk of being lost; for the time 

in the interval (x, x+l) let 

~(x;r)~ + o(~) = Pr{a patient will be lost to the study in 

(T, T+~) due to follow-up failure}, x<T<x+1. (4.1) 
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The following are a few examples of the new interpretation: 

Px = Pr{a patient alive at time x will remain alive and 

under observation at time x+l}. , 

q = l-p x x 

= Pr{a patient alive at time x will either die or be lost 

to the study due-to follow-up failure in interval 

(x, x+l)}. , 

~r = Pr{a patient alive at time x will be lost to the study 

in (x, x+l)}. 

q = Pr{a patient alive at time x will die in interval x.r 

(4.2) 

(4.3) 

(4.4) 

(x, x+l) if the risk R of being lost is eliminated}. r , 

l-q = Pr{a patient alive at x will survive to time x+l if x.r 

the risk R of being lost is eliminated}. 
r 

Q.~ e Pr{a patient alive at x will die in (x, x+l) from 
Xl-.r 

(4.6) 

if the risk R of being lost is eliminated}. 
r 

(4.5) 

(4.7) 
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The probabilities in (4.5), (4.6), and (4.7) are equivalent to 

~, Px' and ~6' respectively, if there is no risk of being lost. 

The symbol d 
xr in Table 6 now stands for the number of lost 

cases among the m 
x patients and d' 

xr for the number of lost cases 

among the n patients; x the sum D = d + d' is the total xr xr xr 

number of cases lost in the interval. The probabilities in (4.2) 

through (4.7) can be estimated from formulas (3.17) through (3.21) 

in Section 3.2. 
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FOOTNOTES 

1/ These methods are equal'y applicable to data based either on the date 

of last reporting for individual patients or on the common date. 

For simplicity, we <lSSllme for n =] and a =1 for all x, then (' =1 in 
x x x 

the formula for e [Chapter 4 (4.21) I. 
n 

]j To verify these computations find ~!O with t=ll using formula (2.19) of 

this chapter; 

This serves 

thus of all 

.948% 
.5 + 6.02541 + .34277 (-~osTc)(~) 

12.8957 12.90 

as a check of 

1. and T . 
x x 

e a 

T 
0 

£0 

!1}89-2~75 
100,000 

12.89575 and 
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APPENDIX I 

Theoretical Justification of the Method of Life Table Construction in Chapter 3 

Formulas (3.7) and (4.3) in Chapter 3, ('xpressing the relation between 

the probability ~i and the corresponding death rate lJ i , were introduced as 

intuitive concepts for the purpose of application, hut they can he derived 

from a theoretical viewpoint. Let lJ(x) he the force of mortali ty (mortal i ty 

intensi ty function) at age x. It is easy to see that the probahil i ty fit, 

that an individual alive at exact age x. will die in interval (x.,x.+n.) 
1 111 

is given by fef., \upcnJix II, for~ula (2.711 

n. 
1 

q. = l-exp{-! lJ(x1.+Cl dS} 
1 0 

(1) 

r:nr:1n inJivLl:J::l 1t Xi' lC't T
j 

11r~ the nU"1\:r"r Ot ,te:lths ir (xi'xI + 1). 

Cle<lrl~', Ti = 1, if t 1,c iwlivi;1l:l1 dies in (xi,xi +
1

) \vit11 a ;'Iro!J:l 1,ilitv 

(1. an(1 T. = n, iF t'le indivHual stlrviv("~ t"c intcrv:ll, l-;it": a ;l1"ohaHlitv 
'] 1 

The mortality rate m. is the ratio of the expected number of deaths q. 
1 1 

to the number of years an individual expects to live in the interval, or 

n. 

m. = 
1 

l-exp{-! 
o 

n i Y 

1 

lJ(x. +S) dt;;} 
1 

! exp{-! ~(x.+~) d~}dy 
00 1 

(2) 

Let a random variable L. be the fraction of the interval (x. ,x.+n.) lived 
1 111 

hy an individual who dies at an age included in the interval, so that Li 

assumes values between 0 and 1. The expected value of L. is the fraction 
1 

of the last age interval of life, denoted by ai' i.e., 

E(L.) = a. (3) 
1 1 
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For each time t,O ~ t ~ I, the probability density function of Ti is 

n.t 
[exp{-f 1 1l(X.+f,;)dEJ1 ll(x.+n.t)n. dt o 1 111 

g (t)dt = ----=-----------­
qi 

o < t < 1 

(4) 

The quantity on the right-hand side of (4) is the probability that an 

individual alive at x. will die in interval (x.+n.t, x.+n.t+rln.t) providing 
III 1 1 1 . 

that he dies in (x.,x.+n.). According to the definition of T., this is also 
1 1 1 1 

the probability that T. will assume values in (t,t+dt), which is the density 
1 

function g(t)dt. The integral 
n.t 

1 

1 1 exp{-f ll(x. +~) d~} 
0 1 

f get) dt = f jJ(x.+n.t)n.dt = 1 (5) 
0 0 q. 1 1 1 

1 

thus T. is a proper random variable. The expected value of T. may be 
1 1 

computed as follows. 

1 
a. = E(T

l
,) = f tg(t)dt 

1 0 

n.t 
1 

1 t exp{-f ll(x. +~) dO 
0 

1 

= f jJ (x. +n. t)n. dt . (6) 
0 q. 1 1 1 

1 

Integrating the numerator in the last expression in (6) by parts gives the expression 

a. 
1 

n. n. 
1 1 Y 

-n.exp{-f ll(X.+~)d~} + f exp{-f ll(x.+~)dtJdy 
1 0 1 00 1 

= --------~------------~------~~---------n.q. 
1 1 

Substituting (1), (2), and (3) in the resulting formula (7) yields 

+ _1_ 
n.m. 

1 1 

(7) 

(8) 
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Solving (8) for q., we obtain the fundamental relationship between q. 
1 1 

and m. 
1 

n.m. 
1 1 q. = ..,.--~;;;.....;~--

1 l+{l-a.)n.m. 
111 

(9) 

For age interval (x,x+l) of one year (n=l), we write a',q and mx x x 

for a.,q. and m., respectively, and have from (9) 
111 

where 

m 
x 

q = x l+(l-a')m x x 

1 

(10) 

q = l-exp{-f ~{x+~)d~} and 
qx 

m = --=------:::....------
x 1 t 

and 

x 0 

1 
a' = f 
x 0 

f exp{-f ~(x+~)d~}dt 
o 

t 
t exp{-f ~(x+~)d~} o 

~(x+t)dt 
1 

1 - exp{-f ~(x+~)d~} 
o 

o 
(11) 

(12) 

Formulas (9) and (10) are completely analogous to formulas (4.3) and 

(3.7) in Chapter 3. 
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APPENDIX II 

STATISTICAL THEORY OF LIFE TABLE FUNCTIONS 

1. Introduction 

The concept of the life table originated in longevity studies of man, 

where it was alway~ presented as a subject peculiar to public health, demography, 

and actuarial science. As a result, its development has not received sufficient 

attention in the field of statistics. Actually, the problems of mortality 

studies are similar to those of reliability theory and life testing, and they 

may be described in terms familiar to the statistically oriented mind. From 

a statistical point of view, human life is subject to chance. The life 

table systematically records the outcomes of many such experiments for a 

large number of individuals over a period of time. Thus the quantities in 

the table are random variables. Theoretical studies of the subject from I 

purely statistical point of vie,v ' ii, r been made; the probability distributions 

of life table functions have been devised and some optimum properties of these 

functions when they are used as estimates of the corresponding unknown 

quantitLes have been explored. The reader may refer to [Chiang, (1968). Chapter 10] 

for detail. Estimation problems concerning life table functions have been 

discussed by Grenander [19651. The purpose of this Appendix is to give a brief 

presentation of the theoretical aspects of the life table. A typical abridged 

life table is reproduced below. 



Age 
interval 

(in years) 

to Xi +l x. 
1 

Xo to Xl 

x and over 
w 
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Table 1 

Life Table 

Number Proportion Fraction of Number Number of Total 
living dying in last dying in years lived number 

at age x. interval interval interval in interval of years 
1 

of life lived (Xi ,xi +l ) (xi ,xi +l ) (xi,xi +l ) 
beyond age x. 

1 

Q.. 
A 

d. qi a. 
1 1 1 

Q.o 
A 

do qo a
O 

d w 

The following symbols are also used in the text: 

L. 
1 

LO 

L 
w 

T. 
1 

TO 

T 
w 

Pij = Pr{an individual alive at age X. 
1 

will survive to age 

i ~ j; i, j=O,l,···, 

and 

X. } 
J 

(1.1) 

Observed 
expectation 

at 

of 
life 
age 

e. 
1 

A 

eO 

A 

e 
w 

v "'. 
1 

1 - Pij = fr{an individual alive at age X. 
1 

will die before age x.} 
J 

i ~ j~ i, j=O,l,···. (1. 2) 

When we drop the second subscript and write for 

p. '+1. No particular symbol is 
1,1 

1 - Pij except when Xj = x i +l ' 

introduced for the probability 

in which case we let 1 - p. = q .. 
1 1 



Finally, the symbol e. 
1 

is 
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used to denote the true, unknown 

expectation of life at age xi' estimated by the "observed expectation 

of life," 
A 

e .. 
1 

All the quantities in the life table, with the exception of 

~o and ai' are treated as random variables in this chapter. The 

radix. 20 is conventionally set equal to a convenient number, such 

as 20 = 100,000, so that the value of 

p'roportion of survivors to age xi' We 

2. 
1 

clearly indicates the 

adopt the convention and 

consider ~O a constant in deriving the probability distributions 

of other life table functions. The distributions of the quantities in 

columns Li and T. 
1 

are not discussed because of their limited 

use. One remark should be made regarding the final age interval 

(x and over): In a conventional table the last interval is usually 
w 

an open interval, e.g., 95 and over; statistically speaking, x is 
TN 

a random variable and :'s treated accordingly. However, discussion 

of this point, which is given in [Chiang, (1968).Chapter 101. will not be 

presented here. Throughout this appendix we shall assume a homogeneous 

population in which all individuals are subjected to the same force of 

mortality, and in which one individual's survival is independent of the 

survival of any other individual in the group. 
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2. Probability distribution of .Q, , the number of survivors at age x. 
x 

The various functions of the life table are usually given for integral 

ages or for other discrete intervals. In the derivation of the distribution 

of survivors, however, age is more conveniently treated as a continuous 

variable with formulas derived for Q" the number of individuals surviving 
x 

the age interval (O,x), for all possible values of x. 

The probability distribution of i depends on the force of mortality, 
x 

or intensity of risk of death, ~(x),rlefined as follows: 

W(x)6 + 0(6) Pr{an individual alive at age x will die in interval 

(x, x+6) }. 

Let the continuous random variable X be the life span of a person so that 

the distribution function 

pdx<x} 

is the probability that the individual will die prior to (or at) age x. 

(2.1) 

(2.2) 

Consider now the interval (O,x+6) and the corresponding distribution function 

F
X

(x+6) = pdX~x+6). For an individual to die prior to x+6 he must die 

prior to x or else he must survive to x and die during the interval (x,x+6). 

Therefore, the corresponding probabilities have the relation 

(2.3) 

or 

(2.41 

Taking the limits of both sides of (2.4) as A~O, we have the differential 

equation 
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with the initial condition 

O. 

Integrating (2.5) and using (2.6) yields the solution 

x 
-J )1(t)dt 
o 

e 

Equation (2. 7) gives the probability that one individual alive at age 0 

(2.5) 

(2.6) 

(2.7) 

will survive to age x. If there are £0 individuals alive at age 0 who are 

subject to the same force of mortality, the number £ of survivors at age 
x 

x is clearly a binomial random variable with the probability oE surviv:i'1" 
l ' r):{ 

to x and the probability distribution given by 

pr{ £ 
x k=O,l,···,£O· 

For x = x., the probability that an individual will survive the age 
1. 

interval (O,x.) is 
1. 

POi = exp{-! 
o 

and the probability distribution of the number of survivors, £i' is 

Pr{£. 
1. 

1£ 
o 

k. 
1. 

The expected value and variance of £i given £0 are 

and 

respectively. 

0,1, ... ,9-
0 

. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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In general, the probability of surviving the age interval (x"x,) is 
1 J 

p .. 
1J 

with the obvious relation 

If we start with ~, individuals at x,, the number of survivors £, 
1 1 J 

at x,, for i 2 j, is also a binomial random variable with the probability 
J 

p" and 
lJ 

~,! k, ~,-k, 

(2.13) 

(2.14) 

Pr{~, 
J 

k'~ )' p" J (l-p ) 1 J k,=O,l, •.. ,~, (2.15) 
" ~,-k, ,lJ ij J 1 
J 1. J 

with the expected value and variance given by 

and 

~ , p. . (l-p . . ) . 
1. lJ lJ 

When j=i+l, (2.15) becomes 

Pru'. 1 l+ 

~,! k1'+1 ~,-k'+l 
I} 1 (l-p,) 1 1 

ki +1 ~i =-k ,(~ -k )! Pi 1 
i+1' i i+1 

It is intuitively clear that given ~. people alive at age x., the 
1 1 

probab [ Ii: ,: ;, t ribution of the number of people alive at x,. for 
J 

x. :> 
.1 

x. , 
1 

is independent of ~O'~1""'~i-1' This means that for each kj 

(2.16) 

(2.17) 

(2.18) 
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Pr{Q,. 
J 

pr{ Q,. 
J 

(2.19) 

Consequently, 

E(Q,.I Q,O"'" Q,.) 
J 1 

and 

In other words, for each u the sequence Q,O' Q,l"'" Q,u is a Markov process. 

2.1. Mortality laws. 

The survival probability in (2.7) has been known to life-table students 

for nore than two hundred years. Unfortunately, it has not been given due 

recognition by investigators in statistics although differing forms of this 

function have appeared in various areas of research. We shall mention a few 

below in terms of the probability density function of X, 

x 
-f ).l(t)dt 

).l(x)e 0 x>O (2.20) 

= 0 x<o. 

(i) Gompertz Distribution. In a celebrated paper on the law of human 

mortality, Benjamin Gompertz [1825] attributed death to two causes: chance, 

or the deterioration of the power to withstand destruction. In deriving his 

law of mortality, however, he considered only deterioration and assumed that 

man's power to resist death decreases at a rate proportional to the power 

itself. Since the force of mortality ).l(t) is a measure of man's susceptibility 

to death, ,Gompertz used the reciprocal l/).l(t) as a measure of man's resistance 

to death and thus arrived at the formula 
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1 
-h-­

Il(t) 

where h is a positive constant. Integrating (2.21) gives 

-ht+k 

which when rearranged becomes the Gompertz law of mortality 

(2.21) 

(2.22) 

Il(t) = Bc t . (2.23) 

The corresponding density function and distributions are given, respectively, 

by 

and 

f(x) 
x 

x -Bre -ll/ln c Be e 

B 
FX(x) = 1 - exp{- In 

(2.24) 

(2.25) 

(ii) Makeham's distribution. In 1860 W. M. Makeham suggested the modification 

Il(t) 

which is a restoration of the missing component, "chance" to the GomDertz 

formula. In this case, we have 

f(x) = [A+Bcx ] exp{-[Ax+B(cx-l)/ln c]} 

and 

x 
FX(x) = 1 - exp{-[Ax+B(c -l)/1n c]}. 

(iii) Weibull distribution. When the force of mortality (or failure rate) 

a-I is assumed to be a power function of t, ~(t) = ~at ,we have 

f(x) = 

and 

a a-I -IlX 
Ilax e 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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This distribution, recommended by W. Weibull [1939J for studies of the life 

span of materials, is used extensively in reliability theory. 

(iv) Exponential distribution. If ~ (t) 

and 

f(x) -~x 
~e 

-~x F (x) = l-e 
X 

~ is a constant, then 

a formula that plays a central role in the problem of life testing (Epstein 

and Sobel [1953]). 

(2.31) 

(2.32) 
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3. Joint Probability Distribution of the Number of Survivors 

Let us consider,for a given u, the joint probability distribution of 

~1' ~2'···' ~u given ~O' 

(3.1) 

It follows from the Markovian property in (2.19) that 

pr{~1=k1'~2=k2' •.• '~u=kul~o}=pr{~1=k11~o}pr{~2=k21k1}· •. pr{~u=kulku_1}· 
(3.2) 

Substituting (2.15) in (3.2) yields a chain of binomial distributions: 

k
i
+1 = O,l, .•. ,ki , (3.3) 

Formula (3.3) shows that when a cohort of people is observed at regular 

points in time, the number of survivors, ~i+r to the end of the interval 

(x
i
'x

i
+

1
) has a binomial distribution depending solely on the number of 

individuals alive at the beginning of the interval ~.=k .• 
1 1 

The covariance between ~. and ~. may be obtained directly from (3.3); a 
1 J 

somewhat simpler approach is the following. By definition 

G n n =E(~.~.)-E(~.)E(~.)=E(~i~·)-(~OPO·)(~OP .) 
N. , N. 1 J 1 J J 1 oJ 

1 J 
where 

E(~.~.)=E[~.E(~. l~i)]=E[~:P'j] = E[~21]PiJ' 1J 1 J 11 

Since ~i is a binomial random variable, 

(3.4) 

(3.5) 

(3.6) 
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Substituting (3.5) and (3.6) successively in (3.4) and using the relation-

ship PO.P .. =PO" we have the formula for the covariance 
~ ~J J 

a 
51, • ,51, • 
~ J 

i .. ::J; i,j=O,l, ... ,u 

Wben j=i, (3.7) reduces to the variance of 51,. (equation (2.12». The 
~ 

correlation coefficient p between 51,. and 51,., therefore, is given by 
51,. ,51,. ~ J 
~ J 

p 
51,.,51,. / 
~ J 

(3.7) 

(3.8) 

which is always positive whatever may be o<i<j. For a given i, the correlation 

coefficient decreases as x. increases. This means that the larger the number 
J 

of individuals alive at x., the more survivors there are likely to be at 
~ 

X.; but the effect of the former on the latter decreases when x. becomes 
J J 

farther away from xi' These results show that for a given u, £l""'£u in 

the life table form a chain of binomial distributions; the joint probability 

distribution. the expected values, covariances and correlation coefficients are 

given in (3.3), (2.11), (3.7), and (3.8). respectively. 
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4. Joint Probability Distribution of the Numbers of Deaths 

In a life table coveripg the entire life span of each individual in 

a given population, the sum of the deaths at all ages is equal to the size 

of the original cohort. Symbolically, 

o 

'0 ' 

where d is the number of deaths in the age interval (x and over). Each w w 

individual in the original cohort has a probability PO.q. of dying in the 
1 1 

interval (xi,xi +
l
), i=O,l, •.• ,w. Since an individual dies once and only 

once in the span covered by the life table, 

(4.1) 

(4.2) 

where pOO = 1 and qw = 1. Thus we have the well-known results: The numbers 

of deaths, dO, •.• ,dw' in a life table have a multinomial distribution with 

the joint probability distribution 

6 • •• d = 6 } 
0' , w w 

the expectation-L. vari.ans:~nd covariance are given, respectivelv, bv 

and 

a 
d.,d. 

1 J 

Q.OPO·q·(l-PO·q·) , 
1. 1 1 1 

-Q.oPo·q·Po·q· 
1 1 J J 

for iij; i,j=O,l,···,~. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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In the discussion above, age 0 was chosen only for simplicity. 

For any given a8e, say xa' the probability that an individual alive 

at age 

is 

x will die in the interval 
a 

and the sum 

w 

L Paiqi = 1 , 
i=a 

subsequent to x 
a 

and thus the numbers of deaths in intervals beyond x 
a 

also have 

a multinomial distribution. 

(4.7) 
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~ 

5. Optimum Properties of Pj and qj 

~ 

The quantity qj (or P
j

) is an estimator of the probability that an 

individual alive at age Xj will die in (or survive) the interval (xj,Xj +l ), 

with 

j=O,l, ..•• (5.1) 

Therefore, P
j 

and qj have the same optimum properties. For convenience, 

~ 

we consider p. in the following discussion. 
J 

5.1. Maximum likelihood estimator of p .. 
J 

The joint probability distribution 

(3.3), when expressed in terms of the random variables ~l""'~u' may be rewritten 

as 
u-l 

L=n 
i=O 

C! 
1. (5.2) 

which is known as the likelihood function of £1' "" £u' When the right 

hand side of (5.2) is maximized with respect to p., we have the maximum 
J 

~ 

likelihood estimators, say p .. In this case, the maximizing values p. can 
J J 

be derived by differentiation. Letting 

u-l u-l 
log L = C + I £i+l log Pi + .I (£i-£i+1) log(l-Pi) 

i=O 1.=0 

setting the derivative equal to zero, 

a £'+1 
-log L =~ 
apj Pj 

£ .-£ '+1 
J J 
1-p. 

J 

= 0, 

(5.3) 

(5.4) 

and solving the equations (5.4), we have the maximum likelihood estimators 

j = 0,1, ... ,u-l (5.5) 
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It should be noted that if for some age x all the 9.- individuals alive 

at Xw die within the interval (xw,xw+l )' 

w w 

then 9.-.=0 for all 
1 

i>w, so that 

there is no contribution to the likelihood function beyond the wth factor. 

Consequently, the maximum-likelihood estimator in (5.5) is defined only for 

9.-. > O. With this understanding, let us compute the first two moments. 
J 

We have shown in Section 2 that, given 9.-
j 

> 0, the number 9.-
j
+

1 
has the 

binomial distribution, therefore 

(5.6) 

and Pj and hence qj are unbiased estimators of the corresponding probabilities. 

Direct computation gives also 

and the variance 

When 9.- 0 is large, (5.8) may be approximated by 

I 
= ----~ E(9.-. ) 

J 
p.(l-p.). 

J J 

Justification of (5.9) is left to the reader. 

For the covariance between P
j 

and P
k 

for j < k, we require that 9.-
k 

and hence 9.- j and 9.-
j
+1 be positive and compute the conditional expectation 

(5.7) 

(5.8) 

(5.9) 
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(5.10) 

from which it follows that 

E[~.E(~klp.)] 
J J 

and that 

o. (5.11) 

Observe that formula (5.11) of zero covariance holds only for proportions 

in two non-overlapping age intervals. If the two intervals considered both 

begin with age xa but extend to ages Xj and xk ' respectively, the covariance 

between the proportions P
aj 

and P
ak 

is not equal to zero. Easy computation 

shows that 

When k = j, (5.12) becomes the variance of p .' 
aJ 

ex < j < k. 

A A 

Although Pj and Pk have zero covariance, they are not independently 

distributed. For example 

.51~0 .8}. 

(5.12) 

Thus we have shown that the quantities Pj and qj in the life table are 

the unbiased. maximum-likelihood estimators of the corresponding probabilities 
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the Observed Expectation of Life at Age x 
a 

The observed expectation of life summarizes the mortality experience 

of a population from a given age to the end of the life span. At age x. 
1 

the expectation expresses the average number of years remaining to each 

individual living at that age if all individuals are subjected to the 

estimated probabilities of death q. for j > i. This is certainly the most 
J 

useful column in the life table. 

To avoi ~ confusion in notation, let a denote a fix2d number and x a 
a 

particular age. We are interested in the distribution of e , the observed 
a 

expectation of life at age x. Consider £ , the number of survivors to 
a a 

age x , and let Y denote the future lifetime beyond age x of a particular 
a a a 

individual. Clearly, Y is a continuous random variable that can take on any 
a 

non-negative real value. Let y be the value that the random variable Y 
a a 

assumes, then x +y is the entire life span of the individual. Let fey ) 
a a a 

be the probability density function of the random variable Y , and let 
a 

dy be an infinitesimal time interval. Since Y can assume values between 
a a 

YN and y +dy if and only if the individual survives the age interval 
u, a a 

(x , x +y ) and dies 
a a a 

fey )dy 
a a 

in the interval (x +y , 
+ a a 

x +y +dy ), we have 
a a a 

xa Ya 
- J ]J(T)dT 

= e 
x 

a ]J(x +y )dy 
ex ex ex Y > O. 

a 

Function fey ) in (6.1) is a proper probability density function 
a 

since it is never negative and since the integral of the function from 

Ya = 0 to Ya =00 is equal to unity. Clearly, f(Ya) can never be negative 

whatever the value of y. To evaluate the integral 
a 

(6.1) 
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tl a a 

we define a quantity ~ 

x +y 
a a 
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x +y 

J a a - J1(-r)d, 
x 

a 

Ya 

J1(x +y )dy 
a a a 

J J1(,)d, J J1(x +t)dt 
o a x 

a 

and substitute the differential 

d4> :: J1(x +y )dy 
a a a 

in the integral to give the solution 

00 00 

J fey )dy o a a 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

The mathematical expectation of the random variable Y is the expected 
a 

length of life beyond age x , and thus is the true expectation of life at 
a 

age x • 
a 

In accordance with the definition given the symbol 

xa+Ya 

e , 
a 

we may write 

-J J1CT)d, 
00 00 

e 
a 

f y fey )dy o a a a = f y e 
a 

x 
a 

fl(X +y )dy . 
a a a o 

Thus the expectation e and the variance 
a 

00 2 
J (y -e) fey )dy o a a a a 

both depend on the intensity of risk of death J1('). 

(6.6) 

(6.7) 
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The expectation of life at age x is conventionally defined as 
a 

e a = 

It is instructive to prove that the two alternative definitions (6.6) and 

(6.8) are identical. Let u = y , du = dy , 
a a 

v = -e 

and 

dv == e 

Integrating (6.6) by parts gives 

= -y e 
a 

f
x +y 

a a 
- x lJ(-r)dT 

a 

x +y 

_ fx a a)J(T)dT 

f co e a 
dy • o a 

(6.8) 

(6.9) 

(6.10) 

(6.11) 
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The first term on the right vanishes and the second term is the same as 

(6.8~ proving the identity. 

6.1. c • ex futUTf' 

lifetimes of £ survivors may be regarded as a sample of £ independent and 
a a 

identically distributed random variables, Yak' k=l, ... , £ , each of which 
a 

has the probability density functicn (6.1), the expectation (6.6), and the 

variance (6.7). According to the central limit theorem, for large £ the 
a 

distribution of the sample mean 

y 
a 

1 
i 

a 

I 
ia k=l 

Y ok (6.12) 

is approximately normal with an expectation as given in (6.6) and a variance 

It has heen shown in r::h.1.pter 4, ~ection 3, th"1t t"8 sanple neTG 

Y. is equal to the observe~ expectation of life ~ or .• -a' 

Th\..~ref 0 re, 

y 
a 

e 
a 

t:w vClriance of: p 
';( 

2 

is also'", / 

PC: ncP(t to hnvL' a forT1111, fnr thp v:lriilllCP n r (' p'li,"l CCln he i>sLi;';;-tt{~,~ 
:j 

(6.13) 

for the cohort .1.nJ t~c current 1i "2 t:l.hlf'S. T11C f arnula of e is:;i ven hv 
a. 

c ex 

\;.,-1 
I ~ 
L~=~i 

f n. (~ . -J .) + :1. n . .j . } 
1 1 1 1. 1 1 

-I 
+and I' t,,,' \,! ',./ 

(n .14) 

-..J 



Using the relation d. 
1 

~ 

e = a n + a a a 

where c. = (I-a. l)n. 1 
1 1- 1-

an unbiased estimate of 

simply 

e a n + a a a 
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£. 
1 

£i+1; i=Cl', •••• ,w-1, we rewrite (6.14) as 

w 

L 
i=a+1 

+ a.n .. 
1 1 

Pai' the 

w 
\' c. L 

i=a+l 
1 

£. 
1 

a n + 
a a 

Because the 

expectation 

Pai , 

proportion Pai in (6.15) 

of e as given by (6.6) 
a 

a=O,l,··· ,w. 

(6.15) 

is 

is 

(6.1.(;) 

The observed expectation of life as given in (6.15) is a linear function 

of P ., which in the current life table is computed from 
a] 

j=a+l, ••• ,w. 
(6.17) 
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Clearly, the derivatives taken at the true point (p ,p +1' ..• , p. 1) 
a a J-

are 

Hence 

a A 

dp. Paj 
1. 

:: 

for a2.i<j; 

= 0 for i~. 

Because of (6.18), the derivative (6.19) vanishes when i = w. Since it 

has been shown in Section 5 [cEo equation (5.11)] that the covariance 

between proportions of survivors of two non-overlapping age intervals is 

(6. 18) 

zero, the variance of the observed expectation of life may be computed from 

the following 

Substitution of (6.19) in (6.20) gives the formula 

a~ 
e 

a 

(6. 20 ) 

a=O,l,··· ,w-I. (6. 21) 
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Thus we have 

Theorem: If the distribution of deaths in the age interval (xi' xi +1) 

is such that, on the average, each of the d
i 

individuals lives aini years 

in the interval, for i = a, a+l, ••. ,w, then as ~ approaches infinity, 
a 

the probability distribution of the observed expectation of life at age 

xa' as given by (6.15J, is asymptotically normal and has the mean and 

variance as given by (6.16) and (6.21), ,respectively. 



---------
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APPENDIX III 

THE THEORY OF COMPETING RISKS 

A Historical Note - Daniel Bernoulli's Work 

The concept of competing risks is not new; it seems to hewe originated 

in il controversy over the value of vaccination. The first systematic discllssion 

of the problem was by Daniel Bernoulli in 1760 in his article entitled, 

"Essai d'une nouvelle analyse de ]a mortalite eausee par 1a petite, verolp 

et des avant ages de 1 'inoculation pour la prevenir." The main objective of 

the memoir was to determine the r.lortality callsed by smallpox at variOliS 

ages. Since his work CrL':-ll ed much discussion in his time and opened up a 

new area of study in cOr.lpeting risks. it may be appropriate to review hriefly 

Daniel Bernoulli's approach. 

Let y denote the number \'>7ho survive to age x; among them s have not 
x x 

had smallpox. Assume that in a year smallpox attacks onp out of n individuals 

who have not had the dist'a~,(', and one out of every m individuals who cOl,tract 

the disease dies. Both nand mare assur.1ed to be constant. Hithin the time 

element dx, the number who die is -dv , and thf' number who die from smallpox 
x 

is 

s dx 
x 
mn 

and therefore the number who die from other causes is 

--d Q 
x 

s dx 
x 

(1) 

Now the number of those who have not had smallpox will decrease during the 

time element dx through contracting smallpox (s dx/n) and through death 
x 

(a proport ion s / Q of that in (2)). Denoting this reduction by -ds , vIe 
x x x 

have the equation, 



-ds 
x 

s dx 
x 

n 

s 
x 

Q 
x 
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s dx 
(d£ + _x __ ) 

x mn 

Equation (3) may be rearranged to yield 

or 

s dQ, - £ ds 
x x x x 

2 
s x 

£ 
n d In (m ~ - 1) 

s 
x 

£ dx 
(m 2. - 1) 

s mn 
x 

dx 

Integrating both sides of (5) gives 

or 

s 
x 

x+c 
e 

(3) 

(4) 

(5 ) 

(6) 

To determine the constant of integration c, we observe that at x=O, So £0 

c/n 
so that e 

s 
x 

(m-l). and thus 

m£ 
x 

l+(m_l)exTn (7) 

Using formula (7) and assuming m = n = 8, Bernoulli calculated £ and s 
x x 

on the basis of Halley's table of Breslow. 

Bernoulli also derived a formula for the number of survivors had there 

been no smallpox. Using a similar .. approach, he showed that this number of 

survivors, denoted by zx' is given by 



z 
x 

x"/n 
mJ1, e 

= x 
x/n 

l+(m-l)e 
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(8) 

The right-hand side of (8) increases as either m or n decreases and approaches 

the limit m £ I(m-l) as x increases indefinitely. 
x 

After discussing the subject of ·the mortality from s1"lBllpox, Daniel 

Bernoulli proceeded to the discussion of inoculation. He admitted that there 

was some danger in inoculation against smallpox, but he found that on the whole 

it was advantageous. Based on his calculations, he concludes that inoculation 

would increase the average length of life by three ;years. 

An important assumption in Dabtel Bernoulli'S sQJution of the problem 

was the constant incidence rate (lIn) and constant casE. fatality rate (11m). 

D'Alembert (1717-1783), Trembly (1749-1811), and Laplace (1749-1827) all 

had considered the case when nand m both are functions of age x. It was 

D'Alembert who was the most critical of Bernoulli's solution. Although he 

too recognized the value of inoculation, he felt that Bernoulli had over-

estimated its advantage. While he failed to provide a neat solution to 

the problem, D'A1embert brought up a significant distinction between the 

physical life and the real life of an individual. By the physical life. he 

meant life in the ordinary sense; by the real life "he meant the portion 

of existence during which the individual enjoys life in'a aisease-free state. 

Theoretical pursuit of this aspect of the problem, however, was not in 

evidence either in D'Alembert's work or in that of others. A detailed 

account of the controversy may be found in Todhunter [1949]. Thus. Bernoulli, 

D'A1embert, Trembley and Laplace each derived a method of determining the 

change in population composition that would take place if smallpox were 

eliminated as a cause of death. It was Makeham [1874]. however. who first 

formulated a theory of decremental forces and explored its practical applications. 
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Actuarial mathematicians hhvc applied Makeharn's work to develop 

multiple-decrement theory in the study of life contingencies. For a detailed 

account of the theory. reference should be made to C. W .. lordan 11952]. In the 

last thiry years, the theory of competing risks have attra(·ted much attention 

in the field of health and statistics. Creville 11948] cliscllss('d clet('rministjcally 

bl F;x and "'eyman 1·1951] studied the prohlem of cOlJ1peting multiple decrement ta es, ~ ~ 

risks for cancer patients; and Chiang [1961aJ approached the prohlem from a 

stochastic viewpoint. Other interesting studies include those by Berkson and 

Elveback [1960], Berman [196·n. Cornfield [19571, and Kimball [19"18]. [1969]. 

David [1970], Pike [1970], MclUtel And Bailar [1970] and Chiang 11970]. 

I. TnlTe,;:!t]c! ion 
-~ -- ---

Although the basic characteristics of mortality studies are that death is 

not a repetitive event and that usually death is attributed to a single cause, 

in cause-specific mortality studies the various risks competing for the life of 

an individual must be considered as well. For example, in an investigation of 

congenital malformation as a cause of infant death, some subjects would die from 

other causes such as tuberculosis. These infants have no chance either of dying 

from congenital malformation or of surviving the first year of life. ~Vhat then 

would be the contribution of their survival experience to such a mortality study 

and what adjustment would have to be made for the competing effect of tuberculosis 

in the assessment of congenital malformation as a cause of death? Competing risks 

must also be taken into account in studies of the relative susceptibility of in-

dividuals in different illness states to other diseases. For instance, would 

people suffering from arteriosclerotic heart disease be more likely to die from 

pneumonia than those without a heart condition? Any meaningful comparison between 

the two groups with respect to their susceptibility to pneumonia would have to 

evaluate the effect of arteriosclerosis as a competing risk. The following three 

types of probability of death from a specific cause are necessary for an under-

standing of the study of survival as well as the application of life table metho-

dology to such problems as those above. 
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in the presence of all other risks acting in a population, or 

Qio Pr{an individual alive at time xi will die in the interval (xi' xi +l ) 

from cause Ro in the presence of all other risks in the population}. 

2. Net probability: The probability of death if a specific risk is the only 

risk in effect in the population or, conversely, the probability of death if a spe-

cific risk is eliminated from the population. 

qio Pr{an individual alive at xi will die in the interval (xi' xi +l ) if R6 

is the only risk acting on the population}; 

Pr{an individual alive at xi will die in the interval (xi' x i +l ) if Ro 

is eliminated as a risk of death}. 

3. Partial crude probability: The probability of death from a specific cause 

when another risk (or risks) is eliminated from the population. 

Pr1an individual alive at xi will die in the interval (xi' xi +l ) from Ro 

if Rl is eliminated from the population}; 

Pr{an individual alive at xi will die in the interval (xi' x i +l ) from 

R6 if Rl and R2 are eliminated from the population}. 

When the cause of death is not specified, we have the probabilities 

Pi Pr{an individual alive at xi will survive the interval (xi' x i +l )} 

and 

qi Pr{an individual alive at xi will die in the interval (xi' xi +l )}, 

wi th p. +q. = l. 
1 1 

The use of the terms "risk" and "cause" needs clarification. Both terms may 

refer to the same condition but are distinguished here by their position in time 
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relative to the occurrence of death. Prior to death the condition referred to is 

a risk; after death the same condition is the cause. For example, tuberculosis 

is a risk of dying to which an individual is exposed, but tuberculosis is also the 

eause of death if it is the disease from which the individual eventually dies. 

In the human population the net and partial crude probabilities cannot be 

estimated directly, but only through their relations with the crude probability. 

The study of these relations is part of the problem of "competing risks," or 

"multiple decrement." Formulas expressing relations between net and crude 

probabilities have been developed by assuming either a constant intensity of 

risk of death (force of mortality) or a uniform distribution of deaths. We 

will review these formulas in this Appendix assuming a constant relative 

intensity. Partial crude probabilities have not received due attention in view 

of their often indispensable role in studies of cause-specific mortality. 

Their relations with the corresponding crude probabilities will also be discussed. 



- 261-

2. Relations between Crude, Net and Partial Crude Probabilities 

Suppose that r risks of death are acting simultaneously on each individual in 

a population, and let these risks be denoted by Rl, .. ·,Rr . For each risk, Ro' there 

is a corresponding intensity function (or force of mortality) ~(t;o) such that, 

~(t;o)l1 + 0(6) Pr{an individual alive at time t will die in interval 

(t, t+6) from risk Ro}' o=l,"',r, 

and the sum 

~(t;l) + .•. + ~(t;r) 

is the total intensity (or the total force of mortality). Although for each risk 

Ro the intensity ~(t;o) is a function of time t, we assume that within the time 

interval (xi' xi +l ) the ratio 

is independent of time t, but is a function of the interval (xi' x i +l ) and risk 

Ro' Assumption (2.3), which is known as the proportionality assumption, permits 

the risk-specific intensity ~(t;o) to vary in absolute magnitude, but requires that 

it remain a constant proportion of the total intensity in an interval. 

(2.1) 

(2.2) 

(2.3) 

Consider death without specification of cause. The probability that an indivi-

dual alive at xi will survive the interval (xi' x i +l ) is 

X i +l 
-J ~(t) dt 

p. = e 
1 

x. 
1 i=O,l, •.• 

and the probability of his dying in the interval is qi 

in Appendix II). 

l-p. (see formula (2.9) 
1 

(2.4) 
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To derive the crude probability of dying from risk Ro' \v€ consider a point 

t within the interval (xi' x
i
+

l
). The probability that an individual alive at 

xi will die from Ro in interval (t, t+dt) is 

e 

t 

- J \.lh)dT 
X. 

l 
]1 (t; o)dt 

where the exponential function is the probability of surviving from x. to t when 
l 

(2.5) 

all risks are acting, and the factor \.l(t;6)dt is the instantaneous death probability 

from risk Ro in time interval (t, t+dt). Summing (2.5) over all possible values 

of t, for xi~tSXi+l' gives the crude probability 

t 

- f \.lh)dT 
x. 

l \.l(t;o)dt 

Under the proportionality assumption (2.3). (2.6) may be rewritten as 

Integrating gives 

hence 

\.l(t;o) /i+l 
\.l (t) J 

x . 
.1 

QiC) 
jl(t;O) 

= - p (t) 

e 

-(> 

x. 
l \.l(t) dt. 

x i +l 

1 J \.l(t)dt 
x. 

l 

J= 
\.l (t; 0) 

\.l (t) 

0=1, .•. ,r . 

qi 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Equation (2.9) is obvious, for if the ratio of the risk-specific intensity to the 

total intensity is constant throughout an interval, this constant should also be 

equal to the ratio of the corresponding probabilities of dying over the entire 

interval. Equations (2.2) and (2.9) imply a trivial equality 

:~cn::trk 1. 

Q. + ... + Q. 
1.1 1.r 

i=O,l,·· '. 

fquation (2 .9) SU;?~cc;ts Q siMilarity bet~1een t"e intensity 

)l(t;6) 
)l(t;c) 

() .... 
1 '\ 

For exanple, frf'T'1 (:? .1) \ve h71vC 

(2.10) 

(2.11) 

so that the relative magnitude between any two probabilities is equal to the relative 

magnitude between the corresponding intensity functions. However, when several sets 

of values are considered, the variation among Qi6 may be quite different from the 

variation among )l(t;6). To illustrate, let )l(t;6) = )l(i;6) for xi~t~xi+l and 

6= l,''',r; so that )let) 

j..! (i; 6) 

)lei). Then (2.9) implies that 

q. 
1. 

(l-q.) . 
1. 

(2.12) 

Suppose we let Q
il 

increase but keep Q
i2

, ... ,Qir unchanged. The intensity functions 

)l(i;2;,'" ,)l(i;r) will not remain constant, but rather they increase with the in-

creasing values of Qil (or with increasing values of qi' since qi = Qi1+"'+Qir)' 

In other words, the function 

h (q. ) 
1. 

In (l-q.) 
1. 

(2.13) 

on the right-hand side of (2.12) is a monotonically increasing function of q .. Taking 
1. 

the derivative of h(q.) with respect to q. yields 
1. 1. 
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1 q. 
hI (q1..) = - [In (l-q.) + _1._] 

2 1. 1-q. 
qi 1. 

00 

'\ n-1 n-2 
= L n qi 

n=2 

since qi is between 0 and 1. The last expression in (2.13) is always positive for 

positive values of q .. Hence the function h(q.) increases with q. and ~(i;o) in-1. 1. 1. 

creases with Qi1' at: required to be shown. 

A numerical example for r = 3 risks is given below. It is also easy to see 

that 

Table 1 . 

Qil Qi2 Qi3 

.01 .01 .30 

.05 .01 .30 

.10 .01 .30 

.25 .01 .30 

.50 .01 .30 

Qi2 
fl(i,2) 

Qi3 
fl(i,3) 

Probabilities and Intensity Functions 

qi fl(i;l) 

.32 .0121 

.36 .0620 

.41 .1287 

.56 .3665 

.81 1.0251 

2.1. Relations between crude and net probabilities. 

fl(i;2) fl(i;3) 

.0121 .3615 

.0124 .3719 

.0129 .3860 

.0147 .4398 

.0205 .6151 

(2.13) 

(2.14) 

The net probability of death in the interval (xi' x i +1) when Ro is the only opera­

ting risk is obviously 

= 1 - e 

_IXi+1 

x. 1. 

fl(t;o)dt 
(2.15) 
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which, in view of (2.3~ can be written as 

(2.16 

= 1 - e 

With equation (2.9), (2.16) gives the relation between the net and the crude pro-

babili ties, 

• 

8=1,···,r. 

Formula (2.17) may be simplified. Using the p. = l-q., the second term 
~ 1 

on the right-hand side is expanded in terms of Newton's binomial series, 

Q.",/q. 
(l-q.) lu 1 

1 

= 1 + 
Q 

Q.",/q. 
i8 lu 1 k 

(-qi) + ... + ( k ) (-qi) + ... 
qi 

where the binomial coefficient is defined as follows: 

1 = --k! 

for k=0,1,2, ••• 

Because of small values of q., the first four terms of the infinite series 
1 

in (2.18) give a good approximation. As a result, we have 

p. 
1 

Q.",/q. 
~u l' 

Substituting (2.20) in (2.17) yields the relationship 

When the first three terms of the binomial series are taken, we have 

which may be used when q. is extremely small. 
1 

(2.17 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.2l a ) 
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The net probability of death when risk I: is eliminated can be derived in 

a similar way. When R~ is eliminated as ;1 cause of death, the force of mortality 

is )J(t) )J(t;o). In this case, th{~ probahility that Gn individual alive at 

x. will die in (t, t+dt) is 
1. 

t -f [lJ(T)_· \l(T;o)]dT 
xi [iJ ( t) - \l (t ; 0) ] d t • 

e 

• 
where the exponential function is the probabilitv of his 

for x.<t<x'+ l • 
J. - 1. . 

surviving from x. to t 
1. 

and [)J(t) - \l(t;6)]dt is the probability that he will die in the time element 

(t, t+dt). For different values of t, the corresponding events associated 

with the probability in (2.22) are mutually exclusive. Using the addition 

(2.22) 

theorem we have the net probability that the individual will die in the interval 

x i +l 
.r e 

x. 
1 

_ f till ( T) - lJ (T ; ,l,) J dl 

X 
i [Wet) - w(t;~)]dt . 

Since (2.9) imples that the ratio 

l!l0 - }J(t;6) 
wet) 

q. - o. ,. 
1. 1 I' 

q. 
-I 

is independent of time t, we write 

and 

l!.!t) - ll(t:,'-) 

wet) [J (t ) 

(2.23) 

(2.24 ) 

(2.25) 
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Substituting (2.24) Rnd (2.25) in (2.23) gives 

/i+l 

x. 
~ L 

and integrating the right-hand side of (2.26) yields the relationship 

formula (2.27) also can be simplified using Newton's binomial expression as 

was formula (2.17). Again taking the first four terms of the series, we have 

p. 
1 

(q·-Q·o)!q· 
1- 1 1 

(q . -Q. 1') ! q . 
(1- ) 1 1-U 1-q. 

1 

1 - (q.-Q.s) 
~ ~IJ 

Substituting (2.23) in (2.27) and simplifying the resulting expression gives 

the desired formula.!.! 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Because of the absence of competing risks, the net probability is ahvays greater 

than the corresponding crude probability, or 

(2.30a) 

Further, if two risks R6 and R[ are such that 

then 

and (2.30b) 

Verification of (2.30a) and (2.30b) is left to the reader. 
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2.2. Relation between crude and partial crude probabilities. 

Suppose now that risk Rl is eliminated from the population. In the presence of 

all other risks, let Qio'l be the partial crude probability that an individual alive 

at time xi will die in the interval (xi' x i +l ) from cause Ro for o=2,···,r. We 

shall express Qio'l in terms of the probabilities Pi and qi and of the crude proba­

bilities Q'l and Q.£ . Using the multiplication and addition theorems as in (2.22) 
1 lu_ 

we have 

= (i+l e 

x. 
1 

t 

-J [~(T)-~(T;l)]dT 

Xi ~(t;o)dt 

To simplify (2.31), we note from (2.9) that the ratio ~(t;o)/[~(t)-~(t;l)] is equal 

(2.31) 

to Qio/(qi-Qil) and is independent of time t. The partial crude probability may then 

be rewritten as 

Substituting 

~(t;o) (i+l 
= ~(t)-~(t;l) e 

x. 
1. 

-J 
t 

X. 
1. 

[~ (T) -~ (T ; 1) ] dT 

[~(t)-~(t;l)]dt 

xi +l 
-J [~(t)-~(t;l)]dt 

QiO 
x. 

1. 

= 1 - e 
qi-Qil 

QiO 

qi-Qil qi'l 

(2. 29) for 0=1 in (2.32) gives the final formula1 / 

<5 ==2, ••• ,r. 

(2.32) 

(2.33) 
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The sum of Qio.l for o=2,···,r is equal to the net probability of death when 

risk Rl is eliminated from the population. That is, 

as might have been anticipated. 

Formula (2. 33) can be easily generalized to other cases where more than one 

(2.34) 

risk is eliminated. If risks Rl and R2 are eliminated, the partial crude probability 

that an individual alive at time xi will die from cause Ro in the interval (xi' x i +l ) 

is11 

(2.35) 

In the discussion of these three types of probability, both q. and p. are 
1. 1. 

assumed to be greater than zero but less than unity. If qi were zero (Pi=l), then 

Q
io 

would also be zero for o=l,···,r. Then the ratios Q.~/q., Q.~/(q.-Q'l)' and 
1.u 1. 1.u 1. 1. 

(q.-Q'l)/q. and formulas (2.17), (2.26), (2.33) and (2.35) would 
1. 1. 1. 

become meaningless. In other words, if an individual were certain to survive an 

interval, it would be meaningless to speak of his chance of dying from a specific 

risk. On the other hand, if p. were zero (q.=l), formula (2.4) shows that the 
1. 1. 

integral 

(i+l )J(t) dt 
x. 

1. 

would approach infinity; this fortunately is extremely unrealistic. 
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The theory of competing risks presented in Section 2 was based on the inde­

pendence assumption in (2.2). Under this assumption, the risks act independently 

of one another and the presence or elimination of one risk has no effect on the 

intensity functions (forces of mortality) of other risks. The validity of the assump­

tion depends upon the diseases under consideration. One can certainly visualize 

a situation where the independence assumption does not hold. The presence of 

tuberculosis (R
l
), for example, may affect the chance of dying from pneumonia, 

R
2

. Once tuberculosis is eliminated as a risk of death, how does one evaluate 

the probability of dying from pneumonia? The problem can be resolved by creating 

another risk, R
l2

, the interaction between tuberculosis and pneumonia, with the 

intensity function w(t;1,2). When tuberculosis is eliminated as a risk of death, 

the interaction vanishes also. The purpose of this section is to study the 

theory of competing risks with the consideration of interactions. 

For any two risks R
o 

and Rc' we denote by ROE their interaction and by 

w(t;o,c) the corresponding intensity function, with 

)J(t;o,c) > 0 (3.2) 

When two risks have positive interaction, the intensity function )J(t;o,r) is posi­

tive and has the following probabilistic meaning: 

W(t;o,E)6 + 0(6) Pr{an individual alive at time t will die 
(3.3) 

in interval (t,t+6) from Roc} 

If two risks have no interaction, w(t;o,c) = O. It is conceivable that, for two 

particular risks, presence of one decreases the probability of dying from the 

other, so that w(t;o,c) < O. In such cases proper interpretation is the following 



[]J(t;6) + ]J(t;E) + ]J(t;6,E)]6 + 0(6) = Pr{an individual 

alive at t will die in interval (t,t+6) from either (3.4) 

For convenience of our discussion, we assume that all ]J(t;6,E) are non-negative. 

Under the present framework, the intensity functions satisfy the relation 

r r-l r 
L w(t;6) + I L ]J(t;6,E) (3.5) 

6=1 6=1 E=o+l 

We shall assume, as in Section 2, that the intensity functions ]J(t;6) satisfy con-

dition (2.3) and that the ratio 

(3.6) 

is independent of time t, but is a function of the interval (xi,x i +l ) and risks 

In this case the formulas for the probability p.(q.), the crude pro­
l l 

bability Qi6 and the net probability qi6 all remain the same as those in Section 

2. Namely, 

and 

so that the relation, 

X. 
l 

t 

-J ]J(T)dT 

e ]J(t;6)dt 

t 

-J ]J(T;6)dT 
X· e 1 ]J(t;6)dt 

1 - p. 
1 

(2.4) 

(2.6) 

(2.15) 
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(2.17) 

and 

(2.21) 

also holds. Corresponding to the interaction R there is the crude probability 
ClE' 

of dying from RClE in the presence of all risks, 

1 e 
x. 

1 

t 

-1 
x. 

1 
lJ(t;o,c)dt (3.7) 

In view of the proportionality assumption in (3.6), we may rewrite (3.7) as follows 

= lJ(t;o,c) 
lJ (t) J 

x. 
1 

e 
x. 

1 lJ(t)dt 

(3.7a) 

When risk R1 is removed as a cause of death, its interactions with all other 

causes, R12,···,R1~ will all vanish, and the net probability of dying in (xi ,xi +1 ) 

is given by 

-J 
x. 

1 - e 
1 

r 
[lJ(t)-lJ(t,l)- I lJ(t;l,s)]dt 

t=2 
(3.8) 

Using the proportionality assumption (2.3) and (3.6), the exponent in (3.8) may be 

rewritten 
r 

x. lJ(t)-lJ(t;l) - E 
1+1 s=2 

= U lJ(t)dt]---------
r 

[lJ(t)-lJ(t;l)- I lJ(t;l,s)]dt 
s=2 x. 

1 
lJ (t) 

lJ(t;l,s) 

which, because of (2.9) and (3.7a), becomes 
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Xi +l q.-Q. -IQ· 
[J ~(t)dt] 1 11 lIs 

x. qi 
(3.9) 

1 

Substituting (3.9) in (3.8) yields a relationship between the net probability 

qi.l and qi and the crude probabilities: 

(ql·-Q·1-IQ ·l )/q. = 1 1 1 S 1 
-Pi 

where the SUMMatton ;::0
11 

in the exponent is taken over e: = 2, ... ,r. 
. E 

Applying the binomial expression to the last term in (3.10) and taking the 

first three terms of the infinite series as in (2.17), we have 

(q·-Q·l - L Ql·le:)/qi 
(l-q.) 1 1 

1 

(3.10) 

1 
1 - (qi-Qil- L Qile:) - I(qi-Qil- LQile:) (Qil+ LQile:) 

- i(qi-Qil- LQile:) (Qil+ LQilE) (qi+Qil+ LQi1e:) 

(3.11) 

d h . f 1 4/ an t e approxlmate ormu a -

r 

(3.12) 

The partial crude probability of dying from Ro when Rl is eliminated can be 

obtained in a similar manner. Corresponding to formula (2.31) we now have 

t 
- J[ ~ (T) -~ Cr ; 1) - I ~ (T ; 1, s) ] d T 

xi +1 xi 
I e ~(t;o)dt 

Xi 

t 

x i +1 
-J [~(T)-~(T;l)-I~(T;l,s)]dT 

~(t;o) J 
~(t)-~(t;l)-I~(t;l,s) x. 

1 

e [~(t)-~(t;l)-L~(t;l,e:)]dt 

(3.13) 
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where 

\.l(t;O) 

and 
t 

x i +l -J[\.l(T)-\.l(T;l)-L\.l(T;l,s)]dT 

J e xi [\.l(t)-\.l(t;l)-L\.l(t;ls)]dt 
x. 

1 

Therefore 

(3.14) 

(q·-Q'l-/IQ·l-)/q· 1 1 ., 1 t. 1 
l·_·p. . 

1 

(3.15 ) 

(3.16) 

In the following appendix we shall present the problem of estimation 

and the multiple decrement tables \vithout considering the interaction. 

The case where the interactions are present is completely analogous. 
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FOOTNOTES 

Jj 
When the first three terms of the binomial series are taken, we have 

(2.29a) 

1/ When formula (2.29a) in footnote 1 is used, we have 

(2.33a) 

1.1 
Corresponding to formula (2.33a) in footnote 2, we have 

(2.35a) 

~/ Corresponding to formula (2.29a) in footnote 1, we have 

(3.12a) 
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APPENDIX IV 

HULTIPLE DECREMENT TABLES 

1. Introd~ction 

In studies of competing risks in a given population, deaths are classi-

fied according to cause. The number of deaths from each specific cause is the 

basic random variable for estimating the corresponding probability and for making 

inference about the population in question. The statistical theory involves 

is the multinomial distribution, \.]hlch is described as follows. 

Suppose that £. individuals alive at the beginning of an age interval 
~ 

(xi,xi +l ) are subject to r risks of death, Rl,"',Rr , with the corresponding 

Probabilities Q ... Q respectively. il' , ir' Let d
i8 

be the number of deaths occur -

ring inthe interval from R8 so that the sum 

(1.1) 

is the total number of deaths, and the difference 

(1. 2) 

is the number of survivors at the end of the interval. This means that 

t. = d, l +···+d. +L+
l 

. (1.3) 
~ ~ 1r 1 

The corresponding probabilities have a similar relationship (cf. equation (2.10), 

Appendix III) 

Q + •• '+Q i1 . ir (1.4) 

and the difference 

(1.5) 
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is the probability of survival, so that 

1 = Q + •. '+Q +p il ir i' 
(1. 6) 

Equations (1. 3) and (1. 6) define a multinomial distribution, where 'the random 

variables d
i1

,···, d
ir 

and ~i"H have the joint probability (1) 

£..! 
1. 

d !"'d ,n , 
'1 ":<"+1' 1. 1.r 1. 

,,,here d '1+' •• +d, +~, 1 = 9'1' 
1. 1.r 1+ 

d
i1 

In formula (1. 7) the quantity Q .•. Q 
i1 ir 

d, 
1.r (1. 7) 

dir 9. i +1 , 
p, 1S the probability 

1. 

that dio specified individual: will die from Ro' for 0=1,'" ,r, and the remain­

ing £i+1 individuals Ivill survive the interval (xi .xi +1 ), The combinational 

factor 

£..! 
1. 

d ''''d '£ ' il' ir' i+l' 

is the number of pos::;ibiliti.:os th<lt diO people amo;lg 9'i ,:i11 Jie ftc:r. Ro and 

£'i+1 will survive. The expected values, the variances and the cnvt'lri;mCPR of thl" 

distribution can be obtained from (1.7) directly. However, the following 

approach is somwhat simpler. 

ECl.ch d
io 

is in effect a binomial random variables in £i "trials" with the 

binomial probability Qio' Therefore, the expected value and the variance of dio 

are given by 

(1. 8) 

and 

£,Q'R(l-Q'R)' 6=1. ···,r. 
1. 1u 1u 

(1. 9) 

(l)For simplicity of formulas, no symbols for the values that the random 

variables £i and dio assume are introduced in this Appendix. 
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The COV:lr iance betHeen any two r:mno1"l v~riables d. r ann d. is 
1') J.E: 

Cov(d.r,d.~I~.) = -~.n.~n. 
1u 1_ 1 1 1 lE 

O=FS; o,s=l •••• ,r. (1.1'1) 

Therefore the correlation coefficient hetween ~.S <lnd d is neo:<ttive. 
1( is 

(1.11) 
/Q .. ~Q. _ I~ ]u 1,: 

- - \' (l-Q. r) (l-Q. ) 
1u lE-

Formula (1.11) shcMS that the lareer the probabj lities Q. rand Q. , the greater 
lu l E 

will 1e the correlation coefficietit in absolute value. Thus the greater the 

number of deaths from one cause, the smaller \<1ill be the number of deaths from 

another cause; alld the tHO risks, Ro and R
E

, are indeed competing risks. 

The covarj ance bet\-lcen the nu!nber of deaths from a specific cause diO and 

the nunber of survivors £'i+l can be obtained in a similar manner. The formula is 

(1.12) 

and hence the correlation coefficient 

(1.13) 

which also increases in absolute value with Q.r and p .• This means that the 
lu l 

greater the number of deaths from one c,wse, the fewer will be the survivors. 

Hhen t. is a given fixed number, the variance of t. is zero. Applying 
1 1 

the formula of the variance of a sum of random variables to formula (1. 3) \-Je have 
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r 

+ 2 E Cov(di~'£i+llli) = Q • 
0=1 

St1bstitutin~ formulas (1. 9), (1.10), (1.12) and the conditional variance 

of £i+l ~iven 

in (1.14) yields a relationship 

r r-1 r 

r t. Qio(l-QiO) + Q,iPiqi - 2 L L £i QiO Qi£ 
0:::;1 ~ 0=1 £=0+1 

r 
- 2 l: L Q·o p. = 0 

8=1 
~ ~ ~ 

Verification of (1.16) is left to the reader. 

(1.14) 

(1.15) 

(1.] 6) 
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2. The Chain Multinomial Distributions 

In the preceding section we were concerned with the probability 

distribution of the number of deaths occurring in interval (xi' x i +l ) 

based on 9,. people alive at age x.. t.Jhen we start 
~ ~ 

at age Xo 

with iO individuals, the number of survivors i l , £2'· •. at ages xl' x2 ·•· 

are themselves random variables. The probability distribution of each 

£. is dependent upon the number of survivors of the preceding interval, 
~ 

for i=1,2 .•. As a result, we have a chain of multinomial distributions. 

In other words, for any positive integer, u, the joint probability dis-

tribution of all the random variables d. l , .•. , d. , t. l' for i=O,l, •.• ,u 
1 ~r 1+ 

is 

u 
n 

i=O 

9...! 
·1 

d. 
Q. H 
~r 

(2.1) 

with d
i6 

and 1
i
+

l 
being non-negative integers and satisfying the restriction 

The expected values_and variances of the random variables d io may 

be derived from those obtained i.n Section 1 by using the rule on conditional 

expectation and conditional variance. The expectation of dio is the expecta-

tion of the condition expection of d io given ~i 

where 

= E[E(d.~I~.)] = E[~. Q.~] 
~u ~ ~ ~u 

Xi 
- exp{-f ~(t)dt} 

o 

(2.2) 
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is the probability of survivin~ [rom Xo to x .. 
1. 

The rule on the vari.ances is a li ttl€:' ~ore comple;.;. 

random vad able, the cond itiollCll vctr Lance of d i 6 given £i is also a 

random variahle and has an expectation 

E[Vnr(d. oj t.») 
1. () 1. 

= E(Q.. )Q. ,(l-Q . .t) = 9J
OP O.Q . .l:(l-Q . .1') 

1. 1 0 1. U • 1- ]. V 1. U 

On the other hand, the conditionnl expectAtion E(d.t19~.), heing a random 
l U l 

vari"blc', has the V.:lriClnCe 

Var[r.(d·.~li.») 
lu 1. 

V::tr[,Q,.Q·. ,,) 
'l 1 (; 

A.ccord:i.ng to the -- - ., 
!. U.L C, 

. , 
Llie varianCE: of d-: .t:- is given by 

.H) 

Var(d.~) = E[Var(d.~19J')] + Var[E(d.~lt.») 
]u 1.U l 1.U l 

Substituting (2.3) and (2.4) in (2.5) and simplifying the resulting 

expression yield the fOT~ula 

o=l, ... ,r; 
Var(d iO ) = to POi QiO(l-POiQiO)' i=O, ... ,u. 

Regarding the covariance of d.~ and d. , the rule is 
1.U 1.£: 

Cov(d·O,d·
C

) = E[Cov(d.,t,d. It.)] + Cov[E(d.,tlt.), l~(d. It.)] 
l l lU l£: 1. lu l 1.£: 1. 

and hence the formula for the covariance is 

Cov(d.,t,d. ) == -Q.OPOiQ'~PO.Q. , 
lu 1C . 1u 1. l£: 

01£:; 6, £:=1, ••• , r ; 
i=O, •.• , u • 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Formulas (2.6) and (2.7) can be justified intuitively. An individual alive at 

has a probability nO'O.~ 
• t 1. '1.U 

of dying from The 
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number of individuals dying from R6 ' diO ' has a binomial distribution in 9-
0 

"trials" wi th the probability POi QiO' It follows from the binomial theory 

that the variance of diO is given by (2.6) [Cf. formula (1.9)]. Similarly, 

the random variables diO and diE have a joint multinomial distribution with 

the corrcsponding probabilities POiQiO and POiQiE ' respectively. Therefore, 

their covariance is given by 

and ~leir correlation coefficient is 

p 
d . .r,d. 

1u 1C 

/ Q~6 ---«--- r-~~'----"---
Pail _" __ ~l_"E ______ __ 

.j 1 - Po' Q ... \ / 1 - PO' Q . 
1 1U 1 1E 

(2.R) 

(2.9) 

The negative correlation coefficient agaih indicates the competition between 

two risks, and the negative correlation is more pronounced when the corresponding 

probabilities of death, QiO and QiE' are large. Also the correlation coefficient 

increases in absolute value with POi' the probability of surviving the interval 

Since POi decreases with the competition betwecn two risks is 

more acute at young ages or when the probability of dying QiO (QiE) is large. 

For the numbers of deaths occurring in two different age intervals (Xi' xi +1 ) 

and (X
j

' xj +l ), the corresponding covariance is obtained by using once again 

the fact that the random variables d
io 

and d. have a joint multinomial 
JE 

distribution in 9,0 "tria1s"with" the corresponding probabilities POiQi 

PO.Q. so that 
J J 

and the correlation coefficient 

= -

and 

(2.10) 

(2.11) 

is again negative. Without loss of generality, we may assume that i < j and 



- 284-

use the relationship P
Oj POi Pij and write 

p = p . d . .r: , d . - Oi 
1.u JE: 

(2 .1Z) 

which differsfrom the correlation coefficient in (2.9) by the factor I~ , 
1.J 

and equals (2.9) when j=i. Thus the correlation coefficient between d
i8 

and d. 
JC 

is generally'smaller in absolute value than the correlation coefficient 

between d
io and d

i 
• 

C 
For a fixed X., the probability p .. of surviving from 

J_ 1.J 

x. to x. decreases as x. increases. This means that the competition between 
1. J J 

ri~ks at two different ages diminishes as the two ages become more distant. 

The covariance bet'veen the number dying and the number surviving can be 

derived in a similar way: 

and 

Cov(d . .r:,,Q,.) 
1.u J 

It is interesting to note that the covariance between 

(2.}3) 

0= l, ... ,r; (2.]4) 
i<j; i,j=O,l, •..• 

and in (2.14) 

is the only one carrying a positive sign. The positive covariance in (2.14) 

indicates that the l~rger the number of survivors at age x., the greater the prob-
1. 

ability that a larger number of deaths from Ro will occur in a subsequent interval 

The covariance bet\veen ,Q,. and ~. 
1. J 

i < j, (2.15) 

has been given in (3.7) in Appendix II. These results show that, for each u, 

~e random variables dio and ~i+l' for i=O,l, .•• ,u; o=l, ••• ,r, have a chain 

of multinomial distributions with the probability distribution given in (2.1) 

and the expectations and covariances given in (2.2) through (2.15). 
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3. Es'timation of the Crude Probabilities 

The estimators of the crude probabilities Q'k and p. can be derived 
1 1 

directly from the joint probability function 

L = 
u 
II 

i=O 

t, ! 
1 

by using the maximJm likelihood prin.cip1e. 

The logarithm of the likelihood functions is 

u 

(3.1) 

log L = k + l: [dil log Qn + •.• + dir log Qir + Jl.i +1 log Pi] (3.2) 
i=O 

where k is constant and the probabilities are not all independent but 

satisfy the relationship for each i 

Q'l + ... + Q. + p. 1 - 1r )_ 1 • 

A A 

The estimators Qil' ... , Qir' and Pi are the maximizing values of log L 

subject to condition (3.3), Using the Lagrange method we maximize 

u r 
¢ = k + l: [L dio log Qio 

i=O 0=1 

r 
+ £1'+1 log p. - A, (l: Q.l' + p,-l)] 

1 1 0=1 lu 1 

(3.3) 

Differentiating <l> with respect to Q'l, •.• ,Q, , p. and setting the derivatives 
1 1r 1 

equal to zero, we have the following simultaneous equations 

d ¢ 
d io 

A. 0 
aQiO 

= --- = 
QiO 1 

or o=l, .•• ,r (3.4) 

d <l> 
t i +l 

A. 0 =-",- = ap:- p. 1 1 1_ 

or (3.5) 

For each i, there are r+2 equations in (3.3). (3.4). and (3.5) with r+2 

unknowns: 
A A '" 

Qil, •.• ,Qir' Pi and Ai' where Ai is known as the Lagrange 

coefficient. To solve these equations simultaneously we substitute (3.4) 

and (3.5) in (3.3), 



or 

d' l _1_ + 
A. 

1. 
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9.-. 
1 

(3.6) 

and use (3.6) in (3.4) and (3.5) to obtain the maximum likelillood estimators 

and 

o=l, •.. ,r 
i=O, .•.• u 

i= 0, ••. ,u 

(3.7) 

(3.8) 

On the right-hand side of (3.7) and (3.8) are the proportions dying in the 

interval (xi' xi +l ) from Ro and the proportion surviving the interval, 

respectively. Thus the maximum likelihood estimators derived (3.7) and (3.8) 

are consistent with our intuition. Further, they are unbiased estimators, 

since their expected values are equal to the corresponding probabilities. 

This is demonstrated below. 

d. ~ 
= E[2.S..] = £. 

1. 

where the conditional expectation is given in Section 1, 

so that 

(3.9) 

(1. 8) 

(3.10) 
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as required to be shown. 

The variances and covariances of the estimatcrs can be computetl direc·t1y. 

A 

For the estimator Q.,~ 
10 

\-,here 

A 

Var(Qi8) 

d 2 

= E [ i~ ] 
£. 

l. 

E[r.(d./19 .. ) 12 
1u 1 £. 

1 

(3.11 ) 

(3.12) 

We recall from Section 1 that, given t., the numher of deaths d . .r: is a binomial 
1 lu 

random vnriab1e having the variance 

and the expectation of the square 

? . 2 2 
E(d . .r:- It.) = 1.Q.o(1-Q . .r:) + 1. Q . .r: 

1~ 1 1 1 1~' 1 lU 

Consequently, the expectation in (3.12) may be rewritten 

Substituting (3.14) in (3.11) gives the formula 

var(QiO) = E(£~ ) Qio(l-QiO)' 
1 

Using a similar approach, we obtain 

Var(p.) = Var(q.) = E(~)P.q. 
1 . 1 lV. 1 1 

1 

Cov(QiO' QiS) = -E(l: ) QiO QiS 

and 

-E(~) Q = :Iv Pi iO 
i 

o=l, ••• ,r 
i=O, .... ,tl 

(1. 9) 

(3.13) 

(3.14 ) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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When the original cohort ~'O is large, the expectation of the reciprocal of 

9,. may be approximated by the reciprocal of the expectation. That is 
1 

1 
(3.19) 

In order to make inferences concerning the crude probabilities, it is 

A 

necessary to find the sample estimates of the standard errors of QiO' This 
A 

may be done by substituting QiO' Pi' and ~i for the corresponding unknown parameters 

in (3.15) and (3.16) and taking the square root of the resulting formulas. Thus, 

0=1, ... ,r (3.20) 

and 

= ItY q. (l-q . ) 
lv. 1 1 

i=l, •.• ,u (3.21) 
1 

The main results obtained in this Appendix may be summarized in the 

following table. 

Table 1. Mult"iple Decremental Table 

Age Number Proportion Proportions Dying in (xi,xi +l ) by Causes 
Interval Living at Dying in 

(years) Age x. Interval 
1 

(xi'xi +l ) RI R . . · r 

A A A 
Xi - Xi +l 

9,. qi SA Qil 
SA . . · Qir SA 

1 q. Qil Qir 1 

,- '" '" Xo - Xl 9,0 ~ SA QOI 
SA Q0r SA 

0 qo QOI QOr 

· · · • · • · · · · · 
· . · · • · • · · · · · · · · · · · · · • · · 
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APPENDIX V 

Fraction of Last Age Interval of Life a i 

Table 1 

Austria, 1969 

Fraction of 
Last Age Interval 

of Life 
a. 

Age 
~ 

Interval Both 
xi -xi +1 Sexes Male Female 

0-1 .12 .12 .12 

1-5 .37 .37 .37 

5-10 .47 .47 .47 

10-15 .51 .51 .49 

15-20 .58 .58 .55 

20-25 .48 .49 .48 

25-30 .51 .50 .54 

30-35 .53 .53 .53 

35-40 .53 .52 .53 

40-45 .52 .51 .54 

45-50 .54 .54 .53 

50-55 .52 .53 .52 

55-60 .53 .54 .53 

60-65 .54 .53 .54 

65-70 .53 .52 .54 

70-75 .52 .50 .53 

75-80 .51 .50 .51 

80-85 .48 .47 .49 

85-90 .45 .44 .45 

90-95 .40 .40 .40 



Age 
Interval 
xi-xi +l 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 2 

Fraction of Last Age Interval of Life, a. 
1 

California, 1960 

Fraction of 
Last Age Interval 

of Life 
a. 

1 

.10 

.39 

.46 

.57 

.57 

.49 

.50 

.53 

.54 

.54 

.54 

.53 

.51 

.53 

.52 

.52 

.51 

.49 

.46 

.40 



Age 
Interval 
x i -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 
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Table 3 

Fraction of Last Age Interval of Life, a. 
1. 

Canada, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 

1. 

Both 
Sexes Male Female 

.11 .11 .12 

.41 .42 .40 

.45 .45 .44 

.54 .54 .53 

.57 .59 .53 

.48 .47 .51 

.50 .49 .53 

.52 .52 .52 

.53 .53 .53 

.54 .54 .54 

.53 .53 .53 

.54 .54 .54 

.54 .53 .54 

.53 .53 .53 

.53 .52 .53 

.52 .51 .53 

.52 .51 .53 

.50 .49 .51 

.47 .46 .48 
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Table 4 

Fraction of Last Age Interval of Life, a. 
1 

Costa Rica, 1963 

Fraction of 
Last Age Interval 

of Life 
a. 

1 

Age 
Interval Both 
xi -xi +1 Sexes Male Female 

0-1 .28 .27 .28 

1-5 .29 .29 .28 

5-10 .40 .42 .38 

10-15 .49 .50 .50 

15-20 .55 .55 .55 

20-25 .53 .53 .54 

25-30 .53 .51 .55 

30-35 .51 .51 .51 

35-40 .49 .51 .48 

40-45 .53 .54 .52 

45-50 .53 .51 .55 

50-55 .53 .53 .52 

55-60 .54 .55 .53 

60-65 .53 .55 .51 

65-70 .54 .56 .52 

70-75 .53 .52 .54 

75-80 .51 .52 .51 

80-85 .50 .50 .50 
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Table 5 

Fraction of Last Age Interval of Life, a i 

Finland, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 

Age l. 

Interval Both 
xi -xi +1 Sexes Male Female 

0-1 .09 .08 .09 

1-5 .38 .41 .34 

5-10 .49 .48 .49 

10-15 .52 .53 .50 

15-20 .53 .53 .54 

20-25 .51 .52 .51 

25-30 .51 .52 .48 

30-35 .52 .51 .52 

35-40 .54 .54 .53 

40-45 .55 .54 .55 

45-50 .53 .52 .54 

50-55 .54 .54 .53 

55-60 .53 .53 .54 

60-65 .53 .53 .54 

65-70 .52 .51 .53 

70-75 .52 .51 .53 

75-80 .51 .49 .52 

80-85 .47 .47 .48 



Age 
Interval 
xi-xi +l 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 6 

Fraction of Last Age Interval of Life, a. 
1. 

France, 1969 

Fraction of 
Last Age Interval 

of Life 
a. 

1. 

Both 
Sexes Male Female 

.16 .15 .17 

.38 .39 .36 

.46 .47 .45 

.54 .55 .52 

.56 .56 .55 

.51 .50 .51 

.51 .51 .52 

.53 .53 .54 

.53 .53 .52 

.53 .53 .53 

.54 .54 .54 

.52 .52 .52 

.53 .53 .53 

.53 .52 .53 

.53 .52 .54 

.52 .51 .53 

.51 .50 .52 

.49 .48 .50 

.46 .45 .47 

.41 .39 .42 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 7 

Fraction of Last Age Interval of Life, a. 
]. 

East Germany, 1967 

Fraction of 
Last Age Interval 

of Life 
a. 

]. 

Both 
Sexes Male Female 

.38 .38 .38 

.46 .46 .46 

.52 .53 .51 

.56 .58 .54 

.50 .50 .51 

.52 .51 .53 

.52 .52 .53 

.52 .52 .52 

.54 .54 .54 

.54 .55 .54 

.52 .53 .52 

.54 .54 .54 

.54 .53 .54 

.53 .53 .54 

.52 .51 .53 

.51 .49 .52 

.48 .47 .49 

.43 .43 .43 

.39 .39 .39 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 8 

Fraction of Last Age Interval of Life, a. 
1. 

West Germany, 1969 

Fraction of 
Last Age Interval 

of Life 
a. 

1. 

Both 
Sexes Male Female 

.10 .10 .11 

.39 .39 .38 

.46 .46 .46 

.52 .51 .52 

.57 .58 .54 

.52 .51 .53 

.51 .51 .51 

.52 .52 .53 

.54 .54 .55 

.53 .53 .53 

.51 .51 .51 

.58 .58 .57 

.54 .54 .54 

.54 .53 .54 

.52 .52 .53 

.52 .51 .53 

.51 .49 .52 

.49 .47 .49 

.44 .43 .45 

.39 .38 .40 
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Table 9 

Fraction of Last Age Interval of Life, a i 

Hungary, 1967 

Fraction of 
Last Age Interval 

of Life 
a. 

l. 
Age 

Interval Both 
xi -xi +1 Sexes Male Female 

0-1 .10 .10 .11 

1-5 .35 .35 .33 

5-10 .45 .47 .42 

10-15 .52 .51 .54 

15-20 .55 .57 .52 

20-25 .51 .52 .50 

25-30 .52 .52 .53 

30-35 .52 .51 .52 

35-40 .53 .52 .55 

40-45 .53 .52 .53 

45-50 .54 .54 .53 

50-55 .53 .53 .52 

55-60 .54 .54 .54 

60-65 .53 .53 .54 

65-70 .53 .52 .54 

70-75 .52 .51 .53 

75-80 .50 .50 .51 

80-85 .48 .47 .48 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 10 

Fraction of Last Age Interval of Life, a. 
1 

Ireland, 1966 

Fraction of 
Last Age Interval 

of Life 
a. 

1 

Both 
Sexes Male Female 

.l3 .12 .13 

.38 .39 .37 

.47 .47 .46 

.48 .48 .46 

.55 .56 .54 

.51 .50 .53 

.51 .50 .53 

.52 .52 .51 

.55 .56 .54 

.54 .55 .54 

.50 .50 .50 

.53 .53 .52 

.52 .53 .52 

.52 .52 .53 

.52 .51 .53 

.52 .52 .53 

.49 .49 .50 

.48 .48 .48 

.45 .44 .46 

.39 .38 .40 



Age 
Interval 
xi -xi +l 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 
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Table 11 

Fraction of Last Age Interval of Life, a i 

North Ireland, 1966 

Fraction of 
Last Age Interval 

of Life 
a. 

1 

Both 
Sexes Male Female 

.13 .13 .14 

.36 .38 .35 

.45 .47 .41 

.50 .49 .52 

.58 .59 .56 

.52 .54 .48 

.51 .53 .49 

.52 .50 .56 

.53 .51 .55 

.53 .54 .53 

.56 .57 .55 

.54 .54 .54 

.55 .54 .55 

.54 .53 .55 

.52 .52 .53 

.52 .51 .53 

.50 .49 .51 

.50 .49 .51 



Age 
Interval 
xi-xi+l 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 
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Table 12 

Fraction of Last Age Interval of Life, a. 
1. 

Italy, 1966 

Fraction of 
Last Age Interval 

of Life 
a. 

1. 

Both 
Sexes Male Female 

.16 .15 .17 

.35 .36 .35 

.46 .47 .45 

.53 .54 .53 

.53 .53 .52 

.51 .51 .50 

.52 .51 .53 

.53 .52 .54 

.53 .53 .53 

.53 .53 .53 

.54 .54 .54 

.54 .54 .53 

.54 .54 .54 

.53 .53 .54 

.52 .52 .53 

.52 .51 .53 
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Table 13 

Fraction of Last Age Interval of Life, a i 

The Netherlands, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 

1 
Age 

Interval Both 
xi -xi +1 Sexes Male Female 

0-1 .11 .11 .11 

1-5 .41 .43 .39 

5-10 .47 .47 .45 

10-15 .51 .50 .53 

15-20 .54 .55 .52 

20-25 .49 .48 .51 

25-30 .51 .50 .53 

30-35 .51 .51 .51 

35-40 .54 .54 .54 

40-45 .53 .53 .53 

45-50 .55 .55 .54 

50-55 .54 .54 .53 

55-60 .54 .54 .53 

60-65 .53 .52 .54 

65-70 .53 .52 .54 

70-75 .52 .51 .53 

75-80 .51 .50 .52 

80-85 .49 .49 .50 

85-90 .46 .46 .47 

90-95 .42 .42 .42 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 14 

Fraction of Last Age Interval of Life, a. 
~ 

Norway, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 
~ 

Both 
Sexes Male Female 

.12 .10 .14 

.44 .46 .42 

.45 .46 .42 

.56 .55 .60 

.55 .56 .52 

.51 .50 .52 

.48 .48 .50 

.54 .55 .55 

.54 .55 .54 

.56 .56 .56 

.54 .53 .54 

.53 .54 .53 

.53 .53 .54 

.54 .54 .53 

.54 .53 .55 

.53 .52 .54 

.51 .50 .52 

.50 .49 .50 

.47 .46 .47 

.42 .41 .43 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 
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Table 15 

Fraction of Last Age Interval of Life, a. 
~ 

Okinawa, 1960 

Fraction of 
Last Age Interval 

of Life 
a. 
~ 

Both 
Sexes Male Female 

.32 .32 .31 

.38 .37 .40 

.45 .47 .45 

.50 .51 .48 

.50 .51 .49 

.51 .53 .49 

.52 .51 .53 

.51 .52 .50 

.50 .48 .52 

.52 .51 .52 

.53 .53 .54 

.52 .52 .52 

.52 .52 .52 

.53 .52 .54 

.53 .53 .53 

.52 .52 .53 

.52 .52 .52 

.50 .50 .50 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 
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Table 16 

Fraction of Last Age Interval of Life, a i 

Panama, 1968 

Fraction of 
Last Age Interval 

of Life 
ai 

Both 
Sexes Male Female 

.23 .23 .24 

.33 .33 .33 

.44 .44 .44 

.49 .49 .50 

.54 .53 .56 

.53 .52 .54 

.49 .49 .49 

.48 .48 .49 

.48 .47 .50 

.49 .49 .50 

.51 .51 .52 

.53 .53 .53 

.52 .52 .52 

.52 .52 .52 

.52 .53 .52 

.44 .44 .45 



Age 
Interval 
xi-xi +l 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 17 

Fraction of Last Age Interval of Life, a. 
1. 

Portugal, 1960 

Fraction of 
Last Age Interval 

of Life 
a. 

1. 

Both 
Sexes Male Female 

.26 .25 .27 

.27 .27 .27 

.42 .44 .41 

.50 .50 .50 

.53 .54 .52 

.53 .52 .54 

.52 .52 .52 

.52 .52 .52 

.52 .53 .52 

.53 .53 .53 

.53 .53 .53 

.53 .54 .53 

.54 .53 .54 

.54 .53 .54 

.54 .53 .55 

.53 .52 .54 

.52 .51 .53 

.48 .47 .49 

.45 .44 .46 

.39 .38 .40 
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Table 18 

Fraction of Last Age Interval of Life, a i 

Romania, 1965 

Fraction of 
Last Age Interval 

of Life 
a. 

Age l. 

Interval Both 
xi -xi +1 Sexes Male Female ---

0-1 .23 .22 .24 

1-5 .33 .34 .32 

5-10 .46 .47 .43 

10-15 .51 .51 .51 

15-20 .56 .56 .54 

20-25 .51 .51 .51 

25-30 .51 .51 .52 

30-35 .51 .51 .50 

35-40 .53 .52 .53 

40-45 .52 .52 .53 

45-50 .54 .55 .53 

50-55 .53 .53 .53 

55-60 .54 .54 .54 

60-65 .53 .53 .53 

65-70 .54 .52 .55 

70-75 .51 .51 .52 
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Table 19 

Fraction of Last Age Interval of Life, a
i 

Scotland, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 

Age ~ 

Interval 
Both 

x i -xi +1 Sexes Male Female 

0-1 .l3 .l3 .23 

1-5 .40 .42 .38 

5-10 .44 .44 .43 

10-15 .53 .53 .53 

15-20 .56 .57 .55 

20-25 .49 .48 .52 

25-30 .51 .51 .52 

30-35 .53 .53 .53 

35-40 .54 .53 .54 

40-45 .54 .54 .54 

45-50 .54 .55 .54 

50-55 .53 .54 .52 

55-60 .54 .54 .53 

60-65 .53 .53 .54 

65-70 .52 .52 .53 

70-75 .51 .50 .52 

75-80 .50 .49 .51 

80-85 .49 .47 .50 
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Table 20 

Fraction of Last Age Interval of Life, ai 

Spain, 1965 

Fraction of 
Last Age Interval 

of Life 
ai 

Age 
Interval Both 
xi-xi +l Sexes Male Female 

0-1 

1-5 .38 .39 .37 

5-10 .46 .47 .46 

10-15 .53 .53 .52 

15-20 .55 .56 .53 

20-25 .54 .53 .55 

25-30 .51 .50 .52 

30-35 .52 .52 .52 

35-40 .53 .53 .53 

40-45 .54 .53 .54 

45-50 .54 .54 .54 

50-55 .54 .54 .54 

55-60 .54 .54 .54 

60-65 .54 .53 .55 

65-70 .54 .53 .55 

70-75 .53 .52 .54 

75-80 .52 .51 .53 



Age 
Interval 
x i -xi +1 

* 0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 
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Table 21 

Fraction of Last Age Interval of Life, a. 
1 

Sri Lanka, 1952 

Fraction of 
Last Age Interval 

of Life 
a. 

1 

Male Female 

.28 .35 

.46 .45 

.53 .53 

.55 .42 

.49 .55 

.51 .54 

.52 .53 

.53 .54 

.53 .54 

.54 .53 

.54 .53 

.53 .53 

.53 .53 

.53 .53 

.53 .53 

.52 .52 

.50 .45 

.42 .35 

.35 

* aO values are estimated from the experience of the 
India 1941-50 populations 

" 



Age 
Interval 
x i -xi +1 

0-1 
" 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 22 

Fraction of Last Age Interval of Life, a. 
1 

Sweden, 1966 

Fraction of 
Last Age Interval 

of Life 
a. 

1 

Both 
Sexes Male Female 

.08 .08 .08 

.44 .44 .45 

.45 .44 .48 

.53 .52 .55 

.56 .57 .53 

.51 .50 .53 

.52 .53 .51 

.53 .52 .55 

.52 .53 .51 

.53 .53 .54 

.54 .55 .53 

.54 .55 .53 

.54 .54 .53 

.53 .53 .54 

.54 .53 .55 

.53 .52 .54 

.52 .51 .53 

.50 .49 .50 

.46 .45 .47 

.42 .41 .42 
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Table 23 

Fraction of Last Age Interval of Life, a i 

Switzerland, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 

1-
Age 

Interval Both 
xi -xi +1 Sexes Male Female 

0-1 .10 .10 .11 

1-5 .36 .37 .36 

5-10 .45 .45 .45 

10-15 .52 .54 .47 

15-20 .57 .58 .52 

20-25 .49 .48 .49 

25-30 .49 .50 .48 

30-35 .51 .53 .49 

35-40 .54 .54 .53 

40-45 .53 .53 .54 

45-50 .55 .55 .55 

50-55 .54 .54 .53 

55-60 .54 .55 .53 

60-65 .54 .53 .54 

65-70 .53 .53 .54 

70-75 .52 .52 .53 

75-80 .51 .50 .52 

80-85 .50 .49 .51 

85-90 .47 .45 .48 

90-95 .41 .39 .42 
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Table 24 

Fraction of Last Age Interval of Life, a i 

United States, 1970 

Fraction of 
Last Age Interval 

of Life 
a. 

Age 1 

Interval Both 
xi -xi +l Sexes Male Female 

0-1 .09 .09 .09 

1-5 .40 .40 .39 

5-10 .46 .47 .45 

10-15 .55 .56 .53 

15-20 .54 .55 .53 

20-25 .51 .51 .52 

25-30 .51 .50 .52 

30-35 .52 .52 .53 

35-40 .53 .53 .53 

40-45 .54 .54 .53 

45-50 .54 .54 .53 

50-55 .53 .53 .53 

55-60 .53 .53 .53 

60-65 .52 .52 .53 

65-70 .52 .51 .53 

70-75 .51 .51 .53 

75-80 .51 .50 .52 

80-85 .49 .48 .50 



Age 
Interval 
xi -xi +1 

0-1 

1-5 

5-10 

10-15 

15-20 

20-25 

25-30 

30-35 

35-40 

40-45 

45-50 

50-55 

55-60 

60-65 

65-70 

70-75 

75-80 

80-85 

85-90 

90-95 
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Table 25 

Fraction of Last Age Interval of Life, a. 
~ 

Yugoslavia, 1968 

Fraction of 
Last Age Interval 

of Life 
a. 
~ 

Both 
Sexes Male Female 

.23 .22 .24 

.29 .31 .28 

.45 .46 .43 

.51 .51 .52 

.53 .54 .53 

.51 .52 .50 

.51 .52 .50 

.52 .53 .52 

.53 .53 .53 

.53 .52 .53 

.54 .54 .54 

.52 .52 .52 

.54 .54 .55 

.53 .53 .54 

.54 .53 .55 

.52 .51 .53 

.49 .49 .50 

.49 .48 .49 

.45 .45 .46 

.38 .38 .38 
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APPENDIX VI-A 

COMPUTER PROGRAM FOR ABRIDGED LIFE TABLE CONSTRUCTION 

ldentification 

Program name 

Author 

Department 

Date 

Environment 

Purpose 

ABRIDGE 

Patrick Hong 

Based on original work by Linda Kwok. 
Program was further modified by Carol 
Langhauser to handle WHO data (1969-70) 
in August, 1974 

Biostatistics Program 
School of Public Health 
University of California 
Berkeley, California 

February, 1973 

Machine = CDC 6400 
Operating System = Calidoscope (SCM) 

version 01.2-A 
Coding Language = FORTRAN 

This program constructs abridged life tables for a series of countries 
based on the method developed by Chin Long Chiang. 

Input card preparation 

All input data are assumed to be broken down into 5 year age intervals 
(except the first year of life) up to age 85 wi th the last interval being 
age 85 and over as follows: 0-1, 1-5, 5-10, 10-15, 15-20, 20-25, 25-30, 
30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 
85+. Details are given below. 

1. Fractions of year lived by those dying in the interval are 
punched in F3.2 format consecutively starting from column one. Columns 
61-80 can be used for optional population ID. 

2. Title for the population clate in columns 1-80. Standard format: 

{'TOTAL'/'HALE'/'FEMALE'} 'POPULATION', (country), (year) 

e.g., TOTAL POPULATION, CALIFORNIA, 1970 
MALE POPULATION, CANADA, 1968 

3. Midyear populations of that country in each age interval in 
1018 format. Two cards are required to accommodate the data for 19 age 
intervals. 
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4. Title for the death date in columns 1-80. Standard format: 

same as 2, except substituting the word 'DEATHS' for 'POPULATION' 

5. Number of deaths from all causes in each age interval in 1018 
format. Two cards are required. 

Cards in 1-5 can be repeated for as many countries as one desires. 
The program is terminated if a

O 
read in columns 1-3 of card 1 is greater than 

or equal to 0.80. 

Output 

For each country, the following quantities are printed out: 

1. Raw input data 

a
i 

= fractions of year lived by those dying in each age interval 

p. mid-year populations in each age interval 
1 

D. number of deaths in each age interval 
1 

2. Construction of abridged life table 

Xi-Xi +l = a~e interval 

P. 
1 

D. 
1 

Mi = age specific death rate 

a. 
1 

A 

qi = proportion dying in interval 

3. The abridged life table 

Xi-Xi +l = age interval 
A 

qi 
£. 

1 

d. 
1 

a. 
1 

number living at age Xi (£0 = 100,000) 

= number dying in interval (xi,xi +l ) 

Li = number of years lived in interval 

Ti = total number of years lived beyond age x. 
A 1 

e i observed expectation of life at age Xi 
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!'.~~gram limit a tions 

1. The current version of the program only handles 19 age intervals, 
broken down as described in the section, Input card preparation. 

2. The maximum population size and number of deaths in any age 
interval has to be less than a hundred million. However, the input data 
format card can easily be changed to handle larger or smaller limits. 

Computational procedur~ 

1. All input data of a country (a., P., D.) are read in. 
111 

2. The age specific death rates are computed for each age interval: 

M. = D.fp. 
111 

3. Proportions dying in interval: 

n.M. 
1 1 

q i 1+ (a . ) *M . *~ 
111 

where n i = length of age interval = xi+l-xi . 

4. Number alive at age x.: 
1 

9-. 9-.-1 - d. 
1 1 1 

In the program, the radix 9-
0 

is set to be 100,000 for convenience. 

5. Number of life table deaths in the interval: 

d. = 9-.q. 
111 

Note that di's are dependent on the radix 9-
0 

where x 
w 

6. Number of years lived in interval: 

L. n.*(9-.-d.) + a.*n.*d. 
1 111 111 

7. Total number of years lived beyond age x.: 
1 

last age interval, i.e., 85 and over. 



8. 

9. 

Reference 
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Observed expectation of life at age x.: 
1 

In the final age interval x , 
w 

d £, 
w w 

L d /M 
w w w 

T L 
w w 

e T h 
w w w 

Introduction to Stochastic Processes in Biostatistics. Chapter 9: 
"The lifetable and its construction,-ii-- Chin -Lo~g-Chia~g-:- John Wiley and Sons, 

Inc., 1968. 

Caution: modifications of certain statements in the program might 
be required if used on machines other than CDC 6400. The obvious modifications 
are: 

1. The first statement in the program, the Program Statement, might 
not be required by other machines. 

2. The syntax of the read/write statements might be slightly 
different for different machines. 

3. The input and output unit numbers for card reader and printer 
are probably different in different computer installations. 

4. The format statements can be changed if the input data are in 
a different format than what this program assumes. 

5. A format of AlO is used in the program for the input and output 
of all data titles since a maximum of ten characters can be stored in one 
word on a CDC machine. A different A format width and corresponding changes 
in the dimensions of the title arrays are called for on machines with different 
word structure. For example, IBM 360/370 machines only handle four characters 
in a word and a format of A4 has to be llsed when reading in or printing out 
character data. 
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PROGRAM ABRIDGE (INPUT, OUTPUT) 
C PROGRAM CARD IS REQUIRED FOR CDC 6400 RUN COMPILER 
C 

DIMENSION TITLE (8), TITLE 2(8) 
C LARGER DIMENSIONS SHOULD BE USED FOR ARRAYS TITLE AND TITLE2 FOR 
C MACHINES THAT HANDLE LESS THAN 10 CHARACTERS PER WORD 
C 

REAL AI(20), QI(19), E(19) 
INTEGER SL(19), PI(19), CL(19), DI(19), T(20) 
REAL M(9) 

C ******************************************************************,'<**~<~<~<*i< >~ 
C CONSTRUCTION OF ABRIDGED LIFE TABLES ~ 
C 
C THIS PROGRAM WAS WRITTEN AND DEBUGGED BY PATRICK WONG IN FEB., 1973 
C BASED ON THE PRELIMINARY WORK OF LINDA WONG. 
C 
C THIS PROGRAM WAS FURTHER MODIFIED BY CAROL LANGHAUSER 
C TO HANDLE W.H.O. DATA IN AUGUST, 1974. 
C 
C ASSUME ALL INPUT DATA TO BE BROKEN DOWN INTO THE FOLLOWING 19 AGE 
C INTERVALS - 0-1,1-5,5-10,10-15,15-20,20-25,25-30,30-35,35-40,40-45, 
C 45-50,50-55,55-60,60-65,65-70,70-75,75-80,80-85,85+ 
C 

* x-
>'0 
>~ 
>~ 

* * ,~ 

~ .. 
* * >~ 

* * * * * ::~ 

~ 
* * * C INPUT DATA. ~ 
* C AI( )=FRACTION OF LAST AGE INTERVAL OF LIFE >~ 
* C PIC )=MID-YEAR POPULATION IN THE AGE INTERVAL ~ 

C DI( )=NUMBER OF DEATHS IN THE AGE INTERVAL ~ 

C *************************************************************************** 
C 
C READ AND PRINT DATA .. 

KCT=O 
C 
C READ A(I) S WITH OPTIONAL TITLE IN COL. 61-80 

C 

500 READ 1, (AI(I), 1=1,20), TITLE(l), TITLE(2) 
KCT=KCT+1 
PRINT 102, KCT 
DO 272 1=1,19 
HN=19-1 
IF(AI(NN).NE.O.) GO TO 274 

272 CONTINUE 
274 CONTINUE 

PRINT 4, (AI(I), I=l,NN) 
PRINT 99, (TITLE (I), 1=1,2) 
IF«0.8-AI(1».LE.0.) GO TO 600 

C READ TITLE FOR POPULATION DATA 
READ 108, (TITLE (I), 1=1,8) 
PRINT 109,(TITLE (I), 1=1,8) 

C 

C READ MIDYEAR POPULATIONS IN EACH AGE INTERVALS 
READ 2, (PI(I), 1=1,19) 
PRINT 3, (PI(I),I =1,19) 

C 

C READ TITLE FOR DEATH DATA 

C 

READ 108, (TITLE2(I), 1=1,8) 
PRINT 109,(TITLE2(I), 1=1,8) 

C READ NUMBERS OF DEATHS IN EACH AGE INTERVALS 
READ 2, (D1(1), I=1,19) 
PRINT3, (DI(I), 1=1,19) 
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PRINT 119,KCT 
C 

CHECK DATA DECK .• 
LAST=-5 

C 

C 

DO 300 1. 1 , 18 
IF (AI(I).GT.O.) LAST=LAST +5 

300 CONT lNUE 
LSAT=-10 
DO 301 1=1,19 
IF(PI(I).GT.O) LSAT=LSAT+5 

301 CONTINUE 
LTSA=-10 
DO 302 1=1,19 
IF(DI(I).GT.O) LTSA=LTSA+5 

302 CONTINUE 
IF(LAST.EQ.LSAT.AND.LSAT.EQ.LTSA) Go TO 305 
PRINT 304, JJ 
GO TO 500 

305 J=LAST/5+l 
QI(I)=DI(I)/(PI(I) + (1.-AI(I»*DI(I» 
QI(J+l)=l. 
SL(1)=100000 
D(l)=SL(I)*QI(I)+O.5 
CL(I)=(SL(I)-D(I»+AI(I)*D(I)+0.5 
JLAST=J+l 
DO 306 I=I,JLAST 
F=DI(I) 
G=Pr(I) 
M(I)=F/G 

306 CONTINUE 

C COMPUTE Q(I) D(I) SL(I) CL(I) AND ROUND OFF Q(I) 
N=4 

C 

DO 307 I=2,J 
QI(I)=N*M(I)/(I.+(I.-AI(I»*M(I)*N) 
TEMP=QI(I)*100000.+0.5 
IT EMP=TEMP 
TEMP=ITEMP 
QI(I)=TEMP/I00000. 
SL(I)=SL(I-l)-D(I-l) 
D(I)=SL(I)*QI(I)+O.5 
CL(I)=N*(SL(I)-D(I»+AI(I)*N*D(I)+O.5 
N=5 

307 CONTINUE 
SL(J+l)=SL(J)-D(J) 
D(J+l )=SL(J+l) 
CL(J+l)=SL(J+l)/M(J+l)+O.5 

C COMPUTE E(I) AND T (I) 
T(J+2)=0 

C 

I=J+l 
308 T(I)=T(I+l)+CL(I) 

F=T(I) 
G=SL(r) 
E(I)-F/G 
1=1-1 
IF(I.GT.O) GO TO 308 

PRINT 8, TITLE 



C 

PRINT 14 
K=l 
KK=O 
DO 77 I::l,J 
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PRINT 7,KK,K,PI(I),DI(I),M(I),AI(I),QI(I) 
KK;aK, 
K=KK+5 
IF(KK.EQ.l) K=KK+4 

77 CONTINUE 
PRINT 5,LAST,PI(J+l),DI(J+l),M(J+l) 
PRINT 100, TITLE 
PRINT 9 
K=l 
KK=O 
DO 78 I=l,J 
PRINT 6,KK,K,QI(I),SL(I),D(I),AI(I),CL(I),T(I),E(I) 
KK=K 
K=KK+5 
IF(KK.EQ.l) K=KK+4 

78 CONTINUE 
PRINT l3,LAST,SL(J+l),D(J+l),CL(J+l),T(J+l),E(J+l) 
GO TO 500 

600 PRINT 200 

C FORMAT STATEMENTS 
C CAUTION - ALL AlO FORMATS SHOULD BE CHANGED TO APPROPRIATE 
C WIDTH FOR NON CDC MACHINES 
C 
C OUTPUT DATA FORMATS 

102 FORMAT(lH6,{,*11XXXXXX8XXXXXX16XXXXXX24XXX DATA DECK NO.*,12,* PRI 
INT OUT XXXXXXXX64XXXXXX72XXXXXX80*) 

4 FORMAT (lX,20F3.2,2AlO) 
99 FORMAT (lH+,59X,2AlO) 

109 FORMAT (lX,8AlO) 
3 FORMAT (lX,10I8) 

119 FORMAT ( * lXXXXXX8XXXXXX16XXXXXX24XXX END OF DATA DECK NO.*,12, 
1 * XXX56XXXXXX64XXXXXX72XXXXXX80*) 

304 FORMAT(lHl,lX,*INPUT DATA DECK NO.*,13,2X,*IN ERROR*) 
8 FORMAT (lHl,/ * CONSTRUCTION OF ABRIDGED LIFE TABLE FOR *,8AlO,//) 

14 FORMAT (3X,~AGE*,13X,*MIDYEAR*,8X,*NUMBER OF *,6X,*DEATHS*,9X,*FRACT 
lION*,7X,*PROPORTION*/3X,*INTERVAL*,8X,*POPULATION*,5X,*DEATHS*,9X, 
2*RATE*,11X,*OF LAST*,8X,*DYING IN*,/3X,*(IN YEARS)*,6X,*IN INTERVA 
3L*,4X,*IN INTERVAL*,4X,*IN INTERVAL*,4X,*AGE INTERVAL*,3X,*INTERVA 
4L*/3X,*(X(I) TO X(I+l»*,lX,*(X(I),X(I+l»*,lX,*(X(I),X(I+l»*,2X, 
5*(X(I),X(I+l»*,2X,*OF LIFE*,9X,*(X(I),X(I+l»*/19X,*P(I)*,11X,*D( 
6I)*,11X,*M(I)*,11X,*A(I)*,13X,*Q(I)*/) 

7 FORMAT(/3X,I2,lH-,12,7X,110,7X,17,8X,F9.6,9X,F4.2,10X,F9.5) 
5 FORMAT(/3X,I2,lH+,9X,IlO,7X,17,8X,F9.6,25X,7Hl.00000) 

100 FORMAT(lHl,IX,*ABRIDGED LIFE TABLE FOR*, 8AlO/) 
9 FORMAT(/3X,*AGE*,12X,*PROPORTION*,4X,*NUMBER*,2X,*NUMBER*,8X,*FRAC 

ITION*,5X,*NUMBER*,9X,*TOTAL*,11X,*OBSERVED*/3X,*INTERVAL* ,7X,*DY 
2ING IN*,6X,*LIVING*,2X,*DYING IN*,6X,*OF LAST*,6X,*OF YEARS*,7X,*N 
3UMBER OF*,7X,*EXPECTATION*/3X,*(IN YEARS)*,5X,*INTERVAL*,6X,*AT AG 
4E*,2X,*INTERVAL*,6X,*AGE INTERVAL*,lX,*LIVED IN*,7X,*YEARS LIVED*, 
55X,*OF LIFE AT*/3X,*X(I) TO X(I+l)*,lX,*(X(I),X(I+l»*,lX,*X(I)*,4 
6X,*(X(I),X(I+l»*,lX,*OF LIFE*,6X,*INTERVAL*,7X,*BEYOND AGE X(I)*, 
7lX,*AGE X (I)*/67X,*(X(I),X(I+l»*,/20X,*Q(I)*, 8X,*SL(I)*,7X,*D(I) 
8*, 8X,*A(I)*,9X,*CL(I)*,11X,*T(I)*,11X,*E(I)*/) 

6 FORMAT(/3XI2,lH-,I2,8XFIO.5,6XI6,2XI6,8XF5.2,8X18,7XIIO,6XF7.2) 
13 FORMAT(/3X,I2,lH+,13X,7Hl.00000,6X,I6,2X,I6,21X,18,7X,Il0,6X,F7.2) 
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200 FORMAT(81H 1XXXXXX8XXXXXX16XXXXXX24XXX END OF ALL DATA DECKS XXXX5 
16XXXXXX64XXXXXX72XXXXXX80 ) 

C 

C INPUT DATA FORMATS - CA~ BE MODIFIED IF NEEDED 
1 FORMAT( 20F3.2,2A10) 
2 FORMAT ( 1018) 

108 FORMAT( 8A10) 
STOP 
END 

.10.42.44.55.60.49.50.52.54.54.53.54.52.52.51.51.50.49 
MALE POPULATION, CALIFORNIA, 1970 

173822 663481 975971 998536 930884 872256 726974 
607160 529935 451259 363840 278585 202534 134280 

MALE DEATHS, CALIFORNIA, 1970 
3574 607 462 452 1432 1996 1412 
4052 5580 7596 9222 10667 11022 11042 

08.40.45.54.56.49.53.51.52.54.53.53.52.53.52.53.52.51 
FEMALE POPULATION, CALIFORNIA, 1970 

166661 638717 942146 965145 886495 868710 730640 
638743 553917 481985 406930 342220 281897 207817 

FEMALE DEATHS, CALIFORNIA, 1970 
2660 442 261 283 622 706 659 
2670 3368 4346 5087 6421 8127 10283 

.09.41.44.54.59.49.51.52.53.54.53.53.52.52.51.52.51.50 
TOTAL POPULATION, CALIFORNIA, 1970 

340483 1302198 1918117 1963681 1817379 1740966 1457614 
1245903 1083852 933244 770770 620805 484431 342097 

TOTAL DEATHS, CALIFORNIA, 1970 
6234 1049 723 735 2054 2702 2071 
6722 8948 11942 14309 17088 19149 21325 

CALIF. MALE, 

611232 575226 
78528 49842 

1251 1596 
9255 8406 

FEMALE, CAL. 

608157 574773 
132425 92849 

713 992 
10874 14077 

CALIFORNIA, 

1219389 1149999 
210953 142691 

1964 2588 
20129 22483 

1970 

592330 

2486 

1970 

616220 

1628 

1970 

1208550 

4114 
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APPENDIX VI-B 

COMPUTER PROGRAM FOR LIFE TABLE C<iNSTRUCTION WHEN A PARTICULAR CAUSE OF DEATH 
IS ELIMll'TATED 

Identification 

Program name 

Author 

Department 

Date 

Environment 

Purpose 

SPCELT 

Patrick Wong 

Based on original work by Linda Kwok. 
Program was further modified by Carol 
Langhauser to handle WHO data. 

Biostatistics Program 
School of Public Health 
University of California 
Berkeley, California 

February 25, 1973 

Machine = CDC 6400 
Operating System = Calidoscope (SCM) 

version 01.2-A 
Coding Language = FORTRAN 

This program constructs abridged life tables when a specific cause 
is eliminated as a cause of death based on the method developed by Chin Long 
Chiang. 

Input card preparation 

All input data are assumed to be broken down into most five year 
age intervals as follows: 0-1, 1-5, 5-10, 10-15, 15-20, 20-25, 25-30, 
30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 
85+. Details are given below. 

1. Number of specific causes of death for the following country 
in columns 1-2 (maximum is 25). 

2. Fractions of year lived by those dying in the interval are 
punched consecutively in F3.2 format beginning at column 1. Columns 61-80 
can be used for optimal population identification. 

3. Title for population data in columns 1-80. Standard format: 

'TOTAL'/'MALE'/'FEMALE' 'POPULATION', (country), (year) 

e.g., TOTAL POPULATION, CANADA, 1970 
FEMALE POPULATION, AUSTRIA, 1969 
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4. Midyear population of that country is each age interval in 
1018 format. Two cards are required. 

5. Title for death data in columns 1-80. Standard format: 

Col. 1-50 
Col. 51-80 

'DEATH FROM ALL CAUSES' 
same as title for population data described in 3. 

e.g., Col. 1 - DEATH FROM ALL CAUSES, Col. 51 - MALE POPULATION, 
CANADA, 1970. 

6. Number of deaths from all causes in each age interval in 1018 
format. Two cards are required. 

format: 
7. Title for a specific cause of d~ath in columns 1-80. Standard 

Col. 1-10 
Col. 20-40 
Col. 51-80 

'DEATH FROM' 
(specific cause of death) 
same as title for population data described in 3. 

e.g., Col. 1 - DEATH FROM INFECTIOUS DISEASES, Col. 51 - TOTAL POPULATION, 
USA, 1970 

8. Number of deaths from that specific cause in each age interval in 
1018 format. Two cards are required. 

Cards in 7,8 are to be repeated for each specific cause of death 
for the number of times as specified in card 1. 

Cards 1-8 can then be repeated with data from another country. The 
program is terminated if the number specified in card 1 is greater than 25. 

Output 

For each country, the following output are produced: 

1. Raw input data 

r = number of specific causes of death 

a. fractions of year lived by those dying in each age interval 
1. 

P. midyear population in each age interval 
1. 

D. total number of deaths in each age interval 
1. 

Dio = number of deaths in each age interval from a specific 
cause, 0; 6 = 1, ••• , r 
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2. Abridged life tables when each specific cause (Ro) is eliminated 
as a cause of death: 

x .-x .+] 
1 1 

d. A' 
l.u 

a. 
1 

L. 1.0 

T. '" 1.U 

R!ogram l~miations 

age interval 

probablity that an individual alive at x. will die in the 
1 

interval (xi,xi +l ) if cause Ro is eliminated as a risk of 
death 

number living at age xi if cause Ro is eliminated as a 

risk of death (£0.0 = 100,000) 

number dying in interval (xi,xi +
l

) if cause Ro is eliminated 
as a risk of death. 

fraction of year lived by those dying in age interval 
(xi ,xi+l) 

number of years lived in interval if Ro is eliminated as 
a risk of death 

total number of years lived beyond age xi if Ro is eliminated 
as a risk of death 

observed expectation of life at age xi if Ro is eliminated 
as a risk of death. 

1. The current version of the program only handles 19 age intervals 
broken down as described in the section Input caE~~aration. 

2. The maximum population size and number of deaths in any age 
interval has to be less than a hundred million. However, the input data format 
card can easily be changed to handle larger or smaller data fields. 

3. The maximum number of specific causes of death to be specified 
in columns 1-2 of card 1 is currently 25. This number can also be changed to 
handle a larger limit. 

Computational procedure 

1. All input data of a country (r, a., P., D., D
l
.",) are read in. 

1 1 1 u 

2. Compute proportions dying in interval (q.) 
1 

n.*D. 
1 1 

qi (P.+(l-a.)*n.*D.) 
1 111 

where n i length of interval = xi+l-x
i

" 



3. Compute 
specific cause (Ro) 
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the probabilities of dying in interval 
is eliminated as a cause of death 

(l-D·o/D.) 
q. ~ = l-(l-q.) 1 1 

1.U 1 

(q. 0) when a 
1. 

4. Abridged life table for cause R8 is then constructed using q. 
instead of q. following the same procedure as described in the program 1. 

1 writeup for program ABRIDGE. 

Reference 

Introduction to Stochastic Processes in Biostatistics. Chapter 11: 
"Competing risks," Chin Long Chiang, John Wiley and Sons, Inc., 1968. 

Program listing and sample deck setup 

Caution: See same section in program writeup for ABRIDGE. 
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PROGRAM SPCELT(INPUT,OUTPUT) 
C PROGRAM CARD IS REQUIRED FOR CDC 6400 RUN COMPILER 

DIMENSION AI(20), QI(19), QQ(19) 
INTEGER PI(19), DI(19), DC(19,25) 

C 
C 
C 
C 
C 
C 
C 

*>~>~**>~***>'r~<*>'r>'r>'r*~<*>'r******~<********>'r*>'r>'r******>'<*>'<************i<*****>'<****** 

CONSTRUCTION OF ABRIDGED LIFE TABLE WHEN A SPECIFIC CAUSE 
IS ELIMINATED AS A CAUSE OF DEATH .. 
THIS PROGRAM WAS WRITTEN AND DEBUGGED BY PATRICK WONG 
BASED ON THE PRELIMINARY WORK OF LINDA WONG. 

THIS PROGRAM WAS FURTHER MODIFIED BY CAROL LANGHAUSER TO HANDLE 
C W.H.O. DATA 
C 
C INPUT DATA .. 
C ASSUME ALL INPUT DATA TO BE BROKEN DOWN INTO 19 AGE INTERVALS -

LT 1,1-5,5-10,10-15,15-20,20-25,25-30,30-35,35-40,40-45,45-50, 

* * * * * * * * * * * * * * * * * .* 
* * * * * * * * 

C 
C 
C 
C 
C 
C 

C 
C 
C 

50-55,55-60,60-65,65-70,70-75,75-80,80-85,85+ 
JCAUSE=NUMBER OF SPECIFIC CAUSES OF DEATH IN THE DATA DECK CONCERNED. ~ 

AI( 
PI( 
DI( 
DC( 

MAX.=25 
)=FRACTIONS OF LAST AGE INTERVAL OF LIFE. 
)=MID-YEAR POPULATION IN THE AGE INTERVAL. 
)=DEATH BY ALL CAUSES IN THE AGE INTERVAL 
)=DEATH BY A SPECIFIC CAUSE 

C WORKING VARIABLES .. 
C QI( )=LIFE TABLE PROPORTION OF DEATHS BY ALL CAUSES 
C QQ( )=LIFE TABLE PROPORTION OF DEATHS WHEN A SPECIFIC CAUSE IS 

* * * * * * )~ 

* * * * ~ 
* * * * * * C 

C 
C 

ELIMINATED AS.A CAUSE OF DEATH ~ 

************************************************************************* 

C LARGER DIMENSIONS SHOULD BE USED FOR THE FOLLOWING TITLE ARRAYS IN 
C MACHINES THAT HANDLE LESS THAN 10 CHARACTERS PER WORD 

REAL B,TITLE(8),TITLEl(8,25),TITLE2(8) 
K=O 

C 
C READ NUMBER OF SPECIFIC CAUSE OF DEATH 

C 

500 READ 13,JCAUSE 
K=K+l 
PRINT 102,K 
PRINT 15, JCAUSE 

C PROGRAM TERMINATES IF JCAUSE GT 25 
IF«26-JCAUSE).LE.0) GO TO 600 

C 

C READ A(I)S WITH OPTIONAL TITLE IN COL. 61-80 
READ 1,(AI(I), I=I,20),TITLE2(1),TITLE2(2) 

C 

C CALCULATE WORKING INDEX .. 

C 

C 

DO 202 1=1,19 
NN=19-I 
IF(AI(NN).NE.O.) GO TO 204 

202 CONTINUE 
204 NM=NN+l 

MM=5*NN-5 

PRINT 4,(AI(I), I=I,NN) 
PRINT 99,(TITLE2(I), 1=1,2) 

C READ TITLE FOR POPULATION DATA 
READ 108, (TITLE(I), 1=1,8) 
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PRINT 109,(TITLE(I), 1=1,8) 
C 
C READ MIDYEAR POPULATIONS IN EACH AGE INTERVAL 

READ 2,(PI(I), 1=1,19) 
PRINT3,(PI(I),I=1,19) 

C 
C READ TITLE FOR DEATH DATA 

C 

READ 108, (TITLE2(I), 1=1,8) 
PRINT 109,(TITLE2(I), 1=1,8) 

C READ NUMBERS OF DEATHS IN EACH AGE INTERVAL 
READ 2,(DI(I), 1=1,19) 
PRINT 3,(DI(I), 1=1,19) 

C 
DO 170 J=l,JCAUSE 

C 
C READ TITLE FOR A SPECIFIC CAUSE OF DEATH 

READ 108,BJTITLE1(I,J), 1=1,7) 
PRINT 109, B,(TITLEl( I, J), 1=1,7) 

C 
C READ NUMBERS OF DEATHS FROM THAT SPECIFIC CAUSE OF DEATH IN EACH AGE 
C INTERVAL 

C 

READ 2,(DC(I,J), 1=1,19) 
PRINT 3, (DC(I,J), 1=1,19) 

170 CONTINUE 
PRINT ll9,K 

C COMPUTE QI( ) .. 

C 

DO ll2 1=1, NN 
N=5 
IF(LEQ.l) N=l 
IF(L EQ. 2) N=4 
QI(I)=N*DI(I)/(PI(I)+(l.-AI(I»*NDI(I» 

ll2 CONTINUE 

C COMPUTE THE PROBABILITY OF DYING QQ ( ) WHEN A SPECIFIC CAUSE 
C IS ELIMINATED AS A CAUSE OF DEATH 

C 

DO 700 J=1,JCAUSE 
DO llO I=l,NN 
F=DC(I, J) 
G=DI(I) 
EE=l. -F/G 
QQ(I)=l.-(l.-QI(I»**EE 
TEMP=QQ(I)*100000.+0.5 
ITEMP = TEMP 
TEMP=ITEMP 
QQ(I)=TEMP/100000. 

110 CONTINUE 
QQ(NM)=l. 

F=DI(NM)-DC(NM,J) 
G=PI(NM) 
WM=F/G 
PRINT 7,(TITLE(I), 1=1.,5) 
PRINT 10,(TITLE1(I,J), 1=1,3) 
PRINT 9 
CALL ABRLIF(AI,QQ,WM,NN) 

700 CONTINUE 
GO TO 500 

600 PRINT 100 
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C 
C FORMAT STATEMENTS 
C CAUTION - ALL AlO FORMATS SHOULD BE CHANGED TO APPROPRIATE WIDTH 
C FOR NON CDC MACHINES 
C 
C INPUT DATA FORMATS - CAN BE CHANGED IF NEEDED 

1 FORMAT( 20F3.2,2AlO) 
2 FORMAT( 10IB) 

13 FORMAT(I2) 
lOB FORMAT( BAlO) 

C 
C OUTPUT DATA FORMATS 
C 

c 

3 FORMAT(lX,lOlB) 
4 FORMAT(lX,20F3.2,2AlO) 
7 FORMAT( lHl,//,2sH ABRIDGED LIFE TABLE FOR ,sAlO) 
9 FORMAT (j3X, *AGE*, l2X, '~PROPORTION* ,4X, *NUMBER*, 2X, *NUMBER* ,BX, 7<FRAC 

lTION*, SX, 7<NUMBER*, 9X, *TOTAL*, llX, *OBSERVED*/3X, 7<INTERVAL* , 7X, '~DY 
2ING IN*, 6X, 7<L IVING* , 2X, "<DYING IN ,~, 6X, '~OF LAST'~, 6X, *OF YEARS * , 7X, "<N 
3UMBER OF*,7X,*EXPECTATION*/3X,*(IN YEARS)*,sX,*INTERVAL*,6X,*AT AG 
4E*, 2X, '~INTERVAL'~, 6X, 7<AGE INTERVAL'~, IX, *LIVED IN'~, 7X, *YEARS LIVED*, 
ssX,*OF LIFE AT*/3X,*X(I) TO X(I+l)*,lX,*(X(I),X(I+l»*,lX,*X(I)*,4 
6X, '~(X(I) , X (I +1 »*, IX, *OF LIFE';6X, *INTERVAL*, 7X, *BEYOND AGE X(I)*, 
7lX, *AGE X( I)'~ /6 7X, *(X( I) , X( 1+1»*, / 20X, *Q( L1)*6X, ''<SL (I )7<, 7X, ''<D( I) 
B"<, BX, *A( I)* ~ 9X, *CL(I)"<, llX, *T(I)*, llX, ''<E( 1.1)7< n 

10 FORMAT(sH WHEN lX,R9, 2AlO/3sH IS ELIMINATED AS A CAUSE OF DEATH) 
15 FORMAT(lX, 12) 
99 FORMAT(lH+,s9X,2AlO) 

100 FORMAT (BlH 1 XXXXXXBXXXXXX16XXXXXX24XXX END OF ALL DATA DECKS XXXXS 
l6XXXXXX64xxxxxX72XXXXXXBO ) 

102 FORMAT(lH7,/,*11XXXXXXBXXXXXX16XXXXXX24XXX DATA DECK NO.*,12,* PRI 
lNT OUT XXXXXXXX64XXXXXX72XXXXXXBO*) 

109 FORMAT(lX,BAlO) 
119 FORMAT( * lXXXXXXBXXXXXX16XXXXXX24XXX END OF DATA DECK No.*,12, 

1 ,,< XXXs6XXXXXX64XXXXXXnXXXXXXBO*) 
STOP 
END 
SUBROUTINE ABRLIF(AI,QI,WM,J) 

C CONSTRUCTION OF ABRIDGED LIFE TABLE •. 

C 

DIMENSION AI(20),QI(19),E(19) 
INTEGER SL(19),CL(19),D(19),T(20) 

C COMPUTE D( ),SL( ),CL( ) .. 

C 

SL(l )=100000 
D(l)=SL(l)*QI(l)+O.s 
CL(l)=(SL(l)-D(l»+AI(l)*D(l)+O,s 
N=4 
DO 307 I=2,J 
SL(I)=SL(I-l)-D(I-l) 
D(I)=SL(I)*QI(I)+O.s 
CL(I)=N*(SL(I)-D(I)+AI(I)*N*D(I)+O.s 
N=s 

307 CONTINUE 
SL(J+l)=SL(J)-D(J) 
D( J+l )=SL(J+1) 
CL(J+l)=SL(J+l)/WM+O.s 

C COMPUTE E( ) AND T( ) .• 
T(J+2)=0 
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I=J+1 
308 T(I)=T(I+1)+CL(I) 

F=T(I) 
G=SL(I) 
E(I)=F/G 
1=1-1 
IF(I.GT.O) GO TO 308 
K=l 
KK=O 
DO 78 I=l,J 
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PRINT 6,KK,K,QI(I),SL(I),D(I),AI(I),CL(I),T(I),E(I) 
KK=K 
K=KK+5 
IF(KK. EQ.1) K=KK+4 

78 CONTINUE 
LAST=(J-1)*5 
PRINT 13,LAST,SL(J+1),D(J+1),CL(J+1),T(J+1),E(J+1) 

6 FORMAT(/3X12,lH-,12,8XF10.5,6XI6,4XI6,6XF5.2,8XI8,7XI10,6XF7.2) 
13 FORMAT(/3X, 12, 1H+, 13X, 7Hl.OOOOO, 6X, 16, 4X, 16, 19X, 18, 7X, no ,6X, F7. 2) 

RETURN 
END 

.11.41.45.54.57.48.50.52.53.54.53.54.54.53.53.52.52.52 CANADA, TOTAL, 1968 
TOTAL POPULATION, CANADA, 1970 

365000 1503300 2301400 2297100 2068200 1851800 1508000 1289800 1276900 1295100 
1222800 1045900 930100 745500 585000 448100 329600 194300 ll9100 

DEATHS FROM ALL CAUSES TOTAL POPULATION, CANADA, 1970 
7001 1263 ll02 988 1948 2105 1564 1636 2217 3566 
5327 7362 10419 13060 16054 17989 19915 19773 22653 

DEATHS FROM CAUSE 1 TOTAL POPULATION, CANADA, 1970 
190 102 46 27 20 14 12 15 27 35 

61 72 92 126 98 ll2 ll4 92 93 
DEATHS FROM CAUSE 2 TOTAL POPULATION, CANADA, 1970 

25 125 185 147 136 159 167 234 455 895 
1515 2239 3066 3678 4152 4171 3832 2969 2332 

DEATHS FROM CAUSE 3 TOTAL POPULATION, CANADA, 1970 
0 0 0 0 0 3 3 15 31 48 

86 159 204 308 362 4ll 400 337 272 
DEATHS FROM CAUSE 4 TOTAL POPULATION, CANADA, 1970 

0 0 1 1 1 2 3 II 52 ll7 
256 439 712 822 876 800 514 293 162 

DEATHS FROM CAUSE 5 TOTAL POPULATION, CANADA, 1970 
28 15 9 26 48 71 ll6 214 456 1024 

1889 3026 4772 6496 8579 10154 12137 12838 15478 
DEATHS FROM CAUSE 6 TOTAL POPULATION, CANADA, 1970 

20 9 7 21 31 51 73 157 355 852 
1637 2644 4159 5602 7171 8177 9301 9639 ll712 

DEATHS FROM CAUSE 7 TOTAL POPULATION, CANADA, 1970 
735 171 58 53 55 48 55 53 90 132 
228 352 545 768 1016 1322 1436 1523 2058 

DEATHS FROM CAUSE 8 TOTAL POPULATION, CANADA, 1970 
5199 183 77 50 46 36 22 24 12 20 

16 36 28 II 14 10 2 5 3 
DEATHS FROM CAUSE 9 TOTAL POPULATION, CANADA, 1970 

186 13 2 4 5 15 10 12 17 26 
27 31 41 t~ 7 55 68 80 141 336 

DEATHS FROM CAUSE 10 TOTAL POPULATION, CANADA, 1970 
328 490 579 =,28 1294 1272 758 594 545 610 
623 543 543 466 405 361 408 417 604 
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DEATHS FROM CAUSE II TOTAL POPULATION, CANADA, 1970 
20 168 342 260 881 864 425 312 259 265 

245 231 232 204 186 143 124 85 62 
DEATHS FROM CAUSE 12 TOTAL POPULATION, CANADA, 1970 

0 0 0 17 145 256 207 195 231 250 
258 221 2ll 150 ll7 70 42 32 II 



- 332-

RE FERF.1I CES 

Aa1en, O. [1976]. Nonparametric inference in connection with multiple 
decrement mode Is. ~..c_a.!l~~~S_ t2.t.~ ,J., 15-· 27. 

Ad1akha, A. [1972]. Hodel life tables: an empirical test of their 
applicability to less developed countries. [).erllogEa.p_h,y .• _~~ 589-6~H. 

Armitage, P. [1951]. The statistical theory of haeteri;ll populations 
subject to mutation. :!~ __ ~:.5>La1.-.:."-~~~ist:.:....~'-?c_" II.VI, 1-33. 

Armitage, P. [1959]. TIle comparison of survival curv('!3. J~.J~oy-,"!.l.~·;t.;l.tt.:it. 
~.o_c .. ~, A122, ?79-· 30n. 

/\.-~. 

Arriaga, E. E. [lQ68J. New Life Tahles for Lntin Americcln Populatipns in 
the Ninteenth and 'l'vrentieth Centuries. ~~onogt."~~ .S.eE}_e.s_~;.o_~} .• 
Institute of Internati0nal Studies, Univ. of ~a .• Berkeley. 

Bailar, R. A. [1976J. Some sourceS of error and their effect O~ ccn';\I.c, 
statistics. n.f'.In.0.gr."!.pll)'., 13, 273-236 . 

....... ~,.~ 

Balakrishnan, T. R •• .1. n. Allingham, and .I. F. K;mter [1')7'1]. Analysis 
of oral contraceptive use through multiple decrement life t;lhle tec~l· 
niques. n_('~~,,-gr_a:r_\y. .• I, 459-fi5. 

BarclAY, G. ~!. [195B]. T_~chn"i:..~~_s....E.~_"p_C?p~!.'!.t}o~"n::t1y_~~ .. \'!il"~y., Np~" 
York. 

Barlow K. E. and F. Proschan [1965]. ~l~a.th~~.tiEaJ __ 'Dle~!:x_of PJ2.1._~~:.p~'_U.Jtf' 
hTiley, New York. 

Bartho1ol'lew, D. J. [1963]. The sampling distribution of on estim[lte 
arising in life testing. Te<:..h.~~~~!.i_c_s, 5, 361-74. 

Bartlett, M. S. [l9jt)]. ~!!..l':l_trodl!.~.~i2_n __ t.2_Stoc~~~t}:.c_yr~c:..e_~~E!_1?. Camb rid~~(' 
University Press. 

Bayo, F. [196BJ. United States Life Tahles by CalIses of [)eath, 1959-61. 
!~a1t~_ S~!'.~i.(':..e_X~h}i_c_a..~!_on No. 1252, 1. 

Berkson, J. and 1.. Elveback [1960]. Competil1f, expon~:,nti.al risks, with 
particular reference to smoking and 111n~ canl.:er. -!":_...0.~_-z::..~ __ Sta ti~_: 
Assoc., 55, 41S-42H. 

'". --. ----, "~ . 

Berkson, J. and R. P. Gage [1950]. Calculation of survival rates for 
cancer. P_~_<?.c_ .. St.~.f 2. }!..ee~}:.!!.S:~_~~f.~.9_~1.i_n.i .. c_ .. 2§, 270-$36. 

Berkson J. and R. P. Gage [19321. Survival curve for cancer patients 
following treatment. J.~ __ ~~e_~ St:lti.st:...~. _~~_s.o_c .. , 47, 501-H5. 



- 333-

Berman, S. ~1. [1963]. A note on extreme values, competing risks and 
semi-··Narkov processes. Ann. Math. Statist., 34, 1104-1106. ---.------ .. -.------- ~ 

Berry, G. [1970]. Parametric analysis of disease incidences in multiway 
tables. Biometrics, 26, 572-579. -- ---.--.--- - - """"'" 

Birbaum, Z. W., J. D. Esary, and S. C. Saunders [1961]. Multi-component 
systems and structures and their reliability. Technometrics. 3. 55-77 • 

. _----------_ ...... 
Boag, J. H. [1949]. Maximum likelihood estimates of the proportion of 

patients cured by cancer therapy. ]_~P~~~J __ ~t..?tist_~_~.£.~_,.,U., 15-53. 

Broardman, T. J. and P. J. Kendell [1970,]. Estimation in compound expon­
ential failure models. Technometrics, 12, 391-900 . 

. . -- _._------ -- -
Bolander, A. H. [1971]. A Comparative Study of Hortality by Cause in Four 

Nordic Countries. 1966-1968, with Special Reference to Male Excess 
~10rtality.~t<:t.t_i_s.t_i_c_a)_~e..P_orts 19Z.!.,..2..: National Central Bureau of 
Statistics, Stockholm. 

Breslow, N, [1974J. Covariance analysis of censored survival data. 
Biometrics, 10, 89-99. 
-,.-.. -~---- - ""'" 

Breslow, N. and J. Crowley [1974]. A large sample study of the life table 
and product 1init estimates under random censorship. Ann· Stat., 2, 437-453. ---_._-

Brindley, Jr., E. C. and H. A.Thompson, Jr. [1972]. Dependence and aging 
aspects of multivariate survival. J. Am. Stat. Assoc., 67, 822-830. ------------ --. 

Brockmayer, E., H. L. Ha1strom, and A. Jensen [1948]. The tife Work of 
.l~_' K._Erlar:Y;i. Conenhagen Telephone Co., Copenhagen 

Brownlee, J. [1913]. The relationship between 'corrected' death rates and 
life table death r8.tes. Journal o.i.!.!.l'.&.iene, XIII, 178-190. 

Brm-mlee, J. [1922]. The use of death rates as a measure of hygienic 
conditions. Medical Research Council Special Report Series., ~. H. H. 
Stationery Office, London. -

f:amphell. H. [1965]. ChanRes in mortality trends in England and Hales, 1931-
1961. Vltal and Health S~atistics, Series 3, No.3. 

Canadian De~artment of National Health and Welfare and the Dominion Bureau 
of Statistics [1960]. Illness and Health Care in Canada, Canadian Sickness 
.S_,!rvey.. 1950-1951. The Queen's "Printer and Controller of Stationery, Ottawa. 

Chase, C. C. [1967]. International comparison of perinatal and infant mor­
tality. Yital and Health Statistics, Series 3, No.6, 1-97. U. S. Dept. 
of H. E. H., Pub lic Health Services. 

Chiang, C. L. [1960]. A stochastic study of the life table and its applica­
tions: 1. Probability distributions of the biometric functions. Biometrics, 
16, 618-635. -



- 334-

Chiang, C. L. [1960b]. A stochastic study of the life table and its applica­
tions: II. Sample variance of the observed expectation of life and other 
biometric functions. Human BioI., 32, 221-238 . .--

Chiang, C. L. (196laJ. A stochastic study of the life table and its applica­
tions: III. The follow-up study with the consideration of competing risks, 
17, 57-78 . ..-

Chiang, C. L. [196lb]. Standard error of the age-adjusted death ratio. Vital 
Statisti~_ .Special Reports Selected Studies., !:2, 275-285. National Center 
for Health Statistics. 

Chiang, C. L. [196lc]. On the probability of death from specific causes in 
the presence of competing risks. Proceedings of the Fourth Berkeley 
§~posium on Mathematical Statistics and Probabi1~. University of 
California Press. 

Chiang, C. L. [1965]. ,II,. stochastic model of competing risks of illness and 
competing risks of death . .?tochastic !<1ode1s in Hedicine and Biology. J. 
Gurland, Ed. University of ~Usconsin Press, ~ladison, pp 321-354. 

Chiang, C. L. [1966 J. On the expectation of the reciprocal of a random 
variable. The Amer. Statist., 20, 28. ---.------ .,.".,. 

Chiang, C. L. [1967]. Vari~nce and covariance of life table functions esti-· 
mated from a sample of deaths. Vital and Health Statistics, Sere 2, >'Jo. 20, 
1 8. National Center for "ealth Statistics. 

Chiang, C. J.. [19681 .. !.~tE<?duction to Stochastic Processes in Biostatistics. 
T.Tf1ey, New York. 

Chiang, C. L. [1970]. Competing risks and conditional probabilities. 
Biometrics, 26, 7~7-76 . 
.. __ ._------ -

Chiang, C. L. [1972J. On constructing current life tables. J. Am. Stat. 
\ssoc., 67, S38-5~l . . _-_._. -. ~ 

Chian~, C. L., F. n. l\Torris, F. Olsen, P. H. Shipley, and H. E. Supplee [19611. 
Determination of the fraction of last year of life and its variation by 
age, race, and sex. (An unpublished manuscript presented at the Annual 
:leeting of the American Public Health Assoc., Detroit, Hichigan, November 
1961. ) 

Chu, G., C. Langhauser, J. Fortman, P. Schoenfeld, and F. Belzer [1973]. A 
survival analysis of patients undergoing dialysis or renal transplantation. 
Trans. Amer. Soc. I\rtificial Internal 0rO'ans, 19, 126-'129. _. __ .~ __ ._. ___ .•. _____ ~._ .• _. __ ._ •. ___ ..•. _ .. ___ .. ______ .s4::. .•. __ 

Coale, A. J. and P. Demeny [1966]. ~~J>ional .. ):..:!:.f_e Tables and Stable P'?.P.I:1J_<!.tio~_. 
Princeton University Press, Princeton, N.J. 

Cochran, H. G. [1961 J .. ?~.!'I!P)inJLT~:.<:!miqu~s.. (2nd ed.). John lJiley and Sons. 
New York. 



- 335-

Cochran, TJ. G. [1968]. The effectiveness of adjustment by subclassification 
in removing bias in observational studies. Biometrics, 24, 295-313. 

~ 

Cohen, J. [lQ65]. Routine morbidity statistics as a tool for defining public 
health priorities. Isr. J. Med. Sci., 1, 457. -_._.- -------.-.--- "'" 

Cohen, J. E. [1975]. Livelihood henefits of small improvements in the life 
table .~:!.e_aJ __ ~J1 __ SeEv.-! __ Re~., II 82-96. 

Cornfield, J. [1951]. A method of estimating comparative rates from clinical 
data. Applications to cancer of the lung, breast and cervix. ~~~atl~ 
Cancer lnst •• 11, 1269-1275 . 
. . ----- - -.--- -. --_.- -

Cornfield, J. r1957). The estimation of the probability of developing a disease 
in the presence of competing risks. J. Amer. Public Health Assoc •• 47, 
601-607. ---- -

Cox. D. R. [1959]. The analysis of exponentially distributed life--times with 
t\.;o types of failure .-:!.:~ ___ Stat~~~o~_l!. 411-21. 

Cox, D. R. [1972]. Regression models and life-tables. J. R. Stat. S~~., Series 
n, 34, 187--220. -

Cramer, H. [1946]. Mathematical Hethods of Statistics. Princeton University 
Press. 

Cutler, S. J. and F. Ederer [1958]. Maximum utilization of the life table 
method in analyzing survival. J. Chronicle Diseases. 8, 699-712. -_. __ ._-----_._- -

Dad Gupta, A. S. [1954]. Accuracy index of census age distributions. Pro­
~e_~EJ.:.n..sI3 __ E_~ the_ ~o£~~~opulation Conference,.!:.: United Nations, New York. 

Das Gupta, A., S. Chotechanapibal, T. Chalothorn, and W. Siripak [1965]. 
Pop_u]..2t.i..E_~_~_~~~p_e£~.i"y_e __ '?f __ Thailand. Sankhya, Series B, JJ.' 1-46. 

David, n. A. [1970]. On Chiang's proportionality assumption in the theory of 
competing risks. Biometrics, 26, 336-9. --'._--_ . .-

David, H. A. [1974]. Parametric approaches to the theory of competing risks. 
_R!:..~!..~bi~_~_tLa!!.c!.~iE..!'Ie!..;:y. (Proschan and Serf ling Eds.) SIAM, 275-290. 
Philadelphia. 

Demeny, P. [1965]. Estimation of vital rates for populations in the process 
of destabilization·1?~E12..s!'ap~, 2.:. 516-530. 

Densen, P. M. (1950). Long-time follow-up in morbidity studies: the definition 
of the group to be followed. Human BioI •• 22, 233. --.-- -

Derksen. J. B. D. (1948). The calculation of mortality rates in the construction 
of life tables. A mathematical statistical study. Population ~tudies, ~ 457. 

Devroede, G. and ~\l. F. Taylor [1976]. On calculating cancer risk and survival 
of ulcerative colitis patients with the life table method. Gastro~nterology, 
71, 505-9. 
""" 



- 336-

Doering, C. R. and A. 1.. Forbes [1939]. Adjusted death rates. Proceedings of 
~ he. p_a.t_i.on.a.1 ___ ~c:!:'Ae_~y._"-fl'_~_~~.!!£ e , 25, 461- 46 7 • 

Doll, R. and P. Cook [1967]. Summarizing indices for comparison of cancer 
incidence data. IIl~_e_r_~_~_!..:_2~ .. C_anc:er, 2, 269-279. 

Dorn, H. [1950]. Methods of analysis for follO\.,-up studies. Human BioI., 22, 
238-248. 

Drolette, H. E. [1975]. The effect of incomplete follow-up. Biometrics, 31, 
135-144. 

Dublin, L. I. and A. J. Lotka [1937]. Uses of the life table in vital statistics. 
Journal of the American Puhlic Health Assoc. 

Dublin, L. 1., A. J. Lotka, and H. Spiegelman [1949]. Length of Life: A Study 
~. the_ Lif_~ Table. Ronald Press, New York. 

Duda, R. and G. Duda [19671. Life tables of the population of the city of 
Jassy .. ~~~~~~Chi!"_~.-2.0c. __ Hed. Nat. Iasi., 73., 673-80. 

Du Pasquier. L. G. [1913). Mathematische theorie der invaliditatsversicherung. 
Mitteil. Verein. Schweizer Versicherungsmath, R! 1-153. 

Du Pasquier, L. G. [1912]. Mathematische theorie der invaliditatsversicherung. 
Ni tteil. Verein. Schweizer Versicherun~smath, ~, 1-7. 

Eckler, A. R. and 1'1. N. Humi tz [1958]. Response variance and bias in censuses 
and surveys. Bulletin of the International Statistical Institute 36, Part 2, 
12-35. Stockholm. 

Efron, B. [1965]. The two sample problem with censored data. Proc. 5th 
Berkeley~m~. Hath. Statist. Probl. IV, 831-53. 

Elandt-Johnson, R. C. [1973]. Age-at-onset distribution in chronic diseases. 
A life tahle approach to analysis of family data. J. Chronic Dis., 26, 
529--45. "' .J 

El-Badry. M. A. [1969]. Higher female than male mortality in some countries 
of South Asia; A digest. J. Amer. Statist. Assoc .• ~~, 1234-1244. 

Elveback, L. [19581. Estimation of survivorship in chronic disease: The 
actuarial method. J. Amer. Statist. Assoc., 53, 420-440 • 

• /' __ 1./ 

Elvehack, L. R. [1966J. Discussion of "Indices of mortality and tests of 
their statistical significance." Hurn. BioI., 38, 322-324. 

, ...... ~ 

Epstein, B. and M. Sobel [1953]. Life testing. J. Amer. Stat. Assoc., 48, 
486-502. _V~ 

Fabia, J. and M. Drolette [1970]. Life tables up to age 10 for mongo1s with 
and without congenital heart defect. J. Ment. Defic. Res., 14, 235-42. 



- 337-

Faulkner, J. E. and R. B. HcHugh [1972]. Bias in observable cancer age and 
life-time of mice subject to spontaneous mammary carcinomas. Biometrics, 
}8, 489-Q8. 

Fisher, L. and P. Kanarek [1974]. Presenting censored survival data when 
censoring and survival times may not be independent. Reliability and 
Biometry (Proschan and Serfling, Eds.) SI~, 291-302. Philadelphia. 

Fix, E. and J. Neyman (1951]. A simple stochastic model of recovery,' 
relapse, death, and loss of patients. Human BioI, 23, 205-241. 

,-",\ 

Fleiss, J. 1.. [1973). Statistical Hethods for Rates and Proportions. ~Uley, 
New York. 

Fleiss, J. L., D. L. Dunner, F. Stallone, and R. R. Fieve [1976). The life 
table. A method for analyzing longitudinal studies. Arch. Gen. Psychiatry, 
3~, 107-12. 

Flinn, M. H. [1970). Bri_t:.ish POTlulation Growth, 1700-1850. Hacmillan, London. 

Frechet, H. [1947]. Sur les expressions analytique de 1a mortalite variables 
pour la vie entiere. ;Tourna1 de la Societe de Statistique de Paris,.?~, 
261-285. 

Frost, W. H. [1933). Risk of persons in familiar contact with pulmonary 
tuberculosis. ;"-mer. J. Public Healt~., 2~, 426-432. 

Frumkin, G. (1954]. Estimation de 1a qualite des statistiques demographiques. 
J?_r_oc~_~dings of the_ ~-l<?_1:"}_d_ Population Conference, .~: United Nations, New York. 

Fukushima, N. Z. [1974]. A study on the method of constructing abridged life 
tables and the interpolation for individual years of life. _~_tted_!. __ Sci., 
20. 11-48. 

Gail, M. (1975]. A review and critique of some models used in competing risk 
analysis. B~~~~_~~ic~, ~~. 209-22. 

Gehan, E. A. [1969]. Estimating survival functions from the life table. 
J. Chronic Dis., 21, n29-44. 
--- -- ~".--~.---,- > ••• - -'\,.. l,... 

George, L. cnd A. P. Norman [1971]. Life tables for cystic fibrosis. Arch. 
Dis. Child, 46, 139-43. 
- •••• -~---- - - - .' L ... ~ 

Gershenson, H. [1961] .Heas.E..~emellt~ ~10r~Ji ~y. Society of Actuaries, 
Chicago. 

Gille, H. [1949). The demographic history of the Northern European doutries 
in the eighteenth century • .!:opulatioI!.J'tudies, ,21. 3-65. 

Glass, D. V. and D. E. C. Eversley (eds.) [1965]. yopulation in His~. 
Edward Arnold, London. 



-338 -

Glover, J. Tv. [1921]. United States Life Tables, 1890, 1901, 1910, and 
J901-1910. Bureau of the Census, Washington. 

Gompertz, B. (1825~. On the nature of the function expressive of tile law of 
human mortality. 'phil. Trans. Royal Soc., 155, 513-583. London 

.- , io-\-

Graunt, J. [1662]. ~l1tural an~ Political Observations Made upon the Bills 
o~~~~~~litl' Reprinted by the John Hopkins Press, Baltimore, 1939. 

Greenwood, ~f., et al [1922]. Discussion on the value of life-tables in 
statistical research. Journal of the Royal Statistical Socie~, 85, 
537-560. ~~ 

Greenwood. rr. [1925]. A report on the natural duration of cancer. ~~ 
Public Health Med. Sub., 33, 1-26. 
---.-~------ .... -------- 'v loo' 

Greenwood, }r. [1926]. A report on the natural duration of cancer. ~eport~ 
_o~!_up_l_i_c __ ~ealth_. a1!.~;~~c!.ic~~_~bj ec_t_~, 33, 1-26. His Hajesty I s Stationery 
Office. -~, 

Greenwood, ~i. [1942]. ~edical statistics from Graunt to Farr. Biometrik~, 
32, 101-127, 203-225. 
t V\ 

Grenander, U. [1956]. On the theory of mortality measurement. Skandinavisk 
Aktuarietidskrift, 39, 1-55. 
~~.-- -_. -- .- L \.: 

Greville, T. N. E. [1943]. Short methods of constructing abridged life tables. 
Record Amer. lnst. Actuaries, 32, 29-43 . .. ,--- - -----,-----,._-------_._-- "-!: 

Greville. T. N. E. [1946]. ~lnited State!3_ Life Tables and Actuarial Tables, 
J~l~~~!. National Office of Vital Statistics. 

Grevi11e, T. N. E. (1948J. Mortality tables analyzed by cause of death. 
~cord.A.t!t_e..;:.~_J_lls ~~ ~_c.t_uarie_~, 37, 283- 294. 

Greville, T. N. E. (ed.) [1972]. _~o~ul~tJ~n Dynamics. Academic Press, New 
York. 

Gupta, R. B. [1975J. Impact of partial elimination of specific causes of 
death on the human survivorship: An Indian situation. Indian J. Pub. 
Health, 19, 11-33 • 
• ------... ,.,.,,'1, 

Gupta, R. B. and G. R. Rao [1973]. Effect of elimination of different causes 
of death on expectation of life: Bombay, 1960-61. Indian J. I'led. Res._, 
61, 950-61. 

Gurunan.iapl'a, B. S. [1969]. Life tables for Alaska natives. Public Health 
~~~., ,~4~ 65-9. 

HaenBzel, W. [1950]. A standardized rate for mortality defined in units of 
lost years of life. J. Amer. Public Health Assoc., 40, 17-26. 

~ 1 • I 

Haenszel, W. (ed.) [1966]. Epidemiological approaches to the study of cancer 
and other chronic diseases. National Can~er Institute Monograph No. 19. 



~ 339 ~ 

HCljnaL J. [19S0}. Rates of dissolution of mairrages in England and ~.Jales, 

1938-- 39 .!Z.<-!p_eEs __ or __ t_h_e. }~oy_a)_~_~~m}_~_s_~~~_.o_Il_!op u~.sion, ~, 178-187. H. ~f. 
Stationery Office, London. 

Hakama, :-1. [lQ70]. Age adjustment of incidence rates in cancer epidemiology. 
Acta. Path. Hicrob. Scand., Suppl. 213. 

Hakulinan, R. and L. Teppo [1976]. The increase in 'vorking years due to 
elimination of cancer as a cause of death. )nt. J. Cancer, 1.7, 429-35. 

Haldane, J. R. s. [1927]. A mathematical theory of natural and artificial 
selection, Part V: Selection and ~-!utation. ~roc. Ro~l Soc-=-, 23, 838-R44. 
Edinburgh. 

Halley, E. [l6Q3]. An estimate of the degrees of the mortality of mankind, 
drawn from curious tahles of the births and funerals at the city of Breslau. 
Ph i !.<2.s-!.-I~ __ Roy aU~~, 17, 5%- 610. London 

"<". 

!lanse, :1. H •• H. N. Hurwitz, and :1. A. Bershad [1961]. ~1easurement ",rrors in 
censuses and surveys. Bulletin of the International Statistical Institute 
.2~, Part 2, 359-374. Tokyo. 

l1arris, T. E., P. i1eier, and J. IJ. Tukey [1950]. Timin?, of the distribution 
of events hetween observations. Ttuman Riolo, 22, 249-270, ------- ""\,... 

Heasman, H. A. and 1" Lipworth [1966]. Studies on ~fedical and Populatioy! 
§~Ei~cts No. 20. Accur~ of Certification of Cause of Death.General 
Register Office of England and 'fules. 

JIemminki, E., K. Hemmink, T. Hakulinen, and >1. I!akana [1976]. Increase in 
years of life after eliminating causes of death: significance for health 
priorities. Scand. J. Soc. Med •• 4~ 1-6. 

-----
Hemminki, E .• K. Hemminki, and T. Hakulinen [1974]. Life expectancy of the 

population and the influence of most occuring causes of death. Duodecim, 
22, 1167-79. 

Herman, R. J. and Pate11, Rusi, K. N. [1971]. Maximum likelihood estimation 
for multi-risk model. Technometrics, 13, 385-96 

- r-

Hill, A. B. [1966]. Prin~iples of Medical Statistics. Oxford Univ. Press, 
New York. 

Hoel. D. G. [1972]. A representation of mortality data by competing risks. 
Biometrics, 28, 475-88. ---_._--- ,~ 

Hoem, J. M. [1970]. A probabilis tic approach to nup tiali ty. Biometrie­
~~~~~metrie, I!, 3-19. 

Hoem, J. M. [1970]. Probabilistic fertility models of the life table type. 
Iheor~ Populo BioI., ,~, 12-38. 

Hoem, J. X. [1971]. On the interpretation of certain vital rates as averages 
of underlying forces of transition. Theor. Populo BioI., 2, 454-458. 

-----



-340-

Hoem, J. M. [1975]. The construction of increment-decrement life tables: a 
comment on articles by R. Schoen and V. Nelson. Demography, !3, 661-4. 

Hogg, R. V. and A. T. Craig [1965]. Introduction to Mathematical Statistics 
(2nd ed.). r1acmillan, New York. 

Holford, T. R. [1976]. Life tables with concomitant information. Biometrics, 
32, 587-97. 
~ 

Uyrenius, n. and J. Quist [1970]. Life table technique for the working ages. 
pemogra~~. 7, 393-9. ---

Irwin. A. C. [1976]. Life tables as "predictors" of average 10np,evity. Can. 
Med. Assoc. J., 114, 539-41. --

Irwin, J. O. [1949]. The standard error of an estimate of expectation of life. 
~_Hygiene, ~, 188-189. 

Jacobson, P. H. [1964]. Cohort survival for ~enerations since 1840. Hilbank 
~emorial Fund Quarterly. 

James, G., R. E. Patton, and S. TIMlin. [1955]. Accuracy of cause-of-death 
statements on death certificAte~ Public Health Reports,,2, 39-51. United 
States Department of Health, Education, and \·1elfare. 

Jordan, C. lv., Jr. [1967]. Life Contingencies (2nd ed.). Society of Actuaries, 
Chicago. 

Ka1ton, G. [1968]. Standardization: A technique to control for extraneous 
variables. Appl. Statist., 17, 118-136 . .-.... 

Kaplan, E. L. and p~ Meier [1958]. Nonparametric estimation from incomplete 
observations. J. Amer. Statist. Assoc., 53, 457-481. _._------ ..-..-

Karn, M. N. [1931]. An inquiry into various death rates and the comparative 
influence of certain diseases on the duration· of life. ~nn. E~~n~_, _~, 279. 

Y~rn, M. N. [1933]. A further study of methods of constructing life tables 
when certain causes of death are eliminated. Biometrika, 25, 91-101. -- ~. ............ 

Kendall, M. G. [19 lI6] .. '!:.he _Ad_"J!.1}c~_c!..._~he~~f Sta~is_~~c_~, Vol 1. Charles 
Griffin, London. 

Kendall. M. G. and A. Stuart [1961]. The Advanced Theory of Statist~2~_' Vol. 2. 
Griffin, London. 

Keyfitz, N. [1966]. Sampling variance of standardized mortality rates. Hum. 
~i~~ •• 38, 309-317. -

Keyfitt, N. [1966]. A life table that agrees with the data. J. of Amer. 
Statist. Assoc., 61, 305-312. --_ .. _--_._---- "" 



- 341 -

Keyfitz, N. [1968]. 1.n!EQ.duction to the Mathematics of Populatio~. 
Addison-t~esley, Reading, Hass. 

Keyfitz, N. [1970]. Findinp, probabilities from observed rates, or how to 
make a life table. The American Statistician, 24, 28-33. -.------- -- ""'-' 

Keyfitz, N. and W. Flieger. [1968]. ~.,ror1:..c:LP~_E..ulation: An Analysis _C!_f Vital 
I~ata_. Univ. of Chicago Press, Chicago. 

Keyfitz, N. and Frauenthal [1975]. An improved life table method. _~_~omet~!~~, 
~1. 889-99. 

Keyfitz, N., S. H. Preston, and R. Schoen [1972]. Inferring probabilities 
from rates: extension to multiple decrement. Ska.nd. Aktuarietidskr.,l-13. 

Kilpatrick, S. J. [1963]. Mortality comparisons in socio-economic groups. 
A'p~!._._S_~_~~~~._, ,~2, 65-86. 

Kimball, A. W. [1958]. Disease incidence estimation in populations subject 
to multiple causes of death. Bull. Internat. Statist. Inst., 36, 193-204 • . -.---.- . .-----.~ .. '"''''--

Kimball, A. \~. [1969]. !>Iodels for the estimation of competing risks from 
grouped data. Biometrics, 25, 329-37 . ... - ~ -.--.. -... ---- ~--. 

King, G. [1914]. On a short method of constructing an abridged mortality 
table. J. Inst. Actuaries, 48, 294-303. 

--.-.--.... ---- - .. -.-.-.---- """'.'v 

Kitagawa, E. H. [1955]. Components of a difference between two rates. J. 
Amer. Statist. Assoc., 50, 1168-1194. 
-~ " .. - ---.-. -.. -... - ..• -~ - --- -.,_. __ .- ........... 

Kitagawa, E. M. [1964]. Standardized comparisons in population research. 
])~_1l1..C!_s.r_a.p_hL, 2:' 296-315. 

Kitagawa. E. M. [1966]. Theoretical considerations in the selection of a 
mortality index, and some empirical comparisons. Hum. BioI., 38, 293-308. 

------- n ... _ 

Kloetzel, K. and J. C. Dias [1968]. Mortality in Chagas' disease: 
life-table for the period 1949-1967 in an unselected population. Rev. 
J_~s ~~ __ J1e<!_~ __ ~~_'2P_~ _ S_~~ Yaulo, 19, 5-8. 

Krall, J. M. and J. C. Hickman [1971]. Adjusting multiple-decrement tables • 
. TraE_s_~c:_tions __ o_f~E.e_~oc:.iy_ty..-E.~_Ac~1!.a~ies, 22, 163-179 . 

.... --... 

Krall, J. M., V. A. Uthoff and J. B. Harley [1975]. A step-up. procedure 
for selecting variables associated with survival. Biometrics, 31, 49-57 • 

• ¥ - '""'-, 

Krishnan, P. [1971]. Divorce tables for females in the United States: 1960. 
Jo~_r.~~ o~_Ma~£ia&.e3~_c!._~1!.e_X~mily, ?2' 318-320. 

Kruegel, D. 1. and J. H. Peck [1974]. Maryland abridged life tables by 
color and sex: 1969-1971. Md~Jt~~ M~~~~, ~], 49-55. 

Kuzma, J. W. [1967]. A comparison of two life table methods. Biometrics, 23, ,-
51-64. 



- 342-

Lew, E.·'\.. and F. Seltzer [1970]. l'ses of the 1He table in public health. 
~1i1h~n..k_l~~m..~l!nd Q., ~.§, Suppl., 15-37. 

Linder, F. E. and R. n. Grove [1959]. Techniques of vital statistics, Reprint 
of Chapters I-IV. Vital Statistics Rates in the {jnited States, 19')0-1940. 
U. S. Government Printing Office, ~vashington, n. c. 

Littell, A.. S. [1952]. Fstimation of the T-yeClr survival rate from follow-up 
stuoies over a limiteo period of time. J'luman ~i..~~:., 'fj, R7-116. 

Lopez, A. [1961] .. Prob1ems in Stable Population Tl~eory. Office of Population 
l1esearch, Princeton University, Princeton, ~lew Jersey. 

!1c'1keham, H. ~1. [1860]. ()n the law of mortality :lnc the construction of annuity 
tables. J. lnst. ~ctuaries, 8. . ._- /"~. 

~'lakeham, i1. H. [1974 J. On an appllcati.on of the theory of the composition of 
decrementa1 forces. ~~~~_Actua~ies. 18. 317-322. 

Mantel, N. [19741. Branching experiments: a Reneralized application of the 
life-tah Ie method. Proce~dings of sr~s Conference on f.pidemio~~ (n. 
Ludwig, K. 1. Cooke, Ed.), 69-74. Society for Industrial and .'\ppUed 
"1:athematics, Philadf>lphia. 

~·~antel. N. and J. c:. TIail;tr, TIT rl97 n ). ~1odel I or Hodel IT in competing 
risk analysis? Biometri~s, 7.§. R(,1.-3. 

Hantel, N. and F. Haensz~l [1959]. Statistical ;tspects of the analysis of 
data from retrospective studies of disease. Journal of the National Cancer 
Institute, 22. -------- ,--..,...' 

Nantel, N. and C. R. Stark [1968]. Computation of indirect-adjusted rates in 
the presence of confounding. Biometrics, 24, 997-1005. .. ,; '-..-

~·tarshall, A. H. and I. 01kin [1967]. A multivariate exponential distrihution. 
J. Amer. Statist. Soc., 62, 30-44 . 
. ------- ------ ............ 

Hattila, A. and K. Rosendahl [1969]. Factors affectin~ life expectancy. 
~c_~~_~~c:.:!:.~!1ed. Ssand. __ 1.., Supp1. 1, 51. 

HcCann, .1. C. [1976]. A technique for estimating life expectancy with crude 
vital rates. D~mograph~, !!, 259-72. 

Medsger, T. ~., Jr., A. T. Masi, G. P. Rodnan, T. G. Benedek, and H. Robinson 
[1971]. Survival with systemic sclerosis (scleroderma). A life-table 
analysis of clinical and demographic factors in 309 patients. Ann. Intern •. 
Med., 75. 369-76. --- ........ 

Medsger, T. A., Jr. and A. T. Hasi [1973]. Survival with scleroderma. II. 
A life-table analysis of clinical and demographic factors in 358 male 
U.S. veteran patients. J. Chronic Dis., 26, 647-60. --- ............ 



- 343-

~edsger. T. A., Jr., II. Robinson, and A. T. ~asi [1971J. Factors affecting 
2urvivorship in polymyosi tis. \ liE e- tahle study of 124 patients. Arthritis 
r~1.. C,tl!fl,=, , 14, 249,- 58. 

~crrell, ~. and r .. E. Shulman [1955]. netermination of prognosis in chronic 
disease, illustrated hy systemic 1U0l1S erythematseus. J. ehron. Dis., 1, 
12- 32. 

:'filler, R. S. and J. L. Thomas nC)sq). The effect of ~_arval crowding and 
body size on the 10n~evity of adult T)rosophila '1clanr,aster. ~~o~Y. 3~, 
11 3-125. 

':itra, S. [1973]. On the efficiency of the estimates of life tahle functions. 
Demography, In, 421-6. 
-"- - ._"'- ---.~ '-

~lode) C.1. and r,. S. U ttman [1 Q 751. :rethodolof,ical Issues Underlyin.£ 
:'~ul_t}p}_e,T'e~c!:~_m~E,t_l~i)~_e __ ~~)}~e, -"_",a, \ v,s is, .--Tus t'i tut~-f;-r'Pon~;I:- St~ld-.-, Drexel 
TTuiv •. nhi1Cldplnhio. -

'lode, 1':. H. [19761. A large s<lIl'ple investir.ation of a multiple decrement life 
table ~stimator. Hathematical Diosciences. 32, 111-23. -.- -"--- _.- .-.-.-- - .-... - -- - - ._-'- '''''' 

l'1oeschherger, "1. L. and H. <\. David 11971]. Life tests under competing causes 
of failure and the theory of cor.pC'tJ PI', risks. Ei()_~,t_r.:ic,~, 27, O()q - 33. 

"~oeschherger :1" 
1~~c_:1_n,02f'tr ic,s., 

A. [If)7!d. tiff' test, under competinr causes of frtilure. 
HJ, yl'47. 
'-

'[ood ,\. : 1. anc r. ,\. (~r,q yh i 11 [l!) f, J ]. ! _~ ~:r_o..d1.lc.,t.i,(),n, __ t_9,_~_~,~_ The 0..E.Y ... Y f S ~a t i ~ t~~,c_~. 
(2nd cd.). '!cGraVJ-Ilill, l'~e_,.J Yorl<. 

:loriY:.l'1l8, I. ':. [lQ561. jlc'v21oprnent of the present conceut of cclllse 0 f d€ath. 
-\J'1_e,r.i,c,a!l.Jo,~r_l2.a) __ ,o.( 'p_tl_h,~i,c, }l,E',a,l,t.h, 46, 436'441. 

1auld. R. F. (1976]. r,qlculation of survival rates by the life tahle and other 
methods. CJ,i,n.~,J~,a_c~i,?) .. , 27, 33'-13. 

l1ukherjee. S. -Po and S. f:. Das [1(175] .. \bridged life tahles for rural ·.vest 
Ben8al, 1969. T_n_~i,an,),., ?,u.!''..1.:i..c:_)i,~~l_t,h, I?, 3-1). 

'iyers _ :l. J. r 1964 J. i\l:nlysis of "fortality in t!le Soviet [:OiOI1 ,,"ccardinp; to 
1951:;- 1)9 li t e tab les. T!:a,n_s_a_c,t_i.9,~~,. :<;_o,~i,'7Jy'_,~f.,~cJ_uE-..!.i,E:!_s. 

Nanj '0, 7.. [1967]. Life tahles for deaths from vasculAr lesions affecting 
cpntra1 nervous system hy pt'f'fecture, 195q--61.:r..,:!-,k,ushi~~_.J ._ '[ed .... 5_c,i, .• 14, 
1--20. ,- ~ 

'lanj '0. Z. [1967]. A study on rleaths from. malignant neoplasms including 
neoplasms of lymphatic and haematopoietic tissues by prefecture using 
the life tahle, 1q5q-f;~. P,~~u,s..h,i_~~J=--J1,e,c!~ __ ~<:,i .• 14, 21--43. 



-------------- ------------------------

-344-

Nanjo, Z. [1974]. A study on the method of constructing abridged life tables 
and the interpolation for individual years of life. _Fukushima J. Med. Sci ' .. ' 
22} 11-48. 

National Center for Health Statistics [1974]. ~~~a1 Statistics of the United 
.~t_a_t..~.s2 __ 1~.~O_.!_.!."_~1l~~~L~oE~}_:!!Y. U. S. Government Printing Office, 
Hashington, n. C. 

National Office of Vital Statistics [1959]. Hethod of constructing the 1949--51 
National, Divisional, and state life tahles. Vital"Statistics -- Special 
Re~orts, 41, 1959 • . -.-- ---~- .....-"- ... 

Neidhardt, F. O. [1971]. Estimation of survival in life table methods, applied 
to a sample of prostatectomies. Nord~~, 8~, 129-30. 

Neumann, H. G. [1970]. Evaluation of the results of intrauterine contraception. 
2 year analysis of the Rostock studies by means of the life table method 
of Tietze and Potter. Geburtshi1fe Frauenhei1kd, 30, 537-47. 

-,~-----.-- .... --.-~-.-----.--.--- ----" 

Oechsli, F. W. (1975]. A population model based on a life table that includes 
marriage and parity. T.E-eor-,_X~~l~. Bio~, ~, 22q-/~5. 

Oleinick, A. and N. ~~ntel [1970]. Family studies in systemic lupus erythematosus. 
II. Hortality among siblings and offspring of index cases with a statistical 
appendix concerning life table analysis. J. Chronic Dis .• 22, 617·-24. ---_._._._--- ~ 

Oster. J., H. Mikkelsen. and A. Nielsen [1975]. Mortality and life-table 
in Down's syndrome. ~~c_t.a .. _X~_~~_i:.a_t_r.~_J'~_~nd., 6~, 322-6. 

Oficina Sanitaria Panamericana [1940]. Consultas. Bolet!n de la Oficina 
Sanitaria Panamericana, 19, 283-285. -----, - . __ ._ .. _----_._-- ~.-- _._-- .,,--..-

Pachal, T. K. [1975]. A note on the relation between expectation of life at 
birth and life tahle mortality rate for the age group 0-4 years. Indian 
J. Public Health, 19, 9-1Cl. --.--

_,_r ____ . ___ . ___ . ",_. __ •• _ .'~ 

Padley, R. (1959]. Cause of death statements in Ceylon: A study in levels of 
diagnostic reporting. Bupe_t}~~~..!?.e_.~~"_J:'ld ~a1th Organization, 2Q, 
677-695. 

Park, C. B. [1955]. Statistical observations on death rates and causes of 
death in Korea. Bulletin of the lolorld Health Organization, I,?, 69-108. 

Park, C. B. and Y. S. Matsumoto [1971]. Hawaii life tah1e values by causes 
of death: 1959-61. Hawaii !1ed. J., 30, l84-9'l. 

Pascua, M. [1952]. Evolution of mortality in Europe during the twentieth 
century. Epidemiological and Vital Statistics Report (Tyorld Health 
Organization), 5, 4-8. 



- 345-

Pike, M. C. and F. J. C. Roe [1963]. An actuarial method of analysis in 
an experiment in two-stage carcinogenesis. Brit. J. Cancer, 17, 605-10. 

"'" 
Pike, M. C. [1970]. A note on Kimball's paper 'Models for the estimation 

of competing risks from grouped data'. Biometrics, 26, 579-91. 
r'o-' 

Preston, S. H., N. Keyfitz, and R. Schoen [1972]. Ca~qes of Death: Life 
Tables for National Populations. Seminar Press, New York. 

Rao, C. R. [1945]. Information and accuracy attainable in the estimation 
of statistical parameters. ]\ull. Calcutta Hath. Soc., 37, 81-91-

,~ 

Reed, L. H. and M. Merrill [1939]. A short method for constructi~g an 
abridged life table. Amer. J. Hygiene, 10, 33062. 

Reid, D. n. and n. A. Rose [1964]. &qsessing the comparability of mortality 
statistics. British Medical Journal, 2, 1437-1439. 

-',-, 

The Registrar-General's Decennial Supplement, England and ~Jales, 1921, [1933]. 
Part III, Estimates of Population, Statistics of Marriages, Births, and 
~eat~~~9Jl-192~, xxxiii-lxix. H. M. Stationery Office, London. 

Registrar General's Statistical Review of Engalnd and Wales for the Year 
1934 [1936]. New Annual Series, No. 14. H. M. Stationery Office, London. 

Registrar-General's Statistical Review of England and l-lales for the year 1937 
[1940]. ~ew Annua~ Series, No. 17. H. M. Stationery Office. London. 

Robinson. M. J. and A. P. Norman [1975]. Life tables for cystic fibrosis. 
Arch. Dis. Child., 50, 962-5. ---- -_._-_._--- ....... ' 

Sadie, J. L. [1970]. An evaluation of demographic data pertaining to the 
non-White population of South Africa. South African Journal of Economics, 
38, 1-34. 
/v 

Santas, J. L. [1972]. Evaluation of the mortality ratio and life expectancy 
levels in the State of Sao Paulo, Brazil in 1970. Rev. Saude Publica, 6, 
269-72. ,>'~ 

Schwartz, D. and P. Lazar [1963]. Taux de mortalite ear une cause donnee 
de deces en tenant compte des autres causes de deces ou de disearition. 
Unite de Recherches Statistiques de l'Institut National dlHygiene, Ministere 
de la Sante Publique, France. 

Saveland, W. and P. C. Glick [1969]. First 1iarriage decrement tables by color 
and sex for the United States in 1958-60. Demography, 6, 243-260. 

, ,,--

Schoen~ R. [1975]. Constructing increment-decrement life tables. Demography, 
12, 313- 324. 
/'-

Sc~oen, R. and V. E. Nelson [1974]. Marriage, divorce and mortality: A life 
table analysis. Demograp~, 11, 267-290. 

---



~ 346 ~ 

Seigel. D. r.. [1975). Life tahle rates ::md person month ratios as sUTT1Tnary 
statistics for contracentive trials . .T. Steroid BiochelT' .• (" 011-fi. -.--- --~-----~---.-.- .......... 

Sewell, 1J. 17. [1'1721. Life tah1p. analysis of the results of c()ron~ry sur~pry. 
Chest. fil, I,Rl. 

Shapiro, S. r. R. Sch1esinf,er, ann ~. r.. T. 'lesbitt r1Q6Q) •. !Efan!:L Pet:inat_:tlL 
!'1at_er~al an.d __ C!"JiJ.<!'l]_o£~. '~or.t.a1.i_ty'_}!l _t.I-~e_._U-"-i.t.ed __ S_t.~t_~s_. American Public 
Health Association, Vital and Health Statistics 'fonogr<lphs, Harvard Univ. 
Press, Camb ridge, 'fass. 

Sheps. -1. C. r 19 5 ~ 1. C::hrt 11 WE' coun t tit(' Ii v j ng or the dead? :':_e~.J rn?;l~n..d J. 
::cd. :25'). 121()- 14. 

~;hC'.ps, 'L c. [195°]. ,\n exnmination of somp !'1ethods of comparing sE'verC11 
rates or proportions. 1~.io:m_et_ri~_s, 1'), 'n 07. 

(~ij('l's '':. [If) r, 1]. '\;1 rr i[1ge~!pd '1'lortal i ty. '\m_(~ric::~~..:}_<?.urna 1 0 f 2uh li ~("~al_(l • 
')1. 5/+7-')5'). 

:::irken '1. (;. r19GLf]. r:oT11.1);.Jrison of two metho(lc; of constructing a~ritl?(>cl 

life tables hy reference to n 'stanrlarcl' tat)le. V_"!:..t<ll_~nd_l~_rt_!:.~h :-;t;£1ti:~.t.i_c_s., 
Series 2. ':0. /1, 1"11. tJatioll<ll rP.fltpr for He:tlth C;tCltistics, U. S. Pert. 
of 1;calt I1. '~ducation and <Telfnre. 

:;no\,l, F. ~. [FI20]. }\n elementary nmid method of constrtlctin~:, ::tn abridged 
life table. ~UpDleT'l(>nt to the 71th A!1nuClI r~eport of the Registrar·r,eneral 
(,'- girths Deaths, clllJ '!<~rrin3es in England and ~!n,les. Part II. Abridged 
'.Lfe Tah1es. 

Spie~;eI1l1an, 'I. [1%;)] .:~n_~r_oj.!l.~~.~_C:E-t_o_I2.e:,Jll9.FD~P.J~y (revised edi tion). 
Ca!'1bridge. Earvard University Pres~. 

C;piegell'lan, 'r. and n. I;. 'L:Hks [1,)66J. :':mpirical testing of standards for 
the <lgA adjustment of death rates by the direct method. l~u~B_i_,?_l., ;J8, 
2~ln-292. 

:~tarl(, c:. l~. and" ;'!<lntel fl'Jn6]. I~ffects of maternal age and birth order 
on the risk of mongolism and leukemia. }...:.._~~~_~..:l.,.:_.\!lJ~ ... ~:...r_._Ins.~-" ... , 37, 687-69.'3. 

S t 01n it z, r,. J. [1956]. T ~iX e ___ 1~a !>_l_~c;_ }F_o!':._!:..imi ~~(~_l:<:J:. t.:~:_!'-._[?!,~o.K..raphi_ c 
Ap.pro.a.ch. nffice of T'opulation Research, Princeton Universi ty, Princeton, 
'C,·, Jersey. 

Sul1iv<ln. J. 'I. [lQ71]. t\ review of Tahranese infant and child mortality 
statistics 1961-196R. Taiwan Population Studies IJorkin~ Paper ~o. 10. 
"-nn \rhor. Univ. of 'iichigan Population Studies Center. 

SV<lrtouL H. O. and R. G. Hehster, [lQan]. 1'0 what degre@ are mortality 

statistics dependable? ~l~_r.!£an JO~E.l'll_()L_~~l.~i~ P..ea~t)}., 30, RH--81S. 

·"erri.s" '< and ~'L Glasser [11'174]. A life table analysis of the relation of 
prenatal care to prem"turity. ~~~.~ __ }_~ __ l'_I.!!>}.iE_J.lea:lt~. §A. 869-75. 



- 347-

'nlylstrup, ,II". and 1. Rollinv [1975]. The life table method in clinical dental 
research. c'ommunity Dent, Oral Epidemiol, 3, 5-l() . 

. "" 

Todhunter, T. r 1949]. A...!!.is.~o.ry._<?f. .t.h..e.~~_t11.~mc:t.~.i_cal __ Th~.oIY_.(),L!I..9Ejlbility. 
Chelsea. 

Lnited ~:ations, T)epartment of Economic and Social Affairs [1955]. t~E_u,els,on 
m.e.tho.ds. of. e.st}ma.~.i.Il~ .pgp.t!.l.?t.~.o~, ST/S()A/Ser. A. Population Studies No. 23, 
'tantle 1 fI. '~e:. tJloAs_.o( ?PP r.~.isaJ .().f. <tu.aX~:. ty .. ~~.( .1?as i.c._d.c:t.t.a. of_or p_~ula tion 
(;!_s_~~I'!.~~~s. Uni ted Na t ions, N. Y. 

enited Nations, nepart"lcnt of economic and Social Affairs [1958]. Handbook 
of population census m":'t11OcS, Ser. F.. ~o. 5, Rev. 1, Vol. I. ge~ral 
9-ipe:c't·s.~ol ~a.~p~op-ufa.t:(oE.~c~~~~~s_._ United Nations, N. Y. 

Uni ted }Tations, Department of Economic and Social !\ffairs rl967]. Man_l!.~l~on 
methods of estimating population, 51' /SnA/Ser .. \.'4-2. ~anuel IV. Meth()j~ 
of csti.'i1,1ting basic demo~raphic measures from incomplete data. 

!Jnited Nations Statistical Office. Department of Economic and Social Affairs [1955]. 
II.~~dJ~~o}< __ ()_f vita~_stat~f>_ti<;_~~ethods_. Ser. F. 1\0. 7. Hnited Nations, New York. 

United :';ations Statistical Office, Department of Economic and Social Affairs 
[1971j. .f)_('>:.~_o~raDhic yp~a_rhook, 1970, 22nd Edition, Tlnited Nations, Vew York. 

United Stat~s Bureau of the Census [19751 .. Census of population and Housing, 
~~~~~E~]~a~~? and Research Pro~ram, Accuracy of Data for Selected 
Ppu1ation Characteristics as Heasured by the 1970 CPS-Census Hatch, Series 
p'ii-C(~t"T--:-lf:· I!ashington, D. C:-:-r.-S-~--Govern!"lent Printing Office. 

Pnited States Department of Health, Education and 1,.7elfare [1963]. Comparability 
of statistics of cause of death according to the Fifth and Sixth Revisions 
of the international list. Vital Statistics-Special Reports, Selected Studies 
51. TI.S. Government Printing Office, Washington, D. C. 

United States T'ublic Health f:ervice, National Center for Health Statistics 
[1964J. Recent mortality rates in Chile, Ser. 3, No.2. U. S. Government 
Printin~ Office, 1Jashington D. C. 

lJalker" A .. F .• , H .• I·~. ~le·!chs, II. Lechtape-Gruter, '~J. F. Caveness, and C. 
T<'retschmann (1971]. The life expectancy of head injured me.n with and without 
epilepsy. Z('ntr~lbl Neurochir 32, 3-9. 

Heibull, tv. [1939]. A statistical theory of the strength of material. .!!!K. 
Ve ~.~n~ kay_s--.:~~_c!.~a_ndh 151 

, ~ , 

Heiss, K. ~L [1973]. A method for approximating age-specific fertility in the 
construction of life tables for anthropological populations. Human Biology , 
45, 195-210. 

Hestergaard. H. [1916]. Scope and method of statistics. J. of the American 
S~.?~ist;sal __ ~~c;ociation. ~5, 26()-264. 

Hiesler, H. [1954]. Une m~thods simple pour la construction de table de 
mortalite abredees. Horld Population Conference, Vo!. IV. United Nations, N.Y. 



-348-

Wilson, E. B. [1938]. The standard deviation of s •• pling for life expectancy. 
J. of the American Statistical Association, 33, 105-708. 

\-'." 

World Health Organization [1967]. The accuracy and comparability of death 
statistics. Chronicle. 21, 11-17. 

\I \. ~, 

I, 
World Health Organization [1952]. Comparability of statistics of causes of 

death according to the Fifth and Sixth Revisions of the International List. 
Bulletin of the World Health Organization, Suppl. 4. 

Yerushalmy, J. [1951]. A mortality index for use in place of the age-adejusted 
death rate. American J. of Public Health, 41, 907-922. 

'" ~. \ 

Yule, G. U. [1924], A methematica1 theory of evolution based on the conclusion 
of Dr. J. C. Willis, F.R.S. Phil Trans. Royal Soc. (London), B2l3, 21-87. 

v' ~ •. ; 

Yule G. U.[1934]. On some points relating to vital statistics, more especially 
statistics of occupational mortality. J. of the Royal Statistical Society. 
97, 1-84 . 

... b"l 

Zah1, s. [1955]. A Markov process model for follow-up studies. Human BioI 
27. 90-120. 

'vh' 



-349 -

GLOSSARY 





- 351 -

CHAPTER 1 

Formulas 

Probability of A: 

pdA} = n(A) 
n (2.1) 

(?.2) 

PrC\} 1 - pdA} (2. Sa) 

n(AB) 
=-

n (2.6) 

Conditional probability: 

P {BIA} = Pr{AB} 
r pdA} 

(2.9) 

Multiplication theorem: 

(2.13) 

(2.15) 

Pr{ABCD} = Pr{A} x Pr{B!A} x Pr{C!AB} x Pr{D\ABC} 
(2.16) 

Addition theore~· 

(2.21) 

Pr{A or B or C} = Pr{A} + Pr{B} + Pr{C} 

(2.22) 

Pr{A or B or C or D} = Pr{A} + Pr{B} + Pr{C} + Pr{D} 

- Pr{AB} - Pr{AC} - Pr{AD} - Pr{BC} - Pr{BD} - Pr{CD} 

(2.23) 
+ Pr{ABC} + Pr{ABD} + Pr{ACD} + Pr{BCD} - Pr{ABCD} 
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Distributive law: 

Pr{A(B or C)} = Pr{AB or AC} 

Pr{ (A or B) (C or D)} .. Pr{AC or AD or BC or BD} 

(2.27) 

(2.28) 
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CHAPTER 2 

- Fraction of the last age interval of life. It is the 
expected fraction of the interval (xi,xi +l ) lived by 

an individual who dies at an age in the interval 

page no. 

(;Ki'xi +l ), 19 

Number of life table deaths in the age interval (xi,xi +l ). 19 

- Total number of deaths in a current population. 22 

- Number of deaths from cause RC; in a current population. 22 

- Number of deaths in the age group (xi,xi +l ) in a current 
population. 20 

Number of deaths from cause RC; in age group (xi,xi +l ) in 
a current population. 23 

- Total number of deaths in a standard population. 29 

- Number of deaths in the age interval (xi,xi +l ) in the 
standard population. 29 

- Total number of deaths in community u. 28 

- Number of deaths in the age interval (xi,xi +l ) in community u. 28 

- Observed expectation of life at age zero. 38 

- Number alive at exact age xi in the life table population. 19 

- Number of years lived in (xi,xi +l ) by ~i individua's. 37 

- Length of the age interval (xi,xi +l ); ni = xi+l-xi . 19 

- (Hypothetical) number of individuals alive at exact ap:e xi' 20 

- Total midyear population. 22 

- Midyear population in age interval (xi,xi +l ). 23 

- Total midyear standard population. 29 

- Midyear population in the age interval (xi,xi +l ) of the 
standard population. 29 

- Total midyear population of community u. 29 

- Midyear population in age interval (xi,xi +l ) of community u. 28 
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- Total number of years lived by the life table population 
beyond xO' 

- Exact age in years at the lower limit of the i-th intc--v.:1'. 

page no. 

37 

13 

x i +1 

Age-specific 
death rate 

- Exact age in years at the upper limit of the i-th interval. 13 

Fetal death 
rate 

Neonatal 
mortality 
rate 

:'erinata1 
mortality 
rate 

Post neonatal 
mortality rate 

Infant 
J1.10rtality 
rate 

Fetal death 
ratio 

Maternal 
mortality 
rate 

Number dying in (xi ,xi+1) 
- M. = 

(xi 'Xi+1) 1 Number of years lived in by those alive at x. 
1 

19 

- (alias "stillbirth rate), Two definitions are available: 

Number of fetal deaths or 28 or more weeks of gestation x 1000 24 
Number of live births + fetal deaths of 28 or more weeks 

of gestation 

Number of fetal deaths of 20 weeks or more of gestation x 1000 24 
Number of live births + fetal deaths of 20 or more Fpe!:s 

of gestation 

Number of deaths under 28 days of age - - x 1000 
Number of live births 

- There are two definitions in common use: 

Numb2r of deaths under 7 days + fetal deaths of 28 weeks or ~ore 
of gestation 

Number of live births + fetal deaths of 28 weeks or more of 
gestation 

Number of deaths under + fetal deaths of 20 or more 
28 days of life weeks of gestation 
Number of live births + fetal deaths of 20 or more 

weeks of gestation 

x 1000 

Number of deaths at age 28 days through one year 
Number of live births - neonatal deaths 

x lOne 

Number of deaths under one year of age x 1000 
Number of live births 

Number of fetal deaths of 20 or more weeks of gestation 
Number of live births 

Number of maternal deaths x 1000 
Number of live births 

24 

24 

25 

25 

25 

25 

25 
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Probability of dying for age interval (x.,x. 1): 
1 1+ 

d. 
1 q =-

i £. 
1 

Age-specific death rate for age interval (xi,x
i
+

l
): 

M. 
1 

M. 
1 

M 
i 

= 

= 

d. 
1 

ni(~.-d.) + a.n.d. 
1 1 1 ~ 1 

D. 
1 

n. (N .-D.) + a.n.D. 
111 1 1 1 

D. 
1 

p. 
1 

Relationship between qi and Mi for age interval (xi,x
i
+

l
): 

n.M. 
1 1 

1+(1-a.)n .M. 
111 

Cnv:oe-spc>cific c1c<lth r,",tc for cause R cS: 

Age-cause-specific death rate for cause ReS age interval (x
i

,x
i
+

1
): 

x 100,000 

(1.3) 

(1.3a) 

(1.2) 

(1. 2a) 

(1 .5) 

(1.4) 

U. 9) 

(1. 10) 



Crude death rate: 

D 
M = - x 1000 

P 

Crude neath rate for communitv 11: 

C.D.R. = D Ip 
u u 
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Age-specific death rate for community u and age interval (xi ,xi +1
): 

M i == D i /P . • u U Ul. 

Crude death rate (as a weighted average of M .): 
Ul. 

P . 
C.D.R. = L: ~ M 

P ui i u 

Direct method of adjustment: 

D.M.D.R. = 
L: P .M . 
i Sl. Ul. 

P 
s 

Comparative mortality ratio: 

C.M.R. = -t r ipui + PSi] 
. P P M. 
l. U S Ul. 

Indirect method of adjustment: 

D Ip 
1. M • D • R. = -;::---::-..::;S_..::;S-:-_ 

L: P .M .Ip 
i Ul. Sl. U 

Life table death rate: 

L.T.D.R. 

L.T.D.R. 

L. 
= L: Tl. M . 

i 0 Ul. 

1 
=­

A 

D 
u 

P 
u 

(1. 6) 

(3.3) 

(3.5) 

(3.8) 

( 3.10) 

( 3.11) 

(3.12) 

(3.15) 

(3.21) 



-----------

Equivalent average death rate: 

E.A.D.R. 

Relative mortality index 

R.M.1. 
PM. 

= L: ui Ul 

. PM. 
1 U 81 

Mortality index: 

M • 
L: Ul n. -M 

1 . 
M. 1. = _=--,,-8 _1_ 

Tn. 
1 

Standardized mortality ratio: 

S.M.R. = 
ZP .M • 

Ul Ul 

LP .M . 
Ul 81 
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(3.23) 

(3 .24) 

(3.25) 



a. 
1 

D. 
1 

E(D. ) 
l' 

D 
s 

D 
u 

L. 
1 

M. 
1 

M . 
S1. 

M . 
Ul 

n. 
1 

l\i • 
1 

P. 
1 

P 
s 

P . 
Sl 

p 
u 

P . 
ul 

p 
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CHAPTER 3 

- Fraction of the last age interval of life. 

- The number of deaths in the age group (x.,x. 1.) 
1 1+ in a current population. 

Expected nl~ber of deaths in the interval (x r ,x
i
+

1
) 

The total number of deaths in the standard population. 

The total number of deaths in community ll. 

- The conditional expectation of q. given N .. 
1 1 

- Number of years lived in (x.,x.+
1

) hv ' individuClls. 
1 1 ' 

The age specific death rate 1 r l' , .,.'.' 11 ! ,", i ., 

- The a~e-snecific death rate for interval (x
i

,x
i
+

1
) 

in the standard population. 

- The age-specific death rate for interval (xi,x
i
+l ) 

in community u. 

- The length of the age interval (x. ,X.+l ); n. = x.+l-X .. 
1 1 III 

- (Hypothetical) number of individuals alive at exact 
age Xi. 

- Midyear population in age interval (xi,xi + l ). 

- Total midyear standard population. 

- Midyear population in the age interval (X.,X.+ I ) of the 
I

II 
standard popu ation. 

- Total midyear population of community u. 

Midyear population in age int~rval (x. ,x.+
1

) of 
1 1. 

community u. 

- Probability of death in the interval (xi,xi +l ). 

- Estimate of the probability of death in the interval 

(xi,xi +1)· 

- Estimate of the probability of death in the interval 
(xi,xi + l ) of community u. 

- General symbol for an adj usted rate a r mortality il,dex. 

- The sample variance of D .. 
1 

:age no. 

47 

43 

43 

53 

53 

49 

52 

46 

53 

53 

47 

43 

47 

52 

52 

52 

52 

43 

43 

59 

54 

48 



') 

S '-
R 

7 
n 

D. 
1 

(1 
2 
q. 

l. 

" 

'.1 I q 

C;i "i 

W. 
L 

X. 
1 

1,-,-1. 

Binomial 
nistribution 

C()('f fieient 
of 'lariat ion 
of R. 

359-

page no. 

- The sample variance of q .. 
1 

- Samp1e varianCl' of an <Jdi usted rate or mortality inceY, K. 

- Variance of D .. 
l 

- Variance of q .. 
1 

- Conditional variance of qi given N
i

· 

- Weight of M . lIsed to c<Jlculate adjusted rates and 
Ul 

mortClJity indices. 

- Total number of years lived by the life table population 
beyond xo· 

Exact age in years at the lower limit of the age interval. 

- EZ(J(,t :-:(1",C in years ot. the upper limit of the age inter-va!,. 

- If an event has 3 ('unstant probability q of occurrin~ in 
anyone triCll, then the number of times (D) that the ev~nt 
will occur in N independent trials has a binomial distribu­
tion. with thl' t'xpel'ted value E(D) = Nq and variance 

2 
I} = N o(l-q). D . 

- A measure of the naxnitude of the stand~rd deviation of an 
adjusted rate, R, relative to R itself. 

44 

55 

43 

44 

49 

53 

52 

43 

43 

43 

57 
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Formulas 

Expectations and variances of the number of deaths and probability of dying 
in (xi,xi +l ): 

E(D.) = N.q. 
111 

1\ Di 
q =­

i N. 
1 

2 
0D N.q .(l-q .). 

111 
i 

2 1 
0q. ;- N q . (l-q . ) . 

. 1 ~ 
1 1 

S? 1 A A 

=0 - 4. (l-q.) 
qi N. 1 1 

1 

95% confidence interval for q.: 
1 

z 
Iq.(l-q.)/N. 
111 

ql' - 1.96 SA < q. < q + 1.96 SA 
qi ~ i q 

(2.1) 

(2.3) 

(2.2) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.10) 
i. 



A A 
Sample variances of Mi , qi' and qx: 

') 
~ .. -
" tJ • 

1 

I'... " 
~T • ( 1 ) 
"l ~i-rti 

N '" i 
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Sample variance of age adjusted death rates: 

R LW M 
i i ui 

2 2 
L: w. SM 
i l. ui 

M. '" 
Ul. (l-q .) 

p . Ul. 
Ul. 

(3.7) 

(2. 1) 

(3.4) 

(3.5) 

(8.5) 

0.8) 

(6.1) 

(6.3) 

(6.4) 
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Sample variance of direct method of age adjustment: 

~ 

[ l- C] • 1 
III 

(7.1) 

Coeff. of variation of R (7.5) 

Sample variance for life table death rate: 

LTDR 
n H Ld 10 1 x ux x 
-----"-~. 

2:L n TO eO x x 
(8.1) 

1 c. 2 

e4 ~~ eO 
() 

(8.2) 

S: 1 
L A2 

POx [(l-a )0 
A ') ') 

eO ~4 + e ] ~ s;; eO :-;>0 x x x+-n a x -x 
(8.4) 



- 363 -

Summary of adjusted death rates and indices (Table 1): 

Crude death rate (C.D R.J 

Direct method of adjustment (D.M.D.R.) 

Comparative mortality rate (C.M.R.) ~[ , 

Indirect method of adjustment (I.M.D.R.) 

Life table death rate (L.T.D.R.) 

Equivalent average death rate (E.A.D.R.) 

Relative mortality index (R.M.I.) 

Mortality index (M.I.) 

Standardized mortality ratio (S.H.R.) 

t' P 1-1 
, 

ui ui (, 

P 
u 

[P M 
(, si ui 

P 
s 

( Pui PSi) M --+-
P P ui 

u s 

(D/PS)(D)Pu ) 

r. P ,M . /P 
;" U1 Sl u 

[, L M 
i, i ui 

t:L. 
,;.' 1 

[n M 

'- i ui 
r: n. 
£, 1 

[P i Mui 
i u --

1'1. 

P 
U 

si 

M 
[n ui 
i i 'f."r" 

r n. 
1 

n 

si 

~ _ u_i __ M 
'"' ui . £P " 
(,. uJ:;i 



a' 
x 

,,' 
u 

X 

D 
x 

e 
x 

e 
x 

)/, 
x 

L 
x 

H 
x 

]\T 

X 

P 
x 
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CHAPTER 4 

- Fraction of the last year of life. 

- Number of life table deaths in the age interval (x,x+l). 

Number of deaths in the age interval (x,x+l) in a cllrrent 
population. 

- The expectation of life at age x. 

- Observed expectation of life at age x. 

- Number alive at exact age x in a life table population. 

- Number of years lived in (x,x+l) by the)/, individuals. 
x 

- Age-specificdeath rate in the interval (x,x+l). 

- (Hypothetical) number of individuals alive at exact ap,e x. 

- Proportion of those alive at age x surviving the interv[ll, 
(x,x+l). 

- Proportion of those alive at age x surviving to age y. 

- Midyear population in age interval (x,x+l). 

- Estimate of the probability of dying in (x,x+l). 

page no. 

66 

66 

71 

68 

67 

65 

67 

71 

71 

68 

68 

71 

65 



T 
x 

x 

x+l 

x 
w 

Abridged 
Life Table 

Complete 
Life Table 

Current 
Life Table 

Cohort 
Life Table 
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- Total number of years lived by the life table population 
beyond age x. 

- Lower limit of age interval (x,x+l). 

- Upper limit of age interval (x,x+l). 

- Lower limit of the final age interval in a life table. 

- A life table with age intervals greater than one year 
(beyond age 1). 

- A life table with single year age intervals. 

- A life table based on current mortality and population data. 

A life table based on the mortality experience of a single 
group of individuals. 

page no. 

67 

65 

65 

65 

64 

64 

63 

62 
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Formulas 

Relationship betw!:'en life table functions in the compll'te life table': 

d = i q , 
x x x 

£. -d , 
x x 

x==O,l, ... , w 

x=O,1, ... ,w-1 • 

L 
x 

= (£. -d ) + a 'd x=O.1, ... ,w-1 
x x x x 

T 
x 

T 
x 

'" e 
x 

Lx + LX+1 + ... + Lv x=O.l, ...• w 

L + T 
x x+l 

T 
x 

£. x=O,l, ... ,~. 
x 

pcp P +l"' P 1 xy x x y-

(2.1) 

(2.2) 

(2.3) 

(2.5) 

"(2.6) 

(2.7) 

(2.13) 

(2.9) 



Computation of 

367-

~ \ 
q , L , T , and e 

x w w w 

D 

qx = X 
N 

X 

n 
M = x 

X eN -D ) + a I D 
x x x x 

o 
M = x x p-

x 

L 
w 

T II< L 
w w 

.. 

and 

(3.1) 

(3.2) 

(3.4) 

(3.7) 

0.11) 

(3.12) 



e. 
1. 

R.. 
1. 

N. 
1. 
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CHAPTER 5 
page no. 

- Fraction of the last age interval of life. 

- Number of life table deaths in the age interval (xi,x
i
+

l
) 

- Number of deaths in the age interval (xi,x
i
+

l
) in a current 

population 

- Observed expectation of life at age xi. 

Number alive at exact age xi in a life table population. 

- Number of years lived in the interval (xi,x
i
+

l
) by the 

R.. individuals. 
1. 

- Age-specific death rate in the interval (xi,x
i
+

l
). 

- Length of the age interval (xi,xi +l ); ni = xi+l-x
i

• 

- (Hypothetical) number of individuals alive at exact 
age xi. 

- Midyear population in age interval (xi,x
i
+

l
). 

- Estimate of the probability of dying in interval 
(xi,xi +l )· 

- Total number of years lived by the life table population 
beyond age x .. 

1. 

- Lower limit of age interval (xi,x
i
+

l
). 

- Upper limit of age interval (xi,x
i
+

l
). 

Formulas 

Construction of abridged life table: 

D. 
q == 1. 

i ~i 
(2.1) 

(2.2) 

(2.3) 

69 

69 

93 

68 

94 

94 

93 

93 

93 

94 

94 

95 

92 

92 



;1. 
~ 

D. 
~ 

p. 
~ 
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d. == i.q., 
~ ~ ~ 

i = 0 , I , • • . , w-I , 

i=O,I, ... ,w-l, 

Li c n.(i.-d.) + a.n.d., 
~ ~ ~ ~ ~ ~ 

L == 
~.; 

L +L + +L i -i+l ••• e == --= __ .=. ... -=.. _____ W 

i £i 

i=O,l, ..• ,w-l. 

i=O, ••• w • 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Computation of the fraction of last age interval of life, 3. : 
1 

a 
1 

= 
• P1ql (l+ai ) • P1P2Q3(2+a; ) • PIP2P3q4(3+a~ ) 

4(1 - P1P2P3P4) 0.1 ) 

(3. 3 ) 
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Computation of cohort life table functions: 

1 -1 = d 
X x+n X 

1 = 1 -d 
x+n x X 

L • n£. + (l-a )nd 
X x+n x x 

T = L + ••• + L 
X X w 

" T e X 
X = r 

X 

X = O,l, .•• ,w 

(5 • .1 ) 

(5. 3) 

(5. 4 ) 

(5.S) 

(s .6) 



a. 
1 

d. 
1 

e 
a 

e 
a 

L. 
1 

n. 
1 

S.E. 
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CHAPTER 6 

- Fraction of the last age interval of life. 

- Number of life table deaths in the age interval (xi,x
i
+

l
). 

- Number of deaths in the age interval (xi,x
i
+

l
) in a 

current population. 

Expectation of life at age x . 
a 

- Observed expectation of life at age xa. 

- Life table population at age xO. It is an arbitrarily 
assigned number and is referred to as the radix. 

Number alive at exact age Xi in the life table population. 

- Number of years lived in the interval (xi,x
i
+

l
) by the £. 

individuals. 1 

- Length of the age interval (xi,xi +l ); n i = x
i
+1-x

i
. 

- Probability of surviving the interval (xi,x
i
+

l
). 

- Estimate of the probability of surviving the interval 
(xi,xi +l )· 

Probability of surviving from age x. to age x .• 
1 J 

- Estimate of the probability of surviving from age Xi to 
age x .• 

J 

Probability of surviving from age Xo to age Xi. 

- Estimate of the probability of surviving from age xn 
to age X .. 

J 

- Probability of death in the interval (xi,xi +l ). 

- Estimate of the probability of dying in age interval 
(xi,xi +l )· 

- Standard error. 

S.E.(diff.) - Standard error of a difference. 

- Sample standard error of e
i

• 

,Sample standard error of q .• 
1 

page no. 

131 

122 

119 

119 

131 

134 

122 

125 

131 

119 

119 

119 

123 

123 

123 

119 

119 

121 

128 

139 

120 



S~ 
e 

a 

T 
i 

w 

X. 
1 

v 
···ak 

y 
a 
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- Sample standard deviation of POi' 

- Sample variance. 

- Sample variance of e 
a 

- Sample variance of q .. 
1 

- Sample variance of p .• 
1 

- Sample variance of POi' 

- Sample variance of Y . 
a 

Sample variance of Y . 
Ct 

- Total number of years lived by the life table popu1Clti()c, 
beyond age x .. 

1 

- Lower limit of the final age interval in a life tab~e. 

- Lower limit of age interval (x
i

,x
i
+

1
). 

- Upper limit of age interval (x
i

,x
i
+

1
). 

Length of ~_ife beyond age x of the k-th individual in 
a 

the group of £ , for k=1,2, •.. ,£ • 
Ct Ct 

- Mean length of life beyond age x . 
Ct 

Formulas 

Estimation and hypothesis testing concerning probability q.: 
1 

s~ S~ 
qi Pi 

S~ 1 "2 " =- qi (l-qi) 
qi D. 

1 

Pr{q. 1.96 
... - S ..... < q. < q. + 1.96 S ..... } = .95 1 q. 1 1 q. 1 1 

qO(1960) - QO(1970) 
Z = -----==------=--__ _ 

S.E·[QO(1960) - QO(1970)] 

page no. 

126 

122 

134 

119 

119 

124 

134 

134 

125 

119 

119 

119 

131 

131 

(2.1) 

(2.2) 

(2.3) 

(2.4) 



NOTE: 
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Hypothesis testing concerning survival probaib1ity P.j: 
1_ 

s~ ,.. 1 j-1 ,..-2 S? 
P I: p.. r Ph -
ij ~J h=i Ph 

,. "" 
Z I: PO,20(U.S.) - PO,20(Ca1.) 

S.E. (diff.) 

For the cohort life table, P
ij 

is computed directly from 

A Q, • 

P =-L 
ij 9,. ' 

1 

with the variance given by: 

Mean life 

S~ 
p .. 

l.J 

til!,e 

1" . " = rP .. (l-p .. ) 
i l.J l.J 

and expectation 

1 
9, 

Y =- La 
Yak a 9, 

k=1 a 

L +L +L + ••• +L 
Y 

a ex w 
= 

£ 
a 

A 

Y = e a a 

of life: 

( 3.1) 

(3.2) 

(3.7) 

(3.7a) 

(3.5) 

(3.10) 

(4.1) 

(l •• 13) 

(4.2) 



---------
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Variance of the observed expectation of life: 

52 == 1 
Y r a a 

w 
l: 

i==a 

,.. 2 
[{x.-x + a.n.) - e] d. 

1 a 11 a 1 

2 53. =...L 52 
5; = Y t y 

a a a a 

w-1 
1: 

i=a 

"'2 ,.. 2 5~ 
Pa l' [( 1-a . ) n . + e. + 1 ] 

1 1 1 Pi 

(4.14) 

(4.15) 

(4.27) 
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CHAPTER 7 

page no. 

Crude probability - The probability of death from a specific 
cause in the presence of competition of all 
other risks acting in a population. 141 

Net probability - The probability of death if a specific risk 
is the only risk in effect in a population, 
or conversely, the probability of death if 
a specific risk is eliminated from a 
population. 142 

Partial crude 
probability - The probability of death from a specific cause 

when another risk is (or risk are) eliminated from 
a population. 142 

Risk and cause - Both terms may refer to the same condition but 
are different on the time scale relative to the 
occnrrence of death. Prior to death the 
condition in question is a risk; after death 
the condition is a cause (provided, of course, 
this is the condition from which an individual 
dies). 142 

Cohort multiple 
decrement table - A cohort multiple decrement table records the 

mortality experience by cause of a well defined 
cohort of people from birth to the death of the 
last person of the group. 

Current multiple 
decrement table - A current multiple decrement table is the one 

derived from the mortality experience by cause 
of a population of all ages during a current 
year. 

Formulas 

Age specific death rate: 

D. 
M. • 1 

1 (N. - D.)n. + a. n. D. 
11111 1 

D. 
M. = I 

I p:-
I 

Estimate of the probability of dying: 

1\ Di 
q. = 

I N. 
1 

, 
(2.1) 

(2.3) 

(2.4) 

142 

144 



Relationship between M. and q.: 
1 1 

n.M. 
" 1 1 
qi = 1 + (l-a )n. M. 

ill 

Age-cause-specific death rate: 

, c = 1, ... ,T. 

-377 -

Estimate of the crude probability of dying from risk Ro: 

n ~4 

'\ i io 
Ql· 1: .. u 1 + (I-a. ) n. ~L 

1 1 1 

Relationship between the probability of dying q. and the crude 
1 

probabilities, Qio: 

A A 

+ Q. .. q .• 
IT 1 

" Variance of the estimate of crude probability Qio: 

(2.5) 

(2.7) 

(2.9) 

(2.9a) 

(2.10) 

• (2.11) 

(2.12) 
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A 
Standard deviation (standard error) of the estimate Qi6: 

" :Ii 1 1\ 2 .'\ S. D. (0. 0) .. - Q 6 (l-Q. 6) 
'1 n io i 1 

'1 
Standard deviation (standard error) of the estimate q.: 

1. 

" /1" S.D.(q.). 1- q? 
1 I Di 1 

,.. 
(l-q. ) 

1 

1\ 1\ 
Covariance between Qil and Qi2 from the same population: 

. -

(2.13) 

(2.14) 

(4.2) 

/, 1\ 

Standard deviation (standard error) of the difference Qil-QiZ: 

(4.4) 

1\ 
Critical ratio for comparing Qil between two populations: 

• (4.1) 
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CHAPTER 8 

Net probability: 

I"-

q. 1 1. 
- The probability of dying in (xi,xi+l) when Rl 

is eliminated as a risk of death. 

qil - The probability of dying in (xi,xi +l ) when RI 

is the only risk acting in a population. 

- Reduction in the probability of dying in interval 
(xi,xi +

l
) due to the pr~sence of risk RI • 

Expectation of life: 

'" .. 

The expectation of life at age xi when RI is 
eliminated as a risk of death. 

ei~l-ei - Reduction in the expectation of life at age xi 
due to the presence of risk RI . 

Formulas 

The net probabilities: 

A 
Computation of the estimate qi.1: 

Hil • 
Di1 
p-:-

1 

... ni P-'i 
q. • 

1 1 + O-ai ) n. ~·L 
1 1 

1\ n. "'1 1 1 
~1· 1 + (I-a.) n

1 
M. 

1 1 

i\ .,.. ~ 1 A 
q. 1 • (qi - Qil)(1 + 2' QU) 1. 

page no. 

163 

190 

178 

183 

183 

(2.1) 

(5.1) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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"Formulns I1RPd in the construction of life tables when Rl is 
eliminated: 

T • t " 
95·1 95.1 e95 ' 1 

" Q95'1 = 1.00000 

T. 1 = L. 1 + ••• + L 
1. 1. 95.1 

" e 
L1 

T. 1 
= .2..:.­

t. 1 1. 

(3.1) 

(3.2) 

0.3) 

(3.4) 

(3.6) 

0.7) 

(3.8) 

(3.9) 

0.11) 



x 

N 
x 

m 
x 

n 
x 

d 
x 

s 
x 

d' 
x 

w 
x 

" e 
a 

lJ (t) 

d' 
xo 
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CHAPTER 9 

The number of years since admission to a follow-up 
study. 

- The number of patients alive at the beginning of the 
interval (x,x+l), N m +no 

x x 

- The number of patients who entered a follow-up study 
more than x+l years before the closing date who will be 
observed for the entire interval (x,x+l). 

- The number of patients who entered the study less than 
x+l years before the closing date and are due to with­
draw in the interval (x,x+l). 

The number of patients among m dying in the interval 
x (x,x+l). 

The number of patients among m surviving to the end of 
the interval (x,x+l). x 

- The number of patients among n who will die before ~he 
time of withdrawal. x 

The number of patients who survive to the time of 
withdrawal. 

Estimate of the probability of surviving from admission 
to the interval (O,x). 

- Estimate of the expectation of life at x=a. 

- Total force of mortality at time t. 

- The force of mortality for risk Ro at time t. 

- The number of patients among d dying from risk Ro· x 

- The number among d' dying from risk Ro· x 

Formulas 

page no. 

195 

195 

196 

196 

196 

197 

197 

197 

201 

202 

213 

213 

216 

217 

Binomial distribution among those not due for withdrawal in (x,x+l): 

(2.1) 

E(s 1m ) II: m p 
x x x x and (2.2 ) 
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Binomial distribution among those due for withdrawal in (x,X+l): 

(2.5) 

lew In ) - n p~ x x x x and E(d'in ) -= n (l-p~) 
x x x x (2.6) 

Estimate of the probability of survival p and its sample variance: 
x 

.. 
p -X [ _~d' + /lr.d. 2 + 4(N -~)(s + ~ ) 

x x x x x x 

2 

2(N - ~ ) 
X X 

, 
x-O,l,···,y-l. 

where 

M - m + D (l~~)-l z X Z '''x 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Estimate of survival probability POx and its sample variance: 

x-l.2,··· ,y. 

Estimate of expectation of life and its sample variance: 

S2 e 
a 

e - ~ + Pa + PaPa+1 + ••• + P P •• • p + p (P: ) 
a a a+1 y-1 ay I-pt 

1-1 
t .. 2 [A J2 - L Pax ex+1 + ~ 

x-a 
x,tt 

.. 2 

S~ + P 2 [e + ~ + Pty ] 
Px at t+1 (l-p )2 

t 

"2 
P ay 

(l-p ) At 
t 

a>t. 

Forces of mortality: 

~(T;l) + ••. + ~(T~r) • ~(T) 

(2.12 ) 

(2. 13 ) 

( 2.19) 

(2.23) 

(2.24 ) 

(3.1) 



Crude probability of dying: 

Qxc5(t). ~(xic5) 
" (x) 

o (~). JI{x;o) [1 - :+ ] 
~o lJ (x) Px 

Net probabilities of dying: 
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Partial crude probability of dying: 

(3.2) 

O<t~l. (3.3 ) 

(3.4) 

(3.8) . 
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Multinomial distribution among those not due for withdrawal in (x,x+l): 

s 
C P X 

1 X 

E(& 1m ) - m p X X X X 
and 

d 
~rxr , 

E(d rIm) - m Q r 
Xv X X Xv 

(3.10) 

(3.11) 

Multinomial distribution among those due for withdrawal in (x,x+l): 

I(v 111 ) - 11 P + and 
11: 11: X X 

E(d~rll1 ) .11 Q r(lip -t)-l 
~x xxv X 

Estimates of probabilities of dying: 

and 

6-l,2,···,r, 
x-O,l,···,y-l. 

6 - 2 •.. . ,r; 

x - O,l, ..• ,y-! . 

(3.13) 

(3.14) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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Lost cases: 

~(x;r)6 + 0(6) = Pr{a patient will be lost to the study 
in (T,T+6) due to follow-up failure}, 

l-q 

x< T<x+l . 

= Pd a patient alive at time x will remain alive apd 
under observation at tim~ x+l}. 

l-p 
x = Pr{a patient alive at time x will either die or 

be lost to the study due to follow-up failllr~ 
in interval (x,X+I)}. 

= Pr{a patient alive at time x will be lost to the sturly 
in (x, x+l)}. 

Pd a patient alive at time x will die in interval 

(4.1) 

(l'.2) 

(4.3) 

fL,.4) 

(x,X+I) if the risk R of being lost is elimin1tedL (/f.S) 
r 

x.r Pda patient alive at x will survive to time x+J jf 

the risk R of being lost is eliminated}. (4.6) 
r 

pda patient alive at x will die in (x,X+I) from risk 
Ro if the .risk Rr of being lost is eliminated}. (/!. 7) 



a. 
1. 
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APPENDIX I 

- The fraction of last age interval of life. The 
expected fraction of the interval (xi,xi+n

i
) lived 

by an individual who dies at an age included in the 
interval 

T. - The fraction of the interval (x.,x.+n.) lived by an 
1. 1. 1. 1. 

M. 
1. 

m. 
1. 

].l(x) 

individual who dies at an age included in the interval. 
Ti is a random variable whose expectation is ai' or 

E(T.) = a .. 
1. 1. 

- Age specific death rate. The ratio of the observed 
number of deaths (D.) to the total number of years lived 

1. 

in the interval (x.,x.+n.) by those who are alive at x .. 
1. 1. 1. 1 

M. is a random variable. 
1. 

- (Theoretical) age specific death rate. The ratio of the 
expected number of deaths to the expected number of years 
lived in the interval (x.,x.+n.) by those who are alive 

1. 1. 1. 

at x .. m. is an unknown theoretical value. 
1. 1. 

- Probability of dying in interval (x.,x.+n.). 
1. 1. 1. 

- Force of mortality (mortality intensity function) age a~e Y. 

Formulas 

Relationship between qi and m
i

: 

n. 

m. • 1 

1 

qi • 1-exp{-! ~(Xi+~) d~} 
o 

n. 
1 

1-exp{-! 
o 

ni Y 

lJ(x.+~) dq 
1 

! exp{-! lJ(x.+t) dt}dy 
o 0 1 

n.t 
[exp{-! 1 lJ(x.+OdC}] lJ(x.+n. t)n. dt o 1 111 

g (t) dt • -----.:.-.-----------­
'li 

o < t < 1 

(1) 

(2) 

(4) 

page no. 

227 

227 

227 

227 

227 

227 
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1 
a. • E(T.) • I tg(t)dt 
110 

n.m. 
1 1 q .• 

1 l+(l-a.)n.m. 
111 

m 
x 

qx >It l+(l-a')m 
x x 

(6) 

(9) 

(10) 



Y 
a 

e 
a 

fey ) 
a 

x 

FX(x) 

£ 
x 

l-p .. 
1.J 

P £.,£ 
'1. j 

CJ 
£.,£. 

1. J 
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APPENDIX II 

The future life time beyond age 
variable. 

x . This is a random 
a 

The true expectation of life byond age x • Y is a 
a a 

random variable whose expectation is ea' or 
E(Y ) = ea. 

a 

- Probability density function of Y. The product 
a 

fey )dy is the probability that an individual alive 
a a 

at x will survive the period (x ,x +y ) and then a a a a 
die in the interval (x +y , (x +y +dy ) a a a a a 

- The life span of an individual. It is a continuous 
random variable. 

Distribution function of the length of life X. It is 
the probability of dying prior to, or at, age x. 

- The number of individuals surviving to age x. 

- Probability that an individual alive at age X. will 
1. 

survive to age x., for i<j. 
J -

- Probability that an individual alive at age x. will die 
1. 

before age x .. 
J 

- Probability that one individual alive at age 0 will 
survive to age x. 

- Probability that an individual alive at age Xo will die 

in the interval (xi,xi +l ), i=O,I, .•. ,w. 

- Probability that an individual alive at age xa will die 

in the interval (xi,xi +l ) subsequent to xa' 

- Correlation between £. and £ .• 
1. J 

- Covariance between £., £. 
1. J 

Formulas 

page no. 

247 

248 

247 

234 

234 

234 

232 

232 

235 

242 

243 

241 

241 

Distribution of the length of life X and the number of survivors £ : x 

~(x)t. + o(t.) - Pdan individual alive at age x will die in interval 

(x,X+t.)} (2.1) 

(2.2) 



x 
-J lJ(t)dt 
o 

- e 

-390-

-POx 

- 0 

Gompertz distribution: 

t 
lJ(t) - Be 

x 
f(x) _ Bexe-B[e -lJ/ln e 

(2.7) 

(2.8) 

(2.11) 

(2.12) 

(2.13) 

x>O (2.20) 

X<O 

(2.23) 

(2.24) 

(2.25) 



Makeham distribution: 

t 
~(t) • A + B e 
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) x x f(x • [A+Be ] exp{-[Ax+B(e -1)/ln e]} 

FX(x) • 1 - exp{-[Ax+B(cx-1)/ln c]} 

Weibull distribution: 

a-I 
lJ(t) - lJat 

a a-I -~x 
f(x) • ~ax e 

Exponential distribution: 

~(t) • ~ is a constant, 

-~x F (x) • l-e X 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.29a) 

(2.30) 

(2.31) 

(2.32) 
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Joint distribution of £1'£2""'£u' and their correlation: 

u-l kit ki +l ki-ki +l 
Pr{£1=k1 '£2=k2,···,£ =k I£~l= ~ k '(k -k )' Pi (I-Pi) 

u u ~ i=O i+l' i i+l' 

O,l, .•. ,k., 
~ 

POj (I-POi) = POj (I-POi) 

POi (l-p Oi )P OJ (l-p OJ ) POi (l-p OJ ) 

Joint distribution of dO,d
l

, .•. ,dw' and their correlation: 

0di,d
j 

c -£OPOiqiPOjqj for i~j; i,j=O,l,···,~. 

Maximum likelihood estimates of PO'Pl""'P
u

: 

u-l 
L=~ 

i=O 

j - 0,1,. oo,u-l 

., p. 
J 

(3.3) 

(3.8) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(5.2) 

(5.5) 

(5.6) 



When £0 is large, 

., C1~ 
q', 

J 
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a < j ~ k 

(5.8) 

(5.9) 

(5.11) 

(5.12) 

Expectation of Ufe and its estimate: 

co co x 
y e ex 

ex ~(x +y )dy 
ex ex ex (6.6) e = J y f(y )dy ., J 

ex 0 ex ex ex 0 

co 2 
f (y -e) f(y )dy o ex ex ex ex 

(6.7) 

Y - e ex ex 
(6.13) 

w 
e ., a n + L 

ex ex ex i-ex+1 (6.15) 

e "" a n + ex ex ex a=O, 1, ••• ,We 
(6.16) 

a-O,l,'" ,w-l. (6. 21) 
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APPENDIX III 

page no. 

Qio - Crude probability of dying from risk Ro. 

Qio = Pr{an individual alive at age xi will die in 

the interval (xi,xi +l ) from Ro in the 

presence of other competing risks operating 
in the population} 259 

qio - Net probability of dying from risk Ro. 

(l 

-io.l 

~ (t; 0) 

qio = Pr{an individual alive at age xi will die in 

the interval (xi,xi +l ) when Ro is the only 

risk operating in the population} 

- Net probability of dying when Ro is eliminated as a 
risk of death. 

qi.o = Pr{an individual alive at age Xi will die in 

the interval (xi,xi +l ) when Ro is eliminated 

259 

as a risk of death} 259 

- Partial crude probability of dying 

Qio.l = Pr{an individual alive at age Xi will die in 

the interval (xi,xi+l ) from Ro when Rl is 

eliminated as a risk of death} 259 

- Partial crude probability of dying 

Qio .12 = Pr{an individual alive at age Xi will die iT"! 

the interval (xi,xi+l ) from Ro when Rl an~ 

R2 are eliminated as risks of death} 259 

- Probability of surviving the interval (xi,x
i
+

l
) 259 

- Probability of dying in the interval (xi' x
i
+

l
) 259 

- Interaction between risks Ro and R
E

. 270 

- Force of mortality associated with risk Ro' o=l, ... ,r. 261 

p(t) - Total force of mortality. 

~(t) = ~(t~l) + ... + ~(t;r) 261 

~(t;o,E) - Force of mortality associated with the interaction I~OE. 270 
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G-44 
Formulas 

Relationship between three types of probab~lities: 

~(t;0)6 + o(~) - Pr{an individual alive at time t will die in interval 

(t, t+~) from risk Ro}' o-l,"',r 

~(t;l) + ••• + ~(t;r) - ~(t) 

Proportionality Assumption: 

When q. is extremely small, 
1 

i-O,l,···. 

o -1,"', r. 

o -2, ••• , r. 

~(t;O,t)~ + o(~) - Pr{an individual alive at time t will die 

in interval (t,t+~) from ROt} 

r r-1 r 
I ~(t;6) + I I ~(t;O,t) - ~(t) 

0-1 6-1 t-6+l 

(2.1) 

(2.2) 

(2.3) 

(2.10) 

(2.17) 

(2.21 a ) 

(2.27) 

(2.29) 

(2.33) 

(3.3) 

(3.5) 

(3.10) 
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(3.12) 

(3.16) 
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APPENDIX IV 

page no. 

dio - Number of deaths from cause Ro in the interval 
(xi,xi +l )· 277 

Pd d In Correlation coefficient between d,~d, , given £" 
, ~, , x, , 10 1E 1 10 1E 1 

279 

P - Correlation coefficient between d1'~ and d
1
,c' d,~,d, 0 G 10 1E 

283 

SA - Standard error of Q1'~' 
QiO 0 

288 

Formulas 

(1.1) 

(1. 3) 

Q. + .. '+Q. 
1.1 lor (1.4) 

(1. 6) 

Joint probability distribution of d'l,···,d, '£'+1 given £.: 1 1r 1 1 

d /'''d , D , 

i1 ir""i+l' 

d d 1 
Q. i1 •.• Q ir i+1 

1.1 ir Pi (1. 7) 

where d'l+" .+d +£ £" 1 ir i+l 1 

(1.8) 

(1. 9) 



-- -------- --------
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(1.11) 

(1.13) 

(1.15 ) 

Joint probability distribution of all the random variables d·1····,d. '£.+1' 
1 lr 1 

for i=O,l, ..• ,u, given £0: 

u 
n 

i-O 

Cov(di~,d ) - -£ p Q p Q 
IJ ie:: ° Oi i6 Oi ie:: • 

o=l, ••• ,r; 
i-O, ••• ,u. 

o;e::; 0, e::=l, ••• ,r; 
i=O, •.. ,u • 

, for i<j 

(2.1) 

(2.2) 

(2.6) 

(2.7) 

(2.9) 

(2.12) . 



L -
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Haximum likelihood estimates of 

u 1i' dn n 
i-O dill ... dirl 1i +1 ' 

Qn 

,.. 1i +1 
Pi =­i. 

l. 

" E[QiO] 

,.. 

Oc1, ••• ,r 
i -O - , .•. ,u 

i-O, ••• ,u 

- QiO 

1 Var(QiO) = E(-) QiO (l-QiO) , ii 

Var(Pi ) ... Vat(qi) - E(1~ )Piqi 
,.. ,.. 1 Cov(QiO' QiE:) = -E(-) QiO QiE: 1i 

" 1 
Cov(QiO' Pi) - -E(-) Pi QiO ii 

S" ... 
QiO 

I 1" " r QiO(l-QiO) 
l. 

." )1 & (1-&.) s" qi i. i l. 
l. 

(2.13) 

0-1, .•. ,T; (2.J4) 
i<j; i,j=O,l, •••• 

i < j, (2.15) 

Pi' Qio: 

dir 1i +1 
Qir Pi (3.1) 

(3.7) 

(3.8) 

(3.10) 

0-1, ••.• r 
i-O" .·"u 

(3.15) 

(3.16) 

(3,17) 

(3.18) 

0-1 •••.• r (3.20) 

R--O, ••• , u . (3.21) 




